
BB-Gen: A Packet Crafter for Data Plane Evaluation
Fabricio E Rodriguez Cesen, P Gyanesh Kumar Patra,

Christian Esteve Rothenberg

1Department of Computer Engineering and Industrial Automation (DCA)
Faculty of Electrical Engineering and Computing (FEEC)

University of Campinas (UNICAMP)
P.O. Box 6101, 13083-970, Campinas, SP, Brazil

{frodri,gyanesh,chesteve}@dca.fee.unicamp.br

Abstract. With the advent of research on fast path packet processing, traffic gen-
erator tools witnessed many entrants with features ranging from supporting list
of protocols, analyzing network traffic to measuring throughput and latency of
packets. While approaching towards feature completeness, the tools are becom-
ing more complex every time making it difficult to port, manage, and use. BB-
Gen with a sole focus on simplicity complements other traffic generators instead
of trying to replace them. BB-Gen is a simple CLI-based packet crafter to gen-
erate packet flows formatted as PCAP files. The tool supports different standard
protocols and creates the necessary traces for network function configuration
and testing. It allows creating PCAPs for worst and best case scenarios with all
unique flows or following flow distributions published elsewhere. In this demo,
we feature BB-Gen as used by the MACSAD development team to test P4-based
software switch pipelines.

1. Introduction
With increasing number of services over the Internet like email, web, video streaming
etc., the demand for bandwidth is increasing exponentially. Along with it, the necessity
to evaluate and test network capabilities become prevalent. While networks are becoming
more (re-)configurable, network testing tools are becoming equally complex adapting to
the need of the hour. The network testing and benchmarking tools depend on network
workload generation to simulate the network traffic for testing purposes. This trivial task
has been the foundation for several research activities like [Botta et al. 2012] focusing
towards performance, scalability, and reliability of networks and network devices.

Traffic generator tools are an essential part of network testing with features rang-
ing from supporting list of protocols, analyzing network traffic or measuring throughput
to calculating latency of packets. In their strive to achieve feature completeness, the tools
are getting more complex each time, and making it hard to port, manage, and use. To
address this, we propose BB-Gen which is a python based tool, with a primary focus on
simplicity, excelling in the creation of network packet traces.

The remainder of the article is organized as follows: motivations and goals for
the development of our tool are introduced in Section 2. Section 3 summarizes related
works. Section 4 gives an overview of the BB-Gen tool itself followed by a detailed
explanation of its main features. Meanwhile, Section 5 presents an use case depicting
the usage of BB-Gen for performance tests. Section 6 presents the documentation and



the demonstration details for the Demo section at SBRC 2018. Finally, future works and
conclusion are discussed in Section 7 and Section 8 respectively.

2. Motivation and Goals

The generation of packet traces is commonly required to carry out performance evalua-
tions and hence becomes a relevant task for the development of new network solutions
and the evaluation of the existing.

Our analysis found a gap among open source PCAP trace generators with sim-
ple interfaces and covering the relevant requirements for rich performance experiments.
Some alternatives support a complete set of protocols and allowed to generate different
set of PCAP traces but do not provide important traffic flow characteristics (e.g., packet
size and address distribution). Other tools support different encapsulation protocols but
not both VXLAN and GRE in the same tool. Although there are many tools for packet
generation, the complementary creation of table traces remains limited. Table traces are
necessary in a programmable network to fill the table flow configuration of the network
device.

Our needs on a single packet generator tool to meet the packet trace requirements
of our research use cases to evaluate the performance and scalability of programmable
data planes [Patra et al. 2016, Patra et al. 2017] and the identified limitations of existing
tools motivated our work to develop a packet generator prioritizing two essential charac-
teristics: (i) simple to use, (ii) wide protocol support and rich customizability. To that
end, as our baseline, we opted for the well known Scapy python library [Biondi 2008],
which is easy to extend and manipulate.

3. Related Work

Here we summarize a selected set of related PCAP trace generator solutions. Each tool
has their advantages and disadvantages depending on their architecture, included features
or supported platforms.

RWS [Knutsson 2014] PCAP generator is based on a simple packet descriptor
language. The user defines the header fields for the packets required and feed it to RWS
to generate the PCAP. It can also generate invalid packets which is rather uncommon
among PCAP generators. An example of an invalid packet can be a TCP packet tunneled
inside a Teredo tunnel and sent over GTP-u.

Ostinato [Ostinato 2010] is one of the most powerful packet crafter, network traf-
fic generator and analyzer with complete GUI support. It implements most of the common
standard protocols to facilitate traffic generation and analysis. With a complex user in-
terface and numerous feature combinations, Ostinato presents a steep learning curve to
tackle with, which makes it difficult and time-consuming for users to understand and take
advantage of the tool.

Scapy1 is a packet manipulation program with Python interpreter disguised as
a Domain Specific Language (DSL). It can create and decode packets of an extended
number of protocols. It can send and capture network traffic too. Its extended features also

1https://github.com/secdev/scapy/



include some basic network tasks (e.g., scanning, trace routing, probing, arpspoof, arp-sk,
arping, tcpdump, tethereal, etc.). Scapy can stand out among competitors with its unique
ability to arrange protocol headers in a custom sequence which may not confirm to any
protocol logic. This feature allows Scapy to create invalid frames by combine techniques
(e.g., VOIP decoding on WEP encrypted channel, etc.), similar to RWS. Among other
features, Scapy allows to set values for all header fields, payload, and padding. Moreover,
it allows to write a list of packets to a PCAP file.

4. BB-Gen
BB-Gen is a simple CLI based packet crafter written in Python over Scapy library. It can
natively craft packets for different standard and custom protocols. It aims to create PCAP
files to be used with a wide set of Traffic Generators (e.g., pktgen-dpdk [Olsson 2005],
NFPA [Csikor et al. 2015a, Csikor et al. 2015b], TCPDUMP [Tcpdump 2010], etc.)
helping network developers to validate the network and execute performance tests over
the targets.

Though BB-gen is primarily used to create PCAP trace files, it differs itself by
generating the table trace files for the PCAPs which are necessary to fill the table flow
configuration of the target device for the network testing. Table traces contains the main
information of the generated packets (e.g. source/destination IP/MAC address). BB-Gen
allows to create traces files with same/random IP/MAC/L4Port details showing its control
over the header fields like source and destination MAC addresses, IP addresses, TCP or
UDP ports while creating packets. It also allows the user to create a complete set of
PCAPs for performance test by specifying a single flag in the command line. Under this
performance setting, PCAPs generated comprises of all the standard packet sizes (64,
128, 256, 512, 1024, 1280, 1518) [Bradner and McQuaid 1999] and also features simple
(best-case) and complex (worst-case) scenarios by use of same/random distribution sets of
header fields respectively. A single command to generate both PCAP and table trace files,
and the command line arguments which counts to only a few and self explanatory agree
to the ease of use of BB-Gen. A custom protocol support to BB-Gen can be easily added
by first adding the support to Scapy similar to the Contrib2 and then extending BB-Gen
protocol list with minimal code changes.

4.1. Architecture

Figure 1 shows the principal components of the architecture of BB-Gen Packet Crafter.

• User: The user introduces required parameters such as distribution, protocols,
numbers of entries, use case3, packet sizes, etc., necessary to create the traces
files.4

• Core: Being the principal part of BB-Gen, it receives and process information
from the User, and generates the packet details to be included in the traces files. It
comprises of three sub-modules i.e., Parser, Data Generator, and Packet Generator
as explained below.

2https://github.com/secdev/scapy/tree/master/scapy/contrib
3Supported use case: MACSAD
4More information on required parameters to generate the traces are described in our GitHub Wiki page,

see section 6



Manipulation Assembly

Packet

Read Pkt List Create PCAP

PCAPS
C

A
P
Y

Protocol Distribution

Parser

IP

Data Generator

Port

MAC

C
o
re

Table

Trace

PCAP

Trace

User

Custom Protocols

C
o
n
tr

ib

BB-Gen

Figure 1. BB-Gen Architecture

– Parser: is in charge of selecting the protocols to be used as well as the
distribution, using the information introduced by the use or the defaults
values in case of missing information.

– Data Generator: using the protocols and the distribution details from
Parser, it generates the list of source and destination IP, MAC and Ports.

– Packet Creator: with the information set at Parser and the list of IP, MAC
and Ports generated at Data Generator, the Packet Creator is going to cre-
ate the list of packets with all the defined fields. With the list of packets
prepared, the table trace file is going to be created using the informations
about packet contents. And finally, the list of packets are sent to the Scapy
block to generate the final PCAP trace.

• Scapy: is composed of the Packet and PCAP sub-blocks. The Packet is going
to assemble the packets included in the list of packets with the correct protocol
format. The PCAP will read the assembled packets and generate the PCAP file
completing the BB-Gen process.

4.2. Main features

The principal features and capabilities of BB-Gen are summarized as below:

• Designed for simplicity, BB-Gen delivers an intuitive CLI based interface. By
specifying only a few flags, the user can create a set of traces files.
• Very useful for best-case and worst-case testing. It allows to specify a sim-

ple/random distribution of header fields sufficient to address the most complex
test cases.
• Being a python based tool, it is easy to build, use and extend to support additional

protocols and new features.



• Easily create multiple PCAPs in a single step. The user can define the number of
flows, packet sizes, etc. for each PCAP.
• Generates table trace files along with every set of PCAPs utilizing the informations

from the PCAP files such as list of IP addresses, MAC address, Port numbers and
also the packet encapsulation data for protocols like VXLAN and GRE. Trace file
generation is seamless and does not require any additional user input.
• For scalability testing purposes, it can generate traces with more than 1 million

unique packet details.
• Supports a list of common standard protocols:

– Ethernet.
– IPv4, IPv6.
– TCP, UDP.
– Protocol Encapsulations such as GRE and VXLAN.

• Useful for performance tests as it can automatically create packets of different
sizes according to the RFC 2544 [Bradner and McQuaid 1999] (64, 128, 256, 512,
1024, 1280, 1518 Bytes) by setting a single performance flag in CLI.
• User defined custom packet sizes are also accepted at the CLI, just being limited

by the defined minimum protocol size.
• Accepts user defined payload information. For this scenario, minimum packet

size is maintained to be 64B by padding with random strings if necessary. In case
payload saturates the 64B, the packet size is determined by the payload.
• The generated PCAP trace files are accepted as inputs for different network bench-

marking and performance tools.
• Is a cross-platform tool with support for Windows, Linux, BSD and Mac OS X

platforms.
• It is an open source project following BSD 3-Clause License.

5. Use Case
In order to demonstrate the usability of BB-Gen, we present a use case featuring a pro-
grammable dataplane (MACSAD) and a network performance evaluation tool (NFPA)
which accepts a set of PCAP trace files as input for each ‘determined setup’/‘specified
configuration’ experiment run.

Multi-Architecture Compiler System for Abstract Dataplanes (MACSAD)
[Patra et al. 2016, Patra et al. 2017] tries to converge Programming Protocol-
Independent Packet Processors (P4) [Bosshart et al. 2014] and OpenDataPlane
(ODP) [OpenDataPlane 2013] through a common compilation process delivering
portability of dataplane applications without compromising target performance im-
provements while translating P4-defined dataplane abstractions into high-level ODP
Application Programming Interfaces (APIs).

The Network Function Performance Analyzer (NFPA)5 was proposed as a bench-
marking tool that allows a user to measure important performance metrics of a network
function compiled on any hardware and software combination, and to compare and store
the results collected. NFPA is built over pktgen and Intel’s Data Plane Development Kit
(DPDK) [DPDK 2014] surpassing the kernel space limitations towards Network Inter-
face Card (NIC) drivers. NFPA utilizes custom Lua scripts to parametrize, automate and

5https://github.com/cslev/nfpa



control the process of measuring the sending and receiving traffic. Moreover, it allows
custom PCAP trace files to send traffic and configure network functions respectively.

5.1. Experimental Evaluation

NFPA Node

DUT Node
P2

P1

MACSAD
INTEL DPDK

PktGen

P2

P1

ENGINE

Lua Control
scripts

Result
Analyzer

Measurement
Setup

BB-GenPCAPs

Table

Traces

Traffic

Traces

Figure 2. BB-Gen use case with NFPA and MACSAD

While using the NFPA benchmarking tool for performance evaluation of MAC-
SAD, BB-Gen generates the necessary PCAP and table trace files for worst-case scenarios
with random header field values (MAC and IP addresses, Port numbers, etc.). Multiple
sets of PCAPs are created for different packet sizes according to the RFC 2544, and also
with a different number of packet flows (100 to 1 million unique flows). This is repeated
for each use-cases supported by MACSAD such as L2-Fwd, L3-Fwd with IPv4 and IPv6,
GRE, and VXLAN.

For the use case evaluation, the NFPA standalone node is connected to the Device
Under Test (DUT) (MACSAD) as presented in Figure 2. The user specifies the parame-
ters for traces files at BB-Gen and the generated PCAP and table trace files act as input to
the NFPA and MACSAD respectively. Then the user configures NFPA with measurement
parameters (e.g., Hardware details, version, and path to software components, number of
runs to be repeated, duration of each run, etc.), and similarly configures MACSAD with
input parameters and the path to the table trace file at the DUT Node. NFPA sends the
network traffic using the PCAP files generated by the BB-Gen on port 0, which in turn are
processed and forwarded by DUT according to the table entry details which are updated
by the table trace files from BB-Gen. And finally, NFPA receives the network traffic back
at port 1. The throughput measurements are done for the DUT in terms of packets per
second (pps) and bytes per second (bps). At the end of each run, the results are exported
and stored in a local database by NFPA.

6. Documentation, Code, and Demonstration
BB-Gen is released as an open source project under BSD 3-Clause license. It
can be downloaded from Github at https://github.com/intrig-unicamp/
BB-Gen. The Github issue site https://github.com/intrig-unicamp/
BB-Gen/issues is open to report bugs and initiate discussions about the current func-
tionalities of the tool and to propose new features. Contributions to BB-Gen can be made
by creating a fork of the project and initiating a pull request in Github.

https://github.com/intrig-unicamp/BB-Gen
https://github.com/intrig-unicamp/BB-Gen
https://github.com/intrig-unicamp/BB-Gen/issues
https://github.com/intrig-unicamp/BB-Gen/issues


The documentation is available at the site https://github.com/
intrig-unicamp/BB-Gen/wiki which shows all the possible commands and flags
used by the tool with their complete usage description. In addition, at this link https:
//www.youtube.com/watch?v=amoGBOBdwVI a complete video tutorial of the
tool can be found explaining the usage of BB-Gen to generate the traces files with the
help of a simple example.

The demonstration will focus on the generation of traces for performance purpose,
and their use by different benchmarking tools (e.g., NFPA, pktgen-dpdk, tcpdump, etc.).
Different configuration parameters and flags of BB-Gen will also be explained in details.
The three important aspects of the demonstration are explained here.

Performance traces. This application adhering to the motto of ‘simplicity’
demonstrates how to create a full set of traces for different performance evaluations by
setting the single performance flag at BB-Gen.

Distribution. The demonstration will show the process to generate different flow
distribution in terms of the packets in PCAP. By specifying the distribution of MAC, IP
and Port values, a full set of packets will be generated for different test scenarios.

Benchmarking tool integration. Finally, the demo will feature a use case scenario
to showcase BB-Gen integration with other benchmarking tools. The test will present
NFPA integration with BB-Gen, and how NFPA can read and send the network traffic
using PCAPs generated by BB-Gen.

7. Future Work
In the near future we are planning to add more protocols (e.g., ICMP, ICMPv6, ARP,
VLAN, etc.) while maintaining our fundamental characteristic ‘Simplicity’. By leverag-
ing the unique feature of Scapy, we plan to add support of the capability to create packets
with a custom sequence of protocols headers. It will enable the user to create packets
according to their necessities, even if the packet does not conform any logical sequence
of protocols as per standards. That say we will have a feature supporting creation of mal-
formed packets defined by the user. The inclusions of more use cases and the contribution
to the NFPA project is also one of the main scopes. Another niche feature to add is the
capability to generate a hexdump of the created packet. This will allow the user to verify
if the generated packets are as expected or not.

In the longer term, we plan to transform BB-Gen into a modular platform creating
different knobs for tool’s features, supported protocols etc, which can accept new con-
tribution seamlessly without the need to rewrite codes across the project. Also, all the
features will be segregated into different classes and libraries for streamlining the new
code development process.

8. Conclusions
BB-Gen is a python based tool, focusing on simplicity, written using Scapy library. It can
be a great candidate for generating trace files for performance and evaluation tests. With
a simple set of flags, it can create a set of traces from the simplest to the most complex
performance test. The integration with a wide set of benchmarking tools reinforces the
ease of use of the tool and benefits for the community with the evaluations. MACSAD

https://github.com/intrig-unicamp/BB-Gen/wiki
https://github.com/intrig-unicamp/BB-Gen/wiki
https://www.youtube.com/watch?v=amoGBOBdwVI
https://www.youtube.com/watch?v=amoGBOBdwVI


project results demonstrate the facility of BB-Gen to create traces covering different
complexities and requirements of the project.

Acknowledgments
This work was supported by the Innovation Center, Ericsson Telecomunicações S.A.,
Brazil under grant agreement UNI.61.

References
[Biondi 2008] Biondi, P. (2008). Welcome to scapy’s documentation!

[Bosshart et al. 2014] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford,
J., Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., and Walker, D. (2014). P4:
Programming protocol-independent packet processors. ACM SIGCOMM Computer
Communication Review.

[Botta et al. 2012] Botta, A., Dainotti, A., and Pescapé, A. (2012). A tool for the generation
of realistic network workload for emerging networking scenarios. Computer Networks,
56(15):3531–3547.

[Bradner and McQuaid 1999] Bradner, S. and McQuaid, J. (1999). Benchmarking method-
ology for network interconnect devices. RFC 2544, RFC Editor. http://www.
rfc-editor.org/rfc/rfc2544.txt.

[Csikor et al. 2015a] Csikor, L., Szalay, M., Sonkoly, B., and Toka, L. (2015a). Network
Function Performance Analyzer. http://nfpa.tmit.bme.hu.

[Csikor et al. 2015b] Csikor, L., Szalay, M., Sonkoly, B., and Toka, L. (2015b). Nfpa: Net-
work function performance analyzer. IEEE Conference on Network Function Virtual-
ization and Software Defined Networks Demo Track.

[DPDK 2014] DPDK (2014). Data Plane Development Kit. http://dpdk.org/.

[Knutsson 2014] Knutsson, K. (2014). RWS Synthetic Pcap Generator. https://
github.com/karknu/rws.

[Olsson 2005] Olsson, R. (2005). Pktgen the linux packet generator. In Proceedings of the
Linux Symposium, Ottawa, Canada, volume 2, pages 11–24.

[OpenDataPlane 2013] OpenDataPlane (2013). OpenDataPlane.org. https://www.
opendataplane.org.

[Ostinato 2010] Ostinato (2010). Ostinato. https://ostinato.org.

[Patra et al. 2016] Patra, P. G., Rothenberg, C. E., and Pongracz, G. (2016). Macsad: Multi-
architecture compiler system for abstract dataplanes (aka partnering p4 with odp).
ACM SIGCOMM Demo and Poster Session.

[Patra et al. 2017] Patra, P. G., Rothenberg, C. E., and Pongracz, G. (2017). Macsad: High
performance dataplane applications on the move. IEEE HPSR High Performance
Switching and Routing.

[Tcpdump 2010] Tcpdump (2010). Tcpdump. https://www.tcpdump.org.

http://www.rfc-editor.org/rfc/rfc2544.txt
http://www.rfc-editor.org/rfc/rfc2544.txt
http://nfpa.tmit.bme.hu
http://dpdk.org/
https://github.com/karknu/rws
https://github.com/karknu/rws
https://www.opendataplane.org
https://www.opendataplane.org
https://ostinato.org
https://www.tcpdump.org

	Introduction
	Motivation and Goals
	Related Work
	BB-Gen
	Architecture
	Main features

	Use Case
	Experimental Evaluation

	Documentation, Code, and Demonstration
	Future Work
	Conclusions

