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Abstract. With the ever-growing scale of the IoT, transmitting a massive volume
of sensor data through the network will be too taxing. However, it will be chal-
lenging to include resource-constrained IoT devices as processing nodes in the
fog computing hierarchy. To allow the execution of custom code sent by users on
these devices, which are too limited for many current tools, we developed a plat-
form called LibMiletusCOISA (LMC). Moreover, we created two models where
the user can choose a cost metric (e.g., energy consumption) and then use it to
decide whether to execute their code on the cloud or on the device that collected
the data. We employed these models to characterize different scenarios and sim-
ulate future situations where changes in the technology can impact this decision.

1. Introduction
Current prospects for the Internet of Things (IoT) indicate that, within the next few years,
a global network of objects will connect tens of billions of devices through the Inter-
net [Lucero 2016]. As this technology becomes more widespread, we can also expect that
a large number of devices with limited resources (e.g., power, memory, and processing)
will become part of it. These devices are known as constrained devices.

Most IoT devices will contain sensors to help them interact with the environment
around them, and the data they collect will create many opportunities. For instance, this
will allow the improvement of strategies for resource usage and management in settings
such as urban planning and environmental sustainability, thus advancing agriculture and
contributing to an increase in the number of smart cities. It will also promote automation
and the use of cyber-physical systems, prompting the widespread adoption of industry
4.0 [Bittencourt et al. 2018]. Moreover, considering that important processes such as data
analytics can benefit from working with more data, this will lead to data scientists not
only being able to better understand the world we live in, but also making more accurate
predictions and creating improved systems based on people’s behaviors and tastes.

With petabytes of data being produced by IoT devices every day, the sheer vol-
ume of information will make transmitting every single byte to the cloud prohibitively ex-
pensive in terms of both time and money [Pisani et al. 2019]. Furthermore, moving data
streams from sensor nodes to servers will also have an impact on the energy consump-
tion of devices that may have constricted power budgets (e.g., devices that are battery-
operated or depend on limited energy sources such as solar power).

A possible way to meet these expected requirements is not sending all the data
to be processed far from the data source, but instead bringing the computation closer to
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where the information already is. With this premise, a new paradigm called fog computing
emerged, proposing to process data closer to network edge devices, such as switches and
routers [Bonomi et al. 2012]. Enabling data to be processed near its origin (e.g., on a local
access point, router, or even on the sensor device itself) allows us to address problems
related to transmission latency and network congestion. It also opens up the space for new
possibilities, such as filtering and discarding unnecessary information, analyzing readings
in search of outliers to report, and actual real-time response to local queries.

The USA’s National Institute of Standards and Technologies (NIST) calls at-
tention to constrained devices within the fog computing context, naming them mist
nodes [Iorga et al. 2018], as they are lightweight fog computing nodes. However, NIST
expects the purpose of these devices to be more specialized and dedicated, while we see a
valuable opportunity in leveraging them for custom user code execution due to their prox-
imity to the data source. For instance, mist nodes have the potential to perform simple
custom operations on sensor streams, such as aggregation and filtering, to reduce network
traffic and latency. Given that the mist is part of the fog, when we refer to fog computing
in this text, we are considering both fog and mist nodes.

Despite the potential of employing constrained IoT devices as a part of
the fog hierarchy, many current fog computing frameworks [Cisco Systems 2019,
Apache Software Foundation Incubator 2019, FogHorn Systems 2019, Saint 2015] still
require more resources than what these devices provide. Therefore, investigating solu-
tions that involve resource-constrained devices and creating a lean infrastructure that en-
ables their seamless incorporation into the IoT is a gap that both industry and academia
must explore to enable the full potential of this technology.

We especially highlight the importance of understanding and characterizing the
scenarios where these devices can be used efficiently, as this is the key to developing
solutions that use the most profitable approach for each specific problem. For example,
there may be cases where the computation takes longer or requires more energy to be
completed on the fog device than it would take to send the values to the cloud. In addition,
there are situations where the whole computation depends on many different data sources.
In these instances, it might be more profitable to send the data to be processed by the more
robust cloud servers instead of executing the program locally. Considering this context,
we work toward the answer to the research question “In what cases is it more profitable
to perform computation on a constrained IoT device instead of using the cloud?”.

To this end, we adopt the definition of constrained device as one where some of
the characteristics that are expected to be present on other devices currently connected
to the Internet are not achievable, often due to cost constraints and/or physical restric-
tions [Bormann et al. 2014]. In particular, we target Class 2 devices, as they can support
most of the same protocol stacks as servers and laptop computers. An example of a smart
constrained device in this class is the Fitbit activity tracker, which has 256 KiB of RAM,
64 KiB of Flash, and a microprocessor with a frequency of up to 80 MHz.

In the first part of our analysis, we developed a platform called LibMiletusCOISA
(LMC), which allows users to execute their code on constrained devices, and compared
it to the Apache Edgent framework [Apache Software Foundation Incubator 2019]. LMC
performed well when executed on the same device as Edgent and made it possible to



execute the code on a constrained device which does not have enough memory to support
the execution of existing fog computing tools. With that, we established that indeed there
are cases where it is faster to perform the computation on a constrained IoT device (that
is, more profitable in terms of time), therefore giving us more evidence to support the
investigation of our research question.

In the second part of our analysis, we created two models where the user chooses a
certain cost metric (e.g., execution time or energy consumption) and employs it to decide
where they should execute their code. One of them is a generic mathematical model that
uses a linear equation to determine the costs and the other is a visual model that allows
the user to conclude quickly what is the most profitable approach in a specific scenario.

We used datasheets and the infrastructure built in the first part of our analysis to
obtain real-world values to use in our test cases, and then used these values as the input for
simulations that employed our models to identify the situations where executing the code
on the device that collected the data would be the chosen approach. We also simulated
future scenarios where changes in communication and processing technologies can affect
whether the fog or the cloud is the most profitable solution. With that, we formalized an
approach to identifying the cases where it is more profitable to perform computation on
a constrained IoT device instead of using the cloud, which is what we intended with the
investigation guided by our research question.

2. Related Work
Despite the novelty of the fog computing paradigm, several tools that employ it
for general-purpose computation, or even specific applications such as data ana-
lytics, have appeared since its inception. For instance, we have Apache Ed-
gent [Apache Software Foundation Incubator 2019], Cisco’s IOx [Cisco Systems 2019],
FogHorn [FogHorn Systems 2019], and Parstream [Saint 2015].

In order to compare our proposed framework to these tools, we chose four main
characteristics that are relevant to our investigation of code execution on heterogeneous
constrained devices. Table 1 has the results of this comparison. As Edgent is an open-
source framework that can be executed on end devices, we chose it as a baseline for the
experiments mentioned in Section 3.

Table 1. Comparison between LMC and Edgent, IOx, FogHorn, and Parstream.

LMC Edgent IOx FogHorn Parstream
Runs on end devices? 3 3 7 7 7

Runs on Class 2 constrained devices? 3 7 7 7 7

Supports many programming languages? 3 7 3 3 7

Open source? 3 3 7 7 7

In Section 4, we discuss our two models that assist the analysis of the cost trade-
off between fog and cloud computing. One of them is a general mathematical model
and the other is a visual model inspired by the roofline model introduced by Williams,
Waterman, and Patterson [Williams et al. 2009].

We note that the main goal of our mathematical model is different from
many other computation offloading approaches [Jayaraman et al. 2014, Deng et al. 2016,



Xu and Ren 2016, Liu et al. 2018, Neto et al. 2018], given that we aim to enable users to
select the most profitable platform according to a metric of their choosing, while the other
studies focus on optimizing specific metrics (mostly time and energy).

Furthermore, the proposed mathematical model is intended to be simple so its
implementation can be executed on constrained devices, which is not the case for several
models. Although some approaches such as NWSLite [Gurun et al. 2004] also discuss
the cost model needing to be mindful of resource usage, it is still more complex than our
solution and too large to be used in Class 2 constrained devices. We consider this to be
an important distinction between our approach and the others, as constrained devices will
have a growing importance in the IoT scenario due to their low power consumption and
reduced cost, size, and weight.

3. A Framework for Execution on Constrained Devices
As the studied tools were not compatible with Class 2 devices, we developed
LibMiletusCOISA (LMC)1, a framework that enables cross-platform code execution
on constrained IoT devices by combining a compact virtual machine (Constrained
OpenISA (COISA) [Auler et al. 2017]) with a lean event handling mechanism (LibMile-
tus [MotorolaMobilityLLC 2019]). Figure 1 shows an overview of the main components
of the LMC framework and how they are connected.
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Figure 1. Overview of the main components of the LMC framework.

On the left side, we have the client device, which hosts a program written by the
user with the help of libraries from the LMC framework. The program is compiled to
create a binary file and sent to the IoT device through the network. On the right side,
we have the IoT device where the LMC server is running. The server program’s main
function is divided into two parts: setup and event handling.

The first step of the setup consists in creating a new MiletusDevice object and
defining the properties that identify the device and represent its characteristics (e.g., what
type of sensor the device contains) and the methods that allow it to answer requests and
execute user programs. Once the object is created, the setup defines its Platform inter-
face, which is responsible for handling the output (e.g., a GNU/Linux Platform interface

1LMC is an open-source project available at https://github.com/lmcad-unicamp/LibMiletusCOISA.

https://github.com/lmcad-unicamp/LibMiletusCOISA


outputs with printf, while an Arduino Platform interface uses Serial.print), as
well as its Communication interface, which handles the connection using a certain wire-
less network technology (e.g., Wi-Fi or Bluetooth Low Energy (BLE)).

The event handling part is placed inside of an endless loop. It starts by calling the
handleEvents method from the MiletusDevice object, which checks if there are
any pending requests. In case there is custom code installed on the device, it is executed
until an exit syscall is performed. If an event such as a sensor value update happens,
the method sends it to the COISA event queue so it can be properly treated by the Virtual
Machine (VM). When the handleEventsmethod returns, the current sensor values are
requested and the MiletusDevice object is updated with this information (as we used
simulated values in our experiments, the implementation of this function simply reads the
next value instead of polling the sensors).

In order for COISA to be compatible with other intercommunication frameworks,
we kept it completely independent from LibMiletus. Still, although we did not change
COISA functionalities, we had to extend the implementation of its instruction set to sup-
port single and double precision floating-point operations, which are part of OpenISA,
but still needed to be added to the VM. We also included counters to COISA that allowed
us to get the statistics required for our experiments.

We modified LibMiletus to allow access to certain COISA functions and struc-
tures, such as COISA’s VM memory. This way, when the user program invokes a syscall
provided by LMC for reading values, the server event handling process can respond to
this request with the current value of a certain sensor by storing it in a place allocated by
the user program in the VM memory. We also added a new coisa trait and a command
that installs the user code on the device that is running the server. This installation pro-
cess occurs by copying the code to the VM’s memory. If a new event happens and there
is a code to be executed, we made LibMiletus use COISA for this job.

We used LMC to deploy and execute one-time and continuous queries on con-
strained IoT devices and compared its performance with the Apache Edgent framework
using three test cases on two IoT platforms, the simple NodeMCU 1.0 and the more ro-
bust DragonBoard 410c. Our experimental results indicated that LMC is: i) very compact
and compatible with Class 2 constrained devices; ii) overall faster than the Edgent frame-
work if we disable dynamic translation mechanisms; iii) faster than Edgent at lightweight
quick queries when they are both being interpreted, in some cases even if LMC is running
on the small NodeMCU platform while Edgent is running on the DragonBoard 410c.

4. Modeling Cloud and Fog Execution Costs

In order to be able to systematically identify the cases where it is more profitable to
leverage constrained IoT devices for custom code execution instead of employing more
powerful devices, it was necessary to characterize the scenarios where this holds true.
Thus, we introduced two cost models for fog and cloud computing.

The first is a mathematical model that can be used to estimate the cost of process-
ing a data stream of size z on the device that collected it (fog computing cost, or C

F
) and

the cost of sending the data to be processed on the cloud (cloud computing cost, or C
C

).
These costs consider steps such as reading a sensor value (r), performing a custom code



operation (t), sending the data to the cloud (s), and being idle until there is a new read (i).
The cost of each of these steps is calculated through profiling and from the point of view
of the device, allowing it to choose where to process the data stream while collecting its
elements. As filters have a very important role in the future of the IoT and can be imple-
mented as lightweight programs capable of running on constrained devices, this kind of
procedure is the main focus of our study. Therefore, another parameter of our model is the
probability that a number will pass the filter (f ). The left side of Figure 2 illustrates how
each of these parameters are related to C

F
and C

C
, as well as the corresponding equations.

The second is a visual model that is a C
C

vs. C
F

graph (right side of Figure 2). In
this graph, the horizontal axis represents C

F
as a function of the number of stream values

being processed on the fog. Therefore, a case where all data points are processed on the
fog is represented by a point crossing this axis, called C

F0
. The same holds for the vertical

axis, C
C

, and CC0 . Using this visual model, the user can better understand the test cases
they are working with and improve the implementation of their processing strategy. The
user can decide where to execute their code by analyzing the slope of a line that connects
C

F0
to CC0 , with fog computing being more profitable in the cases where the slope is less

than or equal to −1, and cloud computing having the lower cost otherwise.
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Figure 2. Overview of the mathematical (left) and visual (right) models.

We analyzed different strategies to estimate the value of f and observed that look-
ing at a contiguous set of elements at the beginning of the stream is a straightforward ap-
proach that yields good estimates. The two other approaches that we tested, which in-
volve continuously monitoring the stream and dynamically adjusting the estimate, pre-
sented very little performance gains, not justifying their use.

We applied our models to two instances of two different filters, used execution
time and energy consumption as the cost types for our analysis, and executed the tests on
five different datasets (four datasets with real-world climatological data and one dataset
with artificial data). By comparing the slope of the linear equation obtained with the
real and estimated values of f , we noticed that our estimation process worked well, as
it presented an error of less than 5% in most of our test cases and allowed us to decide
correctly on the more profitable strategy to process the values in all but one case.

We also simulated a different range of values for our test cases and found out
how different parameters would affect our decision. We looked at how much it would be
necessary to decrease s or increase t for cloud computing to become the more profitable
approach in cases where the fog was the currently chosen solution. When using execution
time as the cost type, the values of the parameters had to change from 1.9× to 9.8× to
affect our decision, and in the case of energy consumption as the cost type, they had to



change from 7.9× up to 39.8×. We noticed that the size of these alterations depends
on factors such as the value of f and how close s and t are to each other. We point out
that this type of investigation is very useful to visualize possible changes in technology.
Again, our estimation process proved to be effective, as the simulations using the real and
predicted values presented the same decisions in all cases.

5. Main Contributions
The main contributions of this work are as follows:

• We developed an open-source platform called LibMiletusCOISA (LMC), which
allows users to execute their code on constrained devices;
• We used our infrastructure to obtain real-world values to use in our test cases;
• We created two models where the user chooses a certain cost metric (e.g., number

of instructions, execution time, and energy consumption) and employs it to decide
where they should execute their code:

– A generic mathematical model that uses a linear equation to determine the
costs;

– A visual model that allows the user to quickly conclude what is the most
profitable approach in a specific scenario.

• We created a procedure to use our mathematical model to estimate the probability
of a value passing a filter based on the cost penalty that the user is willing to pay
for this calculation;
• We simulated future scenarios where changes in communication and processing

technologies can affect if the fog or the cloud is the most profitable approach.
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