
From 2D to Next Generation VR/AR Videos: Enabling
Efficient Streaming via QoE-aware Mobile Networks
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Abstract. Ranging from traditional streaming to Virtual Reality (VR) videos, the
demand for video applications to mobile devices is booming. In the context of
mobile operators a challenging problem is how to handle the increasing video
traffic while managing the interplay between infrastructure optimization and
QoE. Solving this issue is remarkably difficult, and recent investigations do not
consider large-scale networks. In this dissertation paper we explore the solution
space of efficient video streaming over mobile networks. Obtained results show
that the combination of the proposed methods for QoE-aware path selection
outperformed state-of-the-art approaches.

1. Introduction
The future is mobile: wireless networks will account for more than two-thirds of all IP
traffic by 2020 [ITU 2017]. In this context, operators are being challenged by video
traffic, which is pushing their network infrastructure to the limit [Maallawi et al. 2015].
According to Cisco, mobile video accounted for 60% of total Internet traffic in 2016. And
there is more to come, since mobile video is expected to increase 9-fold by 2021, reaching
78% of total data traffic [Cisco 2018]. According to the same source, Virtual Reality (VR)
videos will significantly increase this challenge as the traffic generated by this application
is expected to increase 12-fold by 2022 [Cisco 2018].

VR video streaming applications are challenging due to three main reasons: (i)
they will run mostly over mobile networks [Cisco 2018]; ii) mobile networks are charac-
terized by highly variable levels of performance [da Costa Filho et al. 2016a]; and (iii)
VR video streaming applications demand high levels of network performance to achieve
a satisfactory QoE [Cisco 2018]. To provide a notion of how demanding these appli-
cations are, recent studies have shown that, to provide adequate levels of QoE, current
VR video applications require a network delay lower than 9 ms [da Costa Filho et al.
2018b], while the bandwidth needs for the upcoming ultra high definition VR will reach
500 Mbps [Cisco 2018]. At this level of demand, not only will network operators strug-
gle to provide cost-effective services, but VR video content providers and developers will
also be challenged by such resource-intensive applications.

To deal with the huge growth in data traffic, mobile operators have to constantly
invest (i.e., CAPEX and OPEX) to increase capacity, to switch technology (e.g., 3G, 4G,
4G+, 5G), as well as to improve outdoor and indoor coverage. In the opposite direction,
the Average Revenue Per User (ARPU) for mobile broadband has fallen from USD 23 in
2013 to USD 13 in 2015 [ITU 2017]. All these elements together place a lot of pressure
on operators to manage their infrastructure efficiently [Maallawi et al. 2015]. Aiming
at increasing efficiency, mobile operators have been relying on offloading technologies



such as Small Cells (Femtocell, Picocell), Wi-Fi offloading, Content Delivery Networks
(CDNs), and, in the near future, 5G Device-to-Device communication (D2D) and 5G
Mobile Edge Computing [Ansari et al. 2018]. These technologies play a fundamental
role in the network infrastructure optimization as they can take advantage of network path
diversity to distribute traffic across multiple network segments (i.e., edge, aggregation,
core and peering). Such approaches have the ability to shorten the distance between
subscriber and content while avoiding network congestion by spreading the traffic among
alternative paths. As an indication of how important these offloading techniques are, only
in 2016, 60% of mobile data was relocated to alternative paths, just considering Wi-Fi
and Femtocell offloading [Cisco 2018].

Problem statement. The adoption of offloading techniques introduces a multi-
tude of possible paths through which user traffic can be forwarded and, as an immedi-
ate consequence, raises the complexity of the network management (e.g., path selection,
configuration and troubleshooting). Moreover, such an advanced infrastructure does not
directly translate into improved QoE [Schlinker et al. 2017]. This is notably true if consid-
ering that some offloading techniques may rely on shared and third-party infrastructure,
which would possibly exacerbate the unpredictability regarding the delivered QoE.

1.1. Research Questions
The objective of the Ph.D. thesis was to answer the following two main research questions.

Research question 1. Considering that mobile operators already have tools in
place to measure network performance, would it be possible to employ monitored network
indicators to predict playout performance and QoE for both traditional 2D and VR video
streaming applications?

Research question 2. How to employ QoE prediction to dynamically select and
deploy paths that maximize QoE and minimize infrastructure utilization over time?

1.2. Research Goals
To be able to answer the research questions above, the thesis was organized around five
objectives: (i) devise a prediction model capable of estimating video streaming playout
performance and QoE based on available network information; (ii) formalize the QoE-
aware path selection problem; (iii) formulate a QoE-aware path selection heuristic with
the ability to operate in dense networks; (iv) propose a QoE prediction model for VR
videos; and (v) provide an in-depth evaluation of state-of-the-art VR video optimization
techniques. These objectives unfolded into four main research contributions, as summa-
rized next.

2. QoE Prediction Model for Video Streaming
2.1. Challenge
Both the scientific community and the industry agree that maximizing the user’s Quality
of Experience (QoE) regarding video streaming applications represents a relevant research
challenge [Katsarakis et al. 2014]. An essential aspect in this direction is to systematically
determine the quality of the provided video services. To this end, service providers require
a solution with low intrusion, scalability, and a reasonably accurate way to measure the
quality of service delivered. This task becomes particularly challenging if encompassing
cellular networks, in which highly intrusive measurement techniques have the potential
impair quality.



2.2. Our Approach

In this investigation we propose a Lightweight application QoS and QoE Predictor
(LEAP). It is capable of providing a detailed view of how the network performance af-
fects video streaming applications and, moreover, the corresponding user experience. The
model is designed to receive four network performance indicators as input: (i) delay, (ii)
jitter, (iii) throughput and (iv) packet loss. To capture video playback performance, the
model predicts three video playout performance indicators: (i) startup time, (ii) stall count
and (iii) total stall length. To estimate each application QoS indicator, the four network
QoS indicators are combined and given as input to a regression decision tree. In a second
stage, the three application QoS indicators are combined to estimate QoE. The QoE indi-
cator is estimated in the same range of the Mean Opinion Score (MOS), which is graded
from 1 to 5, where 1 means the worst possible experience and 5 means the best one.

2.3. Results

The proposed approach produces accurate estimates (average error of less than 10%)
while keeping intrusiveness around twenty times lower than traditional techniques. The
low intrusiveness allows the service provider to configure systematic measurements, with
reduced polling interval, without an excessive usage of network resources. Figures 1(a)
and 1(b) depict the variation of ri (residual error for the sample i) in the horizontal axis,
associating each value in this axis to a portion of the sampling group (in the vertical axis)
in which ri is lesser or equal to the set threshold. The normalized residuals ri are defined
by the equation ri = |x̂i − xi|/N , where xi represents the observed values and x̂i the
predicted ones. We use the factor N to normalize the error values. For each of the three
application indicators, the value of N is derived from the duration of the videos, which
enables a generalization of the evaluation method for videos of any duration. The average
of ri in 90% of the samples for all indicators, considering both 1080p and 720p, has a
value of r̄i = 0.0982 (9.8%).
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Figure 1. Stall length and QoE prediction error

3. Dynamic QoE-aware Path Selection

3.1. Challenge

A challenging task for mobile operators consists in how to handle the increasing end-
user traffic while optimizing infrastructure utilization and managing user’s QoE. In fact,
from the operator’s perspective, addressing this challenge is crucial for improving com-
petitiveness, since the effective management of the interplay between perceived QoE and
infrastructure investments is the main factor for increasing the return of investment [Ah-
mad et al. 2016]. Given the context above, the main research challenge is how to take



advantage of the path diversity introduced by upcoming technologies (e.g., 5G D2D, Edge
Computing, and Fog Computing) to dynamically select QoE-aware paths capable of de-
livering cost-effective video applications.

3.2. Our Approach
In a nutshell, the QoE-aware path selection task can be decomposed into two challenging
problems. The first problem consists of timely predicting QoE for network paths. In turn,
the second problem encompasses the large-scale path selection algorithm, which should
be able to take constraints (e.g., target QoE and available network resources) into account
and select optimized paths. The first problem is complex because the information that is
closely related to QoE (e.g., subjective evaluations and objective measurements) are not
largely available or feasible to obtain in a systematic approach for large-scale networks.
Regarding the second problem, it can be easily solved considering small deployments.
However, it becomes notably complex when combined with additional constraints (e.g.,
resource utilization) and applied to ultra-dense networks. In this investigation we intro-
duce SQAPE, a novel scheme for network path provisioning that employs active QoS
measurements to predict video streaming performance and QoE, which will be used for
deployment of QoE-aware paths in an SDN-enabled mobile network. This investigation
contributes significantly to the state of the art since, unlike the related work, it does not
rely on third-party information. Our approach considers neither video streaming flow data
nor client/server-side information. In our first contribution we formalize the QoE-aware
path selection problem. As for the second contribution, we address the QoE-aware path
selection problem by proposing a polynomial time complexity path selection heuristic.

3.3. Results
To evaluate our approach SQAPE is compared to three other path selection algorithms
that attempt to minimize one or more constraints of QoS indicators. The first contender
(DKS - Delay) minimizes distance according to the Dijkstra algorithm, using delay as the
distance metric [Kuipers et al. 2002]. This technique is commonly employed by routing
mechanisms such as OSPF. The second contender (BF - BW) maximizes path’s available
bandwidth bottleneck, using the Bellman-Ford algorithm. This strategy operates in an
iterative manner, finding the widest path with the least hops [Tomovic et al. 2015]. The
third contender is known as the Shortest Widest Path (SWP), which optimally solves the
problem of maximizing TCP throughput and minimizing delay in the selected path [Wang
and Crowcroft 1996, Tomovic et al. 2015]. The potential of SQAPE can be observed in
Figures 2(a) and 2(b), which present the total stall duration and stall count for the consid-
ered cases. In such configuration, SQAPE led to 238 seconds of stall, distributed among
72 stall events. The contender solution with the closest performance (SWP) registered
204 stalls, amounting to 998 seconds of duration. The Dijkstra solution performed the
worst, presenting a total of 3,815 seconds during 609 stalls. Considering real mobile
operator topology and video traffic traces, we show that the proposed algorithm outper-
formed state-of-the-art approaches by reducing impaired videos in aggregate MOS by at
least 37% and lowering accumulated video stall length four times.

4. QoE Prediction for VR Videos
4.1. Challenge
QoE has shown to be a critical factor for video applications [Ahmad et al. 2016]. As
such, both network operators and VR content providers are required to answer an impor-
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Figure 2. Video streaming playout performance evaluation.

tant question: considering the wide range of performance levels of IP networks, to which
extent are the currently observable network conditions able to provide users of VR appli-
cations with adequate QoE? Answering this question is remarkably complex due to two
constrains. First, the influence of the network on VR video performance is unknown; and
second, the state-of-the-art on video QoE estimation modeling does not consider the VR
context.

4.2. Our Approach
Bringing the QoE prediction model to the virtual reality arena, as the fourth contribution
we introduce PERCEIVE, a two-stage adaptive VR performance assessment model. It
employs regression decision trees to predict VR video playout performance using net-
work QoS indicators as predictors. Then, it uses the video playout performance metrics
to model and estimate the end-user perceived quality. To cope with the VR ecosystem re-
quirements, we introduce two novel concepts, namely, the concept of visualization zones
and a VR video QoE model.

4.3. Results
The stalling time (Figure 3(a)) shows an error close to 13% for over 90% of the testing
samples. In turn, Figure 3(b) depicts the residual error for the QoE estimation. By ap-
plying the previously defined QoE model to each sample i, it is possible to estimate QoE
for both the predicted playout values and the original ones. Then, the residual error can
be calculated. Through this procedure, the QoE estimation error induced by the proposed
prediction scheme can be assessed. As shown in Figure 3(b), the QoE estimation presents
ri ≤ 0.03922 for over 90% of the cases.
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Figure 3. Residual error CDFs for stall time, startup delay and QoE estimation.

5. VR Video Experimentation Platform
5.1. Challenge
As most of the VR video traffic is expected to be delivered through mobile networks, a
major problem arises: both the network performance and VR video optimization tech-



niques have the potential to influence the video playout performance and the Quality of
Experience (QoE). However, the interplay between them is neither trivial nor has it been
properly investigated. When considering both the multitude of approaches to optimize a
VR video streaming and the highly variable mobile network performance, it becomes a
difficult challenge to understand how different (combinations of) optimization techniques
perform under varying infrastructure conditions. The lack of a publicly-available method
and tools for systematic and reproducible evaluation exacerbate this challenge.

5.2. Our Approach

To fill in this gap, in this investigation, we propose VR-EXP, an adaptive VR video stream-
ing experimentation platform. The platform is capable of systematically evaluating dif-
ferent combinations of VR video streaming optimization approaches. Also, VR-EXP
allows pinpointing the interplay between a set of optimization techniques and variable
network performance. Comprised of an evaluation method and software components,
VR-EXP assumes as input tile-based VR videos, network datasets, and parameters (e.g.,
network performance conditions, users’ head-tracking information, ABR heuristics, and
tile fetching methods). Then, it emulates essential components of the VR video streaming
ecosystem, measuring key VR video playout performance indicators. Finally, our plat-
form produces, as output, detailed VR video playout performance and QoE estimation
reports. Using VR-EXP, we carry out an in-depth analysis of (combinations of) state-of-
the-art VR video optimization approaches under varying network conditions.

5.3. Results

The results obtained evidence that the relationship between different optimization tech-
niques for video VR optimization is not trivial. Mainly, because certain combinations
can benefit one aspect of reproduction and impair others. Figure 4 illustrate key insights
provided by VR-EXP. Figure 4(a) demonstrate the impact of viewport prediction errors
on QoE. One can observe that severe prediction errors may lead to a decrease of up to 2
points in the QoE score when compared to the baseline case (QoE equal to 5). However,
when dealing with realistic performance levels, increasing the playout buffer size may
potentially lead to a better QoE score, even considering the likely increase in the viewport
prediction error. For example, in Figure 4(b) we can observe that, when using 8 seconds
of playout buffer, the worst case scenario for the QoE score (i.e., viewport prediction er-
ror of 100%) performs on par with the best case scenario of the 2 seconds buffer (i.e.,
viewport prediction error of 0%).
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6. Research Accomplishments and Contributions
The main accomplishments and contributions of this research can be summarized as fol-
lows:

• Five papers in top-tier SBC, IEEE and ACM conferences/journals (first author)
[da Costa Filho et al. 2016b, da Costa Filho et al. 2016a, da Costa Filho et al.
2018a, da Costa Filho et al. 2018b, da Costa Filho et al. 2020].

• Five papers in conferences/journals (co-author) [Marques et al. 2019, Kagami
et al. 2019, Roesler et al. 2018, Lautenschläger et al. 2016, Lazzari et al. 2017].

• Ph.D. defense awarded with Honors Thesis High Distinction.
• Our papers provide publicly available source code and data set.
• Our VR Video prediction model [da Costa Filho et al. 2018b] was awarded with

the ACM Reproducibility Badge.
• Best-in-session Presentation Award at INFOCOM 2018.
• Doctoral Stay at Ghent University - imec with joint supervision (Prof. Filip De

Turck).

7. Conclusion
The work conducted throughout this thesis provided us with satisfactory answers to the re-
search questions, namely (i) would it be possible to employ monitored network indicators
to predict playout performance and QoE for both traditional 2D and VR video streaming
applications? and (ii) How to employ QoE prediction to dynamically select and deploy
paths that maximize QoE and minimize infrastructure utilization over time? In the scope
of traditional 2D video streaming, research questions 1 and 2 were answered in Sections
II and III, respectively. Finally, in the context of VR video streaming, research question 1
was answered in Sections IV and V.
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