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Abstract. With the increasing popularization of computer network-based tech-
nologies, security has become a daily concern, and intrusion detection systems
(IDS) play an essential role in the supervision of computer networks. A current
approach to detect network intrusions is the development of intrusion detec-
tion systems by employing machine learning techniques. Due to a variety of
strategies used, there is a need for a systematic way that supports the decision
making in a machine learning-based IDS project. In this paper, we present a
systematic approach to decision-making support for algorithms selection on the
IDS design. We used a very recent dataset and reduced their features from 78
to 51 through the mean decrease in impurity (MDI) feature selection technique.
Afterward, we evaluated the network intrusion detection performance of eight
machine learning algorithms on two dataset resampling techniques. Decision
Trees, Random Forests and Multi-layer Perceptron on Stratified 10-Fold algo-
rithms reached Precision, Recall, and F1-Scores metrics on about 98%-99%
with low test times.

1. Introduction
Intrusion Detection Systems (IDS) are systems built to monitor and analyze network traf-
fic and hence detect anomalies and attack intrusions [Hindy et al. 2018]. From a machine
learning perspective, the network intrusion detection can be considered a typical clas-
sification problem and the IDS project based on machine learning generally consists of
three phases: (i) pre-processing, (ii) training, and (iii) detection [Li et al. 2019]. The
project phases are composed of tasks that may require decision making by a strategy or
technology. The selection of machine learning algorithms has its own set of activities and
decision-making, as shown in figure 1.

Under a multidisciplinary view, as a classification problem, some additional chal-
lenges interfere with the design of an IDS. Traditional network intrusion detection systems
have been developed using available knowledge bases (a.k.a. IDS datasets), and its per-
formance depends heavily on the quality of the knowledge base [Li et al. 2019, Shiravi
et al. 2012]. Therefore, the lack of an adequate public dataset severely impairs an IDS
evaluation.

In this paper, we focus on algorithms selection decision-making tasks. We applied
eight well-known machine learning algorithms to evaluate the accuracy of a general IDS
based on the recent CICIDS2017 dataset [Sharafaldin et al. 2018]. Our contribution
is threefold. First, we highlighted the decision-making viewpoint throughout the process
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Figure 1. Algorithm selection decision-making activities.

and detailed all steps used for machine learning algorithms evaluation. Then, we evaluated
the performance of the classifiers directly from the whole dataset with all attack labels,
which is the most realistic way to deal with unseen data. Finally, we used two data
resampling techniques to evaluate the intrusion detection performance of the classifiers
on the selected feature set.

The remainder of the paper is organized as follows. Section 2 presents relevant
related works. Section 3 shows some background for a better understanding of our pro-
posal. Section 4 presents the proposed methodology, followed by the obtained results in
Section 5 and discussion in Section 6. Finally, we present the conclusions in Section 7.

2. Related Works

Previous works have addressed, at different levels, the decision-making for algorithms
selection on machine learning-based IDS design. This section presents some of these
recent works by focusing on feature selection (FS) techniques, datasets, metrics, machine
learning algorithms, and data resampling techniques used.

Varguese and Muniyal [Varghese and Muniyal 2017] studied the efficacy of seven
different algorithms concerning two different feature selection strategies on the NSL-
KDD dataset. They used Correlation-based Feature Selection (CFS) and Principal Com-
ponent Analysis (PCA) for feature selection. They also evaluated the performance of j48,
NBTree, Random Forest, LibSVM, Bagging with REPTree, PART, and Multilayer Per-
ceptron(MLP) classifiers by using 10-Fold cross-validation. The authors evaluated the
performance of the classifiers concerning feature extraction by calculating performance
measures like accuracy, erroneous rate, recall, precision, F-measure, ROC and execution
time.

Effendy et al. [Effendy et al. 2017] also used the NSL-KDD dataset and Infor-
mation Gain Ratio (IGR) for feature selection. The authors evaluated the Naive-Bayes
classifier with the accuracy as key performance indicator.

Biswas [Biswa 2018] studied the combination of feature selection techniques and
classifiers to build accurate network intrusion detection. He applied four feature selection
methods on the NSL-KDD dataset and evaluated the performance of five classifiers. The



author used 5-fold cross-validation and adopted the accuracy as the performance metric.

Park et al. [Park et al. 2018] evaluated the performance of detecting different types
of attacks on Kyoto 2006+ dataset. They performed a selection of features manually,
based on the recommendation of other works. The authors evaluated the Randon Forest
classifier by using precision, recall, F1-Score, F2-Score, and Accuracy as the performance
metrics. They manually separate the dataset from the training and test portions for each
class label. They perform the training in the dataset and the metric estimation in the test
subset only once.

Sharafaldin et al. [Sharafaldin et al. 2018] also extracted traffic features from the
CICIDS2017 dataset and examined the performance and accuracy of the selected fea-
tures with KNN, RF, ID3, Adaboost, MLP, Naive-Bayes, and QDA. They do not provide
information about dataset splitting or resampling techniques usage on their classifiers per-
formance evaluation.

Almseidin et al. [Almseidin et al. 2017] used an older dataset version, the KDD99.
They evaluated the J48, Random Forest, Random Tree, Decision Table, MLP, Naive-
Bayes, and Bayes Network classifiers by using precision, recall, ROC area, and Root
Mean Squared Error as performance metrics. They do not provide information about
dataset splitting and feature selection.

Ultimura and Costa [Utimura and Costa 2018] used 10% of the ISCXIDS2012
dataset to evaluate its algorithms. They manually separate the data in different training
and test portions and perform the training and the metric estimation for each sub data
proportion. The authors divided their work into two phases; the first one focused on the
comparative analysis of the performance of the classifiers using the new ISCXIDS2012
dataset and the second on the validation of the SDI Snort ++ extension. The authors
evaluate the Multilayer Perceptron (MLP) and the Optimum-Path Forest (OPF) classifiers
by using the accuracy and execution time as performance metrics.

Table 1 summarizes the very recent works discussed where we highlight used
dataset, feature selection, number of ML algorithms and split strategy. Here we used a
new and still little-analyzed IDS dataset that contains the most current common attacks
and evaluated the performance of network intrusion detection by adopting two data re-
sampling techniques and eight classifiers on the entire dataset.

Table 1. Related works summary.
Reference Dataset FS # algorithms Split strategy

[Varghese and Muniyal 2017] NSL-KDD Yes 7 10-Fold
[Effendy et al. 2017] NSL-KDD Yes 1 not clear

[Almseidin et al. 2017] KDD-99 No 7 not clear
[Biswa 2018] NSL-KDD Yes 5 5-Fold

[Park et al. 2018] Kyoto 2006+ Yes 1 Train/test split
[Utimura and Costa 2018] ISCXIDS2012 No 2 Train/test split
[Sharafaldin et al. 2018] CICIDS2017 Yes 7 not clear

This paper CICIDS2017 Yes 8 Strat. and 10-Fold



3. Background

3.1. CICIDS2017 Dataset

Sharafaldin et al. [Sharafaldin et al. 2018] analyzed the properties of eleven IDS datasets
since 1998 and showed that most are out of date and unreliable. Some issues found are i)
existing datasets suffer from the lack of traffic diversity and volumes, and ii) datasets do
not cover the variety of known attacks.

CICIDS2017 dataset is for networking security and intrusion detection and is pub-
licly available for research ends from Canadian Institute of Cyber-security [CIC 2018].
They captured data for a total of 5 days and extracted more than 80 network flow features
from the generated network traffic (PCAP files). They also delivered the network flow
dataset as CSV files which have 78 features and respective class labels. Implemented
attacks include Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web Attack, Infil-
tration, Botnet and DDoS. The CICIDS2017 dataset consists of labeled network flows,
including full packet payloads in pcap format, the corresponding profiles and the labeled-
flows and CSV files for the machine and deep learning purpose (please check Table 2).

Table 2. CICDS2017 dataset CSV.
File name Classes

Monday-WorkingHours.pcap ISCX.csv Benign
Tuesday-WorkingHours.pcap ISCX.csv BruteForce, FTP-Patator, SSH-

Patator, and Benign
Wednesday-workingHours.pcap ISCX.csv DoS/DDoS, DoSslowloris, DoSS-

lowhttptest, DoSHulk, DoSGolden-
Eye, Heartbleed, and Benign

Thursday-WorkingHours-Morning-WebAttacks.pcap ISCX.csv WebAttack-BruteForce,
WebAttack-XSS, WebAttack-Sql,
and Benign

Thursday-WorkingHours-Afternoon-Infilteration.pcap ISCX.csv Infiltration, MetaExploit, and Be-
nign

Friday-WorkingHours-Morning.pcap ISCX.csv Botnet and Benign
Friday-WorkingHours-Afternoon-DDos.pcap ISCX.csv DDoS and Benign

Friday-WorkingHours-Afternoon-PortScan.pcap ISCX.csv PortScan and Benign

3.2. Machine Learning on Network Intrusion Detection

Supervised learning approaches discover the patterns to map an input to an output based
on the labeled input-output pairs of data samples. The classification problem is a typical
supervised learning problem, which has been commonly used for network intrusion de-
tection and many machine learning approaches have been used to solve network intrusion
detection issues, and all of them consist of three general phases [Li et al. 2019]:

• Preprocessing: The data instances that are collected from the network environ-
ment are structured, which can then be directly fed into the machine learning al-
gorithm. The processes of feature extraction and feature selection are also applied
in this phase;
• Training: A machine learning algorithm is used to characterize the patterns of

various types of data, and build a corresponding system model.



• Detection: Once the system model is built, the monitored traffic data will be used
as system input to be compared to the system model.

Pedregosa et al. [Pedregosa et al. 2011] provides a brief explanation of evaluated algo-
rithms as follows.

• Nearest Centroid: is a simple algorithm that represents each class by its member
centroid. It has no parameters to choose, and for its simplicity, we choose it as our
baseline algorithm;
• Naive-Bayes: Naive Bayes methods are a set of supervised learning algorithms

based on applying Bayes’ theorem with the naive assumption of conditional inde-
pendence between every pair of features given the value of the class variable;
• AdaBoost: Its an ensemble boosting-based method. The core principle of Ad-

aBoost is to fit a sequence of weak learners such as small decision trees, on re-
peatedly modified versions of the data and then combines the predictions through
a weighted majority vote (or sum).
• Multi-layer Perceptron: MLP learns a mapping from input features to outputs

and consists of layers of non-linear elements which form complex hypotheses.
• Decision Trees: are a non-parametric supervised learning method. The goal is

to create a model that predicts the value of a target variable by learning simple
decision rules inferred from the data features.
• K-Nearest Neighbors: is instance-based learning in which the algorithm does

not attempt to construct a general internal model, but stores instances of the train-
ing data. Classification is computed from a simple majority vote of the nearest
neighbors of each point.
• Random Forests: Use randomized decision trees as base learners. It is an en-

semble bagging-based method in which the prediction is given as the averaged
prediction of the individual base learners.
• Quadratic Discriminant Analysis: have closed-form solutions and no hyperpa-

rameters to tune. It has a quadratic decision surface and can be derived from
simple probabilistic models.

Machine learning approaches have been susscessfully employed in the design of
network intrusion detection systems as presented in the works of Park et al. [Park et al.
2018], Hodo et al. [Hodo et al. 2018], Shafaraldin et al. [Sharafaldin et al. 2018], Ul-
timura and Costa [Utimura and Costa 2018], and Biswa [Biswa 2018].

3.3. Resampling techniques

Regarding resampling techniques, a subset of samples are used to fit a model, and the re-
maining samples are used to estimate the efficacy of the model. This process is repeated
many times, and the results are aggregated and summarized. These techniques for esti-
mating model performance operate similarly, and their variations usually center around
the method in which subsamples are chosen [Kuhn and Johnson 2013].

• K-Fold Cross-validation: The dataset samples are randomly partitioned into k
sets of roughly equal size. Each partition, in turn, is used for testing and the
remainder is used for training and repeat the procedure K times so that in the
end, every partition has been used exactly once for testing. Finally, the K error
estimates are averaged to yield an overall error estimate [Witten et al. 2017].



• Stratified K-Fold Cross-validation: A variant of K-Fold that select the k parti-
tions in a way that makes the folds balanced concerning the outcome. Stratified
K-Fold ensures that the sampling is done in a way that guarantees that each class
is properly represented in both training and test sets [Kuhn and Johnson 2013].

Our work compares the network intrusion detection performance of the classifiers on
CICIDS2017 by using these two resampling techniques.

4. Material and Methods

This section presents the adopted methodology and experiment details as shown in Fig-
ure 2. We divide our experiments into two scenarios, A and B. In experiment A, the
focus was to evaluate the network intrusion detection performance of the classifiers in
the CICIDS2017 dataset in a replicable and comprehensive manner. In experiment B the
focus was to analyze whether a change in the resampling technique significantly alters the
results of experiment A. We present the details of each experiment as follows.

CICIDS2017 DataSet

Preprocessing

KNNNC DTAdaboost MLPNB QDARF

Estimate the metrics on tests subsets

Compare the results

10xFit the models on training subsets

Simple K-Fold / Stratified K-Fold

Figure 2. Experiments workflow.

Our experiments consisting into data preprocessing, apply the resampling tech-
nique for splitting the dataset into training and testing subsets. Within resampling, use
the training subsets to fit each classifier and used the trained classifiers for predicting the
labels of the test data subset. We compute the performance metrics of each trained clas-
sifier on the test subsets by comparing the actual labels and predicted labels. Finally, we
summarize and discuss the results. The main difference between experiment A and B
was the resampling technique adopted for dividing the dataset and evaluate the models.
In experiment A we adopted 10-Fold cross-validation, and in experiment B we adopted
Stratified 10-Fold cross-validation.



In this paper, the experiments where performed on Ubuntu Linux 18.04 LTS plat-
form, Intel R, Core(TM) i7-7500U CPU 2.70GHz (4CPUs), 16 GB RAM. We employed
Scikit-learn 0.20, Keras 2.2.0, and Python 3.6.5 on the classifiers implementation and
evaluation. We also used the Rpy2 2.9.5 to perform statistics. Scikit-learn [Pedregosa
et al. 2011] is a open source machine learning library and toolbox written in Python1.
Keras2 is a high-level neural networks API, also written in Python. Rpy23 is a Python
interface to the R language.

The CICIDS2017 dataset is available as multiple CSV files, our preprocessing
started by merging the files into a single CSV, removing strange characters from the
column names and convert all non-numerical data into numerical representations. We
decided to exclude as noise, records in which the word Infinity was amid the numerical
values. For feature selection, we adopt Random Forests mean decrease in impurity (MDI)
method directly on the whole dataset. By averaging the estimates of predictive ability over
several randomized trees one can reduce the variance of such an estimate and use it for
feature selection. This is known as the mean decrease in impurity [Pedregosa et al. 2011].
We end the preprocessing by applying the min-max data transformation that scales and
transforms each feature individually such that it is in a small specified range as presented
by Kuhn and Johnson [Kuhn and Johnson 2013].

Our evaluated classifiers are Randon Forests (RF), Naive-Bayes (NB), Adaboost,
Multilayer Perceptron (MLP), Decision Trees (CART), K-Nearest Neighbors (KNN),
Quadratic Discriminant Analysis (QDA), and our baseline for performance evaluation,
the Nearest Centroid (NC) classifier. We configure our MLP as 51/102/51/15. This setup
has 51 neurons in input layer that represent each feature, 102 neurons on the first hidden
layer, 51 neurons on the second hidden layer, and finally, 15 neurons in the output layer
that represents each class label. We used the relu activation function on hidden layers and
softmax activation function in the output layer as Keras documentation recommendations.
We adopted Scikit-learn default hyperparameters on the remaining classifiers.

The CICIDS2017 dataset has multiple attack labels, and we reframed it as a multi-
class classification problem. We used the weighted averaged of the Pr, Rc and F1 metrics
as presented by Shafaraldin et al. [Sharafaldin et al. 2018].

Varguese and Muniyal [Varghese and Muniyal 2017] explain these metrics in a
network intrusion detection way, as follow.

• Precision (Pr): Precision or Predictive value positive is the proportion of positives
(alerts) that corresponds to the presence of the attack condition.
• Recall (Rc): Recall or Sensitivity is a true positive rate which measures the ability

of a test to detect the attack condition when the attack condition is present.
• F1-Score (F1): It is a harmonic combination of the Pr and Rc into a single mea-

sure. It adopts a weighted version of these metrics for multiclass classification
problems.
• Time to test: The recognition of unseen data is essential on IDS design. Thus, we

compute the time needed to run the already trained classifiers on the test set.

1https://www.python.org/
2https://keras.io
3https://pypi.org/project/rpy2/



Pedregosa et al. [Pedregosa et al. 2011] formally present Pr, Rc, and F1 as follows. If y
is the set of predicted (sample, label) pairs. ŷ is the set of true (sample, label) pairs. L is
the set of labels. yl the subset of y with label l and ŷl is the subset of ŷ.

P =
TP

TP + FP
,R =

TP

TP + FN
(1)

Prweighted(y, ŷ) =
1∑

l∈L |ŷi|
∑
l∈L
|ŷl|P (yl, ŷl) (2)

Rweighted(y, ŷ) =
1∑

l∈L |ŷi|
∑
l∈L
|ŷl|R(yl, ŷl) (3)

F1(y, ŷ) =
2 ∗ (precision ∗ recall)
precision+ recall

(4)

Within each resample type, we trained and tested the classifiers and computed the
mean and standard deviation of the metrics for the set of ten rounds in experiments A
and B. We used 10-Fold cross-validation in experiment A and Stratified 10-fold cross-
validation in experiment B.

5. Results
5.1. Preprocess
Table 3 shows the final quantitative for each class label after noise clean up. We observe
that the dataset is highly unbalanced.

Table 3. Dataset clean up
Class Name Num. Repr. Original Samples Noise Samples Final Samples
Benign 0 2273097 1777 2271320
Dos Hulk 4 231073 949 230124
PortScan 10 158930 126 158804
DDoS 2 128027 2 128025
Dos GoldenEye 3 10293 0 10293
FTP-Patator 7 7938 3 7935
SSH-Patator 11 5897 0 5897
DoS Slowloris 6 5796 0 5796
DoS Slowhttptest 5 5499 0 5499
Bot 1 1966 10 1956
Web Attack Brute Force 12 1507 0 1507
Web Attack XSS 14 652 0 652
Infiltration 9 36 0 36
Web Attack SQL Injection 13 21 0 21
Heartbleed 8 11 0 11
Total - 2830743 2867 2827876

On feature selection, we compute the feature importance on the whole dataset
(78 features and one class label column) by using MDI technique within the RandonFore-
stRegressor class of scikit-learn [Pedregosa et al. 2011] as presented by [Sharafaldin et al.



2018]. However, due to a large number of label classes (15) with different characteristics
to be identified, we decided to keep all features with non-zero importance, thus excluding
only the features in which MDI indicated zero importance. Table 4 lists our 51 features
selected. The final evaluated dataset has 51 feature columns and one column with class
labels.

Table 4. Features selected
Features selected regarding the whole dataset - nonzero importance
Flow Bytes/s, Total Length of Fwd Packets, Bwd Packet Length Std, Subflow Fwd Bytes,
Destination Port, PSH Flag Count, Bwd Packets/s, Flow IAT Mean, Fwd Packet Length Std,
Init Win bytes forward, Fwd IAT Min, Init Win bytes backward, min seg size forward, Av-
erage Packet Size, Fwd Header Length.1, Fwd Header Length, Bwd Packet Length Mean,
Idle Min, Fwd Packet Length Max, Total Length of Bwd Packets, Subflow Bwd Bytes, Ac-
tive Std, Bwd IAT Mean, Bwd IAT Std, Packet Length Mean, Bwd Packet Length Max,
Bwd IAT Min, Avg Bwd Segment Size, Flow IAT Std, Flow IAT Min, URG Flag Count,
Min Packet Length, Max Packet Length, Fwd Packet Length Min, Flow Packets/s, Flow IAT Max,
Flow Duration, Bwd Header Length, Fwd Packets/s, Fwd Packet Length Mean, Fwd IAT Total,
Fwd IAT Std, Fwd IAT Mean, Fwd IAT Max, act data pkt fwd, Total Fwd Packets, Fwd PSH Flags,
Down/Up Ratio, Bwd IAT Max, Avg Fwd Segment Size, ACK Flag Count

5.2. Machine Learning Classifiers Evaluation

This section presents experiment result details and comparison. Table 5 and table 6 shows
the mean and standard deviation of our evaluation metrics for each classifier within a
cross-validation (CV) evaluation.

5.2.1. Experiment A

An individual analysis of experiment A concerning each metric shows that the use of
simple 10-Fold CV generated high standard deviation rates with inconstant results in each
training round and tests as presented in table 5. We use the results of the precision, recall,
and f1-score metrics of experiment A for comparison purposes with those of experiment
B.

Table 5. Experiment A - Performance Evaluation Results
Experiment A - Simple K-fold

Algorithm Precision Recall F1-Score Test time (sec.)
mean std mean std mean std mean std

RF 0.84 0.27 0.88 0.20 0.86 0.25 1.32 0.08
Naive-Bayes 0.90 0.16 0.58 0.14 0.70 0.16 3.23 0.17
AdaBoost 0.76 0.30 0.82 0.22 0.78 0.27 21.26 1.10
MLP 0.83 0.29 0.88 0.19 0.85 0.26 2.05 0.22
DT 0.85 0.27 0.89 0.20 0.86 0.25 0.23 0.01
KNN 0.84 0.29 0.88 0.19 0.85 0.26 2411.17 381.32
NC 0.83 0.23 0.49 0.13 0.61 0.16 0.42 0.01
QDA 0.81 0.29 0.80 0.21 0.77 0.28 7.47 0.71



5.2.2. Experiment B

Table 6 depicts experiment B in which we used the Stratified 10-Fold CV. We observe low
standard deviations on evaluation metrics that indicates low fluctuations around the mean
in each round of training and test. Concerning precision, RF, MLP, and DT achieved 99%.
KNN and QDA reached 98%. NB produced 97%, NC reached 84%, and the worst result
was Adaboost with 75% of precision that was overcome even by the baseline classifier.
Regarding recall, the best results were DT with 99% and RF with % 98. KNN and MLP
achieved 97%. QDA reached 95% and Adaboost 85%. The worst result was of NB with
67% and the baseline NC with 55% recall. F1-score metric presents DT as the best result
with 99 %. MLP and RF achieved 98 %. KNN reached 97% and QDA 96%. The worst
results were NB with 78% and our baseline, NC with 63%. Since the F1-Score is the
combination of recall and precision, most of those classifiers achieved over 80% that is
good values.

On the testing times evaluation, the worst result was of KNN since this is an
instance-based algorithm in which the amount of data harmed its average time of tests.
DT and NC were the fastest. The remaining algorithms performed the tests on average in
few seconds.

Table 6. Experiment B - Performance Evaluation Results
Experiment B - Stratified K-fold

Algorithm Precision Recall F1-Score Test time (sec.)
mean std mean std mean std mean std

RF 0.99 0.01 0.98 0.03 0.98 0.02 1.40 0.04
Naive-Bayes 0.97 0.01 0.67 0.04 0.78 0.04 5.83 0.74
AdaBoost 0.75 0.01 0.85 0.01 0.80 0.01 23.62 0.20
MLP 0.99 0.13 0.97 0.05 0.98 0.03 1.60 0.13
DT 0.99 0.008 0.99 0.01 0.99 0.01 0.23 0.006
KNN 0.98 0.01 0.97 0.06 0.97 0.04 2435.44 270.74
NC 0.84 0.04 0.55 0.07 0.63 0.06 0.42 0.006
QDA 0.98 0.007 0.95 0.01 0.96 0.01 12.25 0.10

5.2.3. Experiment A and B Comparison

The decrease in the standard deviations of experiment B regarding experiments A is per-
ceptible. However, since the mean is sensitive to variations, it is relevant to test whether
the set of results of a classifier in experiment B overcome the set of results of the same
classifier in experiment A.

We applied the Wilcoxon matched-pairs signed-ranks test to compare the set of
10 CV results between experiment A and B of each classifier. The default assumption for
the test is that the two samples have the same distribution. The Wilcoxon matched-pairs
signed-ranks test is a nonparametric procedure that can be employed to evaluate a before-
after design whenever one or more of the assumptions of t-test for two dependent samples
are violated [Sheskin 2007]. Hypotheses being tested is:



• Null hypothesis (H0 = 0): There is no significant difference between a classifier
result and their pair in experiment A and B.
• Alternative hypothesis (HA < 0): The classifier scores in Experiment B are

higher than their pair scores in Experiment A. This is a directional alternative
hypothesis and it is evaluated with a one-tailed test [Sheskin 2007].

The null hypothesis can only be rejected if the computed value TW is equal to or less than
the Wilcoxon tabled critical value at the prespecified level of significance [Sheskin 2007].
With ten repetitions (n=10), the table of critical T values for Wilcoxon’s tests with one-
tailed .10 level of significance is exactly T.10 = 14 [Ott and Longnecker 2015]. We tested
the hypothesis for precision, recall, and f1-score of classifiers concerning experiment A
and B which is shown in table 7.

Table 7. Wilcoxon Matched-Pairs Signed-Rank Tests - A and B comparison
TW statistics for n = 10 and Critical T.10 = 14

Algorithm Precision Recall F1-Score
TW p-value TW p-value TW p-value

RF 14 0.09 14 0.09 14 0.09
Naive-Bayes 28 0.53 10 0.04 13 0.08
AdaBoost 28 0.53 28 0.53 28 0.53
MLP 16 0.13 13 0.08 14 0.09
DT 11 0.05 10 0.04 10 0.04
KNN 17 0.16 14 0.09 15 0.11
NC 33 0.72 18 0.18 35 0.78
QDA 20 0.24 8 0.02 15 0.11

The results showed that by using Stratified 10-Fold in experiment B, the Random
Forest and Decision Tree overcome their pairs on Pr, Rc, and F1-score. Naive-Bayes
and MLP overcome their pairs in Rc and F1-score. KNN and QDA overcome just in the
recall. For TW > T.10 we cannot reject the null hypothesis and these results do not differ
statistically between experiments A and B.

6. Discussion
In this section, we discuss the results and present the main threats to the validity of this
work. As presented in Section 2, Shafaraldin et al. [Sharafaldin et al. 2018] also evaluated
the performance of classifiers in their dataset as shown in table 8. They did not provide
information on the percentage of the dataset used for training and testing or the number
of test rounds. Comparing the results of Pr, Rc, and F1, our experiment B overcome their
results in all metrics except for Adaboost classifier Pr which was our worst result. The
most significant gains were for the Rc and F1 metrics.



Table 8. Shafaraldin et al. [Sharafaldin et al. 2018] Results
Algorithm Pr Rc F1 Execution(sec.)
KNN 0.96 0.96 0.96 1908.23
RF 0.98 0.97 0.97 74.39
ID3 0.98 0.98 0.98 235.02
AdaBoost 0.77 0.84 0.77 1126.24
MLP 0.77 0.83 0.76 575.73
Naive-Bayes 0.88 0.04 0.04 14.77
QDA 0.97 0.88 0.92 18.79

By considering our experiment B performance metrics, the decision making for a
classifier depends on IDS design needs. Thus, when the cost of false positives is hight, Pr
is the best metric. When the cost of false negative is hight, Rc is the best. F1 combines
these two metrics and is the best if there is a need for a balance between Pr and Rc. The
testing time is also critical for IDS systems design so it should be taken into account.

We used F1 as the primary metric and Pr and Rc values as secondary for decision
making. We also used the time metric when their value turns the classifier adoption im-
practical. In these criteria, the best performing classifiers were Decision Trees with 99%,
Random Forest and Multi-layer Perceptron with 98%, and Quadratic Discriminant Anal-
ysis with 96%. The KNN classifier achieved hight F1, Pr, and Rc values but the testing
time invalidates their results. The AdaBoost and Naive-Bayes present hight variations
between Pr and Rc that decrease their F1 scores. Finally, the Nearest Centroid was our
baseline and its hight dependant on data geometry. Despite the hight Pr value, the Rc and
F1 for Nearest Centroid were low as expected.

6.1. Threats to validity

Since the CICIDS2017 is a new and few explored dataset, we made the experiment design
decision of evaluating eight algorithms in the dataset in its totality, and this has some im-
plications on algorithms comparison results and statistical test adopted. The comparative
evaluation of algorithms in the detection of network intrusion is essential for the design
of machine learning-based IDS. However, the literature presents different arguments on
how to perform this comparison.

Dietterich [Dietterich 1998] recommends a paired-T tests classifiers comparison
within a five times 2-fold cross-validation. Demšar [Demšar 2006] recommends using the
Wilcoxon test since that non-parametric tests are suitable for classifiers comparison and
safer than parametric tests that assume normal distributions or homogeneity of variance.

Witten et al. [Witten et al. 2017] claim that single 10-fold cross-validation might
not be enough to get a reliable error estimate and when seeking an accurate error estimate
with limited data, an alternative is to repeat the cross-validation process n times on dataset
obtaining statistically reliable results.

Wilcoxon tests have exact values for n = 10 without normal approximations. Al-
though our research designs computationally limited our experiments to one 10-fold exe-
cution, we believe that our experiment A and B comparison has statistical representativity.



7. Conclusions
We presented an approach for a machine learning-based IDS design to support the deci-
sion making for the classifier selection and the dataset resampling technique. Here we
performed an experimental study of two classification scenarios to evaluate the network
intrusion detection performance of eight machine learning algorithms on the CICIDS2017
dataset. We applied the Random Forests MDI method in selecting relevant features for
attack classification by reducing the dataset from 78 to 51 columns. We also showed that
the dataset is hight unbalanced. Afterward, we estimated the performance of RF, NB,
AdaBoost, MLP, DT, KNN, NC, and QDA within 10-Fold and Stratified 10-Fold CV on
CICIDS2017 dataset.

From our results about machine learning-based IDS design, we should take into
account not only the dataset quality but also the resampling technique used for classifiers
evaluation. In this paper, Stratified K-Fold achieved high scores and low variations than
K-Fold. We used F1 as the key metric and Rc, Pr, and Time as secondary metrics con-
cerning IDS design classifiers decision making. With this criteria, the best performing
classifiers were Decision Trees, Random Forests and Multi-layer Perceptron. Finally, we
showed that KNN classifier achieved competitive results but its testing time is prohibitive.

Our findings must be useful for network intrusion detection researchers and practi-
tioners by supporting them on the IDS datasets and classifiers selection decision-making.
Investigations will be performed in the future to explore the applicability of our selected
classifiers in real-time intrusions detection.
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