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Resumo. Neste trabalho é considerada uma rede sem fio ad hoc realizada em
uma grade regular quadrada, na qual a comunicação entre os dispositivos é
influenciada por obstáculos regularmente espaçados. O raio crítico de trans-
missão para obter conectividade nesse tipo de rede cresce com o tamanho da
grade, o que pode prejudicar a viabilidade em larga escala de tecnologias
sem fio de baixa potência. Avalia-se portanto como introduzir eficientemente
uma infraestrutura conectada de pontos de acesso em cenários subcríticos, nos
quais o raio de transmissão é insuficiente para estabelecer a conectividade.
Formula-se o problema de posicionar o menor número de pontos de acesso,
de tal modo que todo componente conectado seja coberto por pelo menos um
ponto de acesso, e denomina-se esse problema de Obstructed Wireless Network
Backbone Cover Problem (OWN-BC). Prova-se que OWN-BC é NP-Completo
e propõe-se um algoritmo 2-aproximativo para obter soluções com garantia de
qualidade. Realiza-se simulações para ilustrar o desempenho do algoritmo em
diferentes cenários. Além disso, é feita uma caracterização de cenários para
os quais o algoritmo proposto obtêm soluções ótimas em tempo polinomial com
alta probabilidade.

1. Connectivity with backbone structures in Obstructed Wireless Networks
In this work we explore the limits of connectivity of wireless networks performed in envi-
ronments with obstacles – the so-called Obstructed Wireless Networks (OWN). Obstacles
are present in a variety of networking application scenarios, such as vehicular networks
operating in urban street grids, home networks, or other networks deployed indoors, tun-
nels, or underground mines. Let consider, for instance, the formation of a network only
between the cars located on the streets of a city with many buildings, like New York
City. The described vehicular network does not rely on a pre-existing infrastructure, be-
ing called ad hoc.

We start this work by analyzing the scalability of ad hoc wireless networks ob-
structed by regularly spaced obstacles, using the model proposed in [Almiron et al. 2013].
In this model, the street blocks of the city are represented as squares on a two-dimensional
grid and the devices, as points on uni-dimensional streets.A device has the communication
range dependent on the wireless technology applied. A pair of devices are connected if
they meet specific communication rules, roughly, a function of distance and the absence
of obstacles between them. A set of connected devices forms the so-called connected
component, or just, component.



The main contribution of this work is the study of scenarios where either the num-
ber of devices or its communication range are not large enough to ensure overall con-
nectivity and the network is partitioned into several components.We assume that a global
communication infrastructure exists, e.g. the Internet, which can be accessed through one
or more access points by any device, as long as there is a path of communication links
from that device to at least one access point to the infrastructure. This infrastructure, also
referred in this work as backbone, provides connectivity between the ad hoc components.
We enumerate all the candidate positions for access points. And finally, we obtain the
minimum set of access points, selected from the candidates, to establish connectivity.

We define the Obstructed Wireless Network Backbone Cover (OWN-BC) prob-
lem. We prove that, given an arbitrary device distribution on the grid, OWN-BC is NP-
complete and propose a 2-approximation algorithm to compute close-to-optimum solu-
tions in polynomial time. We simulated diverse OWN scenarios and observed that the
obtained solutions were remarkably close to the optimum, which motivated us to analyze
the complexity of typical problem instances. Because of this, we turn our attention to
the randomly-generated device distributions. By analyzing the structure of the problem
in random scenarios, we showed that it can be solved optimally in polynomial time, as
long as certain criteria are satisfied at the intersections of the grid structure. In particular,
we present an analytical lower bound on the probability of the approximation algorithm
to compute optimum solutions in polynomial time. We validate this analytical result by
simulating the empirical probability of finding optimum solutions in polynomial time in
sub-critical network configurations. The simulations corroborated the good quality of the
analytical result.

We believe that, from a practical point of view, these are potentially valuable re-
sults, since they allow (a communication engineer) to ensure connectivity in OWN with
arbitrary device deployment, with or without a backbone, for any network size, commu-
nication technology, or geometry of a particular obstacle grid. Moreover, it is possible to
identify scenarios where optimal backbone solutions can be quickly computed.

2. Related work
Relatively few attempts have been made to analyze OWN, many of which are
quite complex and not easily generalizable.The Random OWN model was proposed
in [Almiron et al. 2013], with the objective to characterize the Critical Transmission
Range (CTR) for connectivity.

3. Model
In order to study obstructed wireless networks, we need a model that captures some es-
sential characteristics of obstructed environments encountered in practice and is simple
enough to provide analytical tools for network properties, such as connectivity. The OWN
model is defined as follows.

Definition 1. Obstructed Wireless Network (OWN): An instance of an OWN is defined
by the following parameters: grid size g, street width ε, communication range r, and
device set D. As illustrated by Figure 1a, device deployment is done over the g × g
grid. Each street is comprised of g − 1 blocks, to which we refer as segments and g
crossroads, to which we refer as intersections. The normalized length of a segment is
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Figure 1: OWN model: deployment and connectivity.

set to one, and the street width is set to 0 < 2ε < 1. The communication devices in D
are positioned at arbitrary coordinates, but always on uni-dimensional and centralized
lines along street segments. The communication links are established between any pair
of devices (u, v) ∈ D, that meet two criteria: (1) Euclidean distance: d(u, v) ≤ r; and
(2) Visibility: there is no obstacle between u and v, i.e., there is Line-of-Sight (LoS) (see
Figure 1b).

Below, we define a probabilistic version of the OWN model, which uses a uni-
formly distributed device deployment and was first introduced in [Almiron et al. 2013].

Definition 2. Random OWN: In addition to the parameters defined in Definition 1, the
Random OWN uses the parameter node density µ. The deployment of devices in set D is
performed in the following manner: in each street segment of the grid, µ communication
devices are deployed uniformly at random (on uni-dimensional and centralized lines).
Therefore, |D|= 2g(g − 1) · µ.
Definition 3. CTR for Connectivity: Suppose n devices are distributed in a deployment
region. The Critical Transmission Range (CTR) for connectivity can be defined as the
minimum transmission range, denoted by rc, which induces a communication graph with
a unique connected component, including all n devices.

In [Almiron et al. 2013] discrete percolation theory elements were applied to
study global network properties, such as the formation of a giant connected component
and the CTR for connectivity. Therefore, the CTR is a threshold, beyond which con-
nectivity is warranted with high probability (w.h.p.) (super-critical scenarios), and under
which the network becomes fragmented, or partitioned into several connected compo-
nents (sub-critical scenarios). It can be obtained as a function of the models parameters
as stated in Theorem 1.

Theorem 1. ([Almiron et al. 2013]) Given a Random OWN, the CTR for connectivity
w.h.p., denoted by rc, is

rc =
ln
(
ga+1/2

)
+ ln (µ− 1)

µ
(1)



for a > 0, whenever ε ≥ εc.

The value εc is the so-called critical width, i.e., the minimal value of ε that guarantees
the probability of connectivity at street intersections. Any positive value of parameter a
induces connectivity when g →∞, and higher values can be used for faster convergence
according to the specific value of g.

4. Main contributions
We point out briefly our main contributions. Due the lack of space, we refer the reader to
the full article for detailed explanation [Neto et al. 2017].

4.1. Scalability of connectivity in ad hoc Obstructed Wireless Networks

We presented a model that can be easily adjusted for real communication tecnologies
proportions. For such, expression (1) computes the CTR for connectivity, for a given
grid size g and device density µ in a ad hoc Random OWN. Alternatively, we can think
about the transmission range as a constant r̃ and determine, afterward, the scalability of
the network in terms of size.

Note that when g → ∞, an infinite amount of connected components emerges,
independently of the value of r̃. As a consequence, for a fixed value of r̃, we have a
restriction on values for g and µ. More specifically, big values of g require higher values
of µ. This relationship is given by manipulating the expression (1) as follows (whenever
we use the convergence factor a = 1):

g =

(
eµr̃

µ− 1

) 2
3

, (2)

In order to demonstrate the practical implications of Expression (2), let us take as
an example typical values of transmission range for the IEEE 802.15.4 and 802.11 legacy
standards in a “Standard City” with street blocks of size 100m. For instance, a network
with IEEE 802.15.4 devices configured to transmit up to 30m at 250kbps requires a dense
deployment, about 30 devices per segment, to be able to scale to a grid of 42× 42, while
maintaining connectivity. On the other hand, if communication technology can be updated
such that the transmission range is 40m, with the same device density, connectivity is
achieved w.h.p. in much larger urban areas, with grid sizes up to 315.

It can be inferred that small variations in the configuration of transmission range
have a high impact on the scalability of connectivity in ad hoc OWN. To sum up, if
some parameters such as the radio transmission range are restricted connectivity doesn’t
scales well with the size of the grid, the necessary device density explodes to meet the
connectivity requirement. This behavior points to a necessity of other network topologies,
such as connected backbone structures, in order to obtain connectivity in OWN.

4.2. Obstructed Wireless Network Backbone Cover problem

We are interested in the following problem, formally defined below.

Definition 4. OWN Backbone Cover Problem (OWN-BC): Consider an OWN, partitioned
into a set of components C. Consider a set B of candidate locations for access points to



x1 x2 x3 x4 x5 x6

Y1 = {x1, x2, x3}

Y2 = {x1, x2, x4}

Y3 = {x1, x3, x4}

Y4 = {x2, x3, x4}

Y5 = {x3, x4, x6}

Y6 = {x4, x5, x6}

Figure 2: X3C to OWN-BC reduction example: X = {x1, x2, x3, x4, x5, x6}, Y = {Y1 =
{x1, x2, x3}, Y2 = {x1, x2, x4}, Y3 = {x1, x3, x4}, Y4 = {x2, x3, x4}, Y5 = {x3, x4, x6},
Y6 = {x4, x5, x6}}.

the backbone, and denote by B(Cj) ⊆ B, Cj ∈ C, the subset of candidate locations that
cover each component of the OWN. The objective of the OWN-BC is to connect every
component to the backbone by activating at least one access point in Bi ∈ B(Cj) ⊆
B,∀Cj ∈ C, while minimizing the total number of active access points:

min
∑

Bi∈B bi (3)
s.t.

∑
Bi∈B(Cj)

bi ≥ 1, ∀Cj ∈ C
bi ∈ {0, 1}, ∀Bi ∈ B.

We prove that OWN-BC is NP-hard by reduction from the Exact Cover by 3-Sets
(X3C) Problem [Garey and Johnson 2002], which is a classical NP-complete problem,
formulated as follows.
Definition 5. Exact Cover by 3-Sets Problem (X3C): Given a set X = {x1, x2, . . . , x3q}
and a collection Y = {Y1, Y2, . . . , Y|Y |}, such that Yi is a 3-element subset of X , X3C
consists in deciding whether there is an exact cover of X by sets of Y (i.e., if it is possible
to select mutually disjoint sets from Y such that their union is exactly X).

We outline in Figure 2 how an instance of X3C is reduced, in polynomial time,
to an instance of OWN-BC, the decision version of OWN-BC, such that the existence of
solution on the latter implies the existence of a solution on the former, and conversely. We
consider a one-to-one relation between each row (horizontal street) of the OWN-BC in-
stance and a 3-set Yj ∈ Y in the X3C instance. We indicate the reader to [Neto et al. 2017]
for the full proof.



Since OWN-BC is NP-complete, unless P = NP, there is no polynomial-time
algorithm to solve arbitrary instances. Therefore, we discuss approximation algorithms
for the problem.

4.3. Approximation algorithm

The OWN-BC problem can be modeled as the Set Cover problem, where network compo-
nents correspond to the elements and access points to the sets. Given that an access point
to the backbone can assist at most 4 disconnected network components, it can be viewed
as a special case of the k-Set Cover (k-SC) problem, where k = 4. The k-Set Cover can
be defined as follows.

Definition 6. k-Set Cover Problem (k-SC): Given a set of elements X =
{x1, x2, . . . , xn}, and a set C = {C1, C2, ..., Cm}, Ci ⊆ X, |Ci|≤ k of subsets of X
of size at most k. The objective of k-SC is to find a subset S ⊆ C of minimum cardinality
(or cost) that covers all elements of X , i.e., ∪Si∈SSi = X .

k-SC is a well studied problem, and many approximation algorithms can be found
in the literature. It is known that the greedy algorithm gives a Hk-approximation, where
Hk =

∑k
i=1 1/i is the k-th harmonic number [Garey and Johnson 2002]. Hence, this

gives an easy 25
12

-approximation for OWN-BC, since k = 4. More involved approximation
algorithms have been developed and the current state-of-the-art for k-SC is an (Hk− 196

390
)-

approximation [Levin 2008], resulting in a 1.58-approximation for OWN-BC.

During our simulations, we observed that frequently only a small fraction of the
connected components can be covered by 3- or 4-sets. Motivated by this observation,
we propose the Algorithm 1, that guarantees a factor-2 approximation in the worst case,
yielding optimal solutions in certain instances.

Algorithm 1: 2-approximation algorithm for OWN-BC.
Input: OWN-BC={C,B}: network components and candidate access points.
Output: S ⊂ B: backbone covering all components.

1 B′ = {Bi | Bi ∈ B ∧ 2 ≤ |Bi|≤ 4};
2 C ′ = {Ci | Ci ∈ C ∧ ∃Bi ∈ B′ ∧ Ci ∈ Bi}; (non-isolated components)
3 C ′′ = {Ci | Ci ∈ C ∧ Ci /∈ C ′}; (isolated components)
4 B′′ = {Bi ∈ B | |Bi|= 1 ∧ ∃Ci ∈ C ′′ | Ci ∈ Bi}; (isolated access points)
5 G = (V = C ′, E = ∅);
6 for each Bi ∈ B′ do
7 for each u, v ∈ Bi do
8 Add e = (u, v) to E with label l(e) = Bi ;
9 end

10 end
11 Compute an Edge Cover E ′ of G;
12 return S = B′′ ∪ {Bi ∈ B′ | ∃e ∈ E ′ ∧ l(e) = Bi};

Algorithm 1 works as follows. Given an instance of the OWN-BC problem, it builds an
instance of the Edge Cover problem. We show that Algorithm 1 is actually a factor-2
approximation that runs in polynomial time, which is proved in Theorem 2.



Theorem 2. Algorithm 1 gives a 2-approximation for OWN-BC in polynomial time.

Proof. Since a minimum edge cover can be found in polynomial time
[Garey and Johnson 2002]), the algorithm clearly runs in polynomial time.

For the proof of the approximation factor, let C ′ be a solution given by Algo-
rithm 1. Note that an optimal solution for 4-Set Cover C∗ can be converted to an edge
cover E∗ of the constructed graph as follows: For each 1-set S, take any edge containing
S as subset; For each 2-set S, take the edge corresponding to it; For each 3-set S, take
two distinct edges with endpoints in S; For each 4-set S, take two disjoint edges with
endpoints in S.

Note that E∗ is an edge cover with at most twice the number of elements of C∗.
Since the edge cover E ′ is minimum, hence we have |C ′|≤ |E ′|≤ |E∗|≤ 2|C∗|, which
completes the proof.

4.4. Characterizing polynomial complexity instances

In some cases, the OWN-BC problem reduces to the Edge Cover problem and can be
solved optimally in polynomial time by Algorithm 1. We characterize OWN-BC instances
in the Random OWN model and measure the probability Ppoly of the event polynomial
connectivity with a backbone. We formulate a lower bound on the probability Ppoly.

Theorem 3. Given an instance OWN-BC(g, ε, r, µ) in the Random OWN model, the prob-
ability of polynomial connectivity with a backbone can be lower bounded as follows:

Ppoly ≥ p(ε, r, µ)g
2

, (4)

where p(ε, r, µ) is defined in (5);

Proof. We need that candidate access points at all g2 grid intersections connect at most
2 network components. We denote as p the probability that this condition is satisfied at
a given street intersection. Since these events at different intersections are independent,
we have that Ppoly = pg

2 . Using the law of total probability, the probability p can be
expressed as the sum over the partitions:

p(ε, r, µ) = p+(ε, r, µ) + 2p|(ε, r, µ) + p�(ε, r, µ) (5)

We obtain a lower bound for each probability p+, p| and p� [Neto et al. 2017].

4.5. Experimental results

We simulated several instances of the Random OWN model by using different combi-
nations of parameters g, µ, ε and r. The x-axis represents the increasing transmission
range r in all plots. Each value in the plot represents the mean value over 200 samples,
with the respective 95% confidence interval. We did not use any simulation engines. The
source code is available at goo.gl/dHpac9 and it was written in C++ and R programming
languages.

We show some results in the plots of Figure 3. In Figure 3a, we plot the empirical
and the analytical probability p (expression 5). We can see that the analytic lower-bound
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(a) Street intersection.
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(c) g = 5, µ = 10, ε = 0.01
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(d) g = 5, µ = 10, ε = 0.015

Figure 3: Probability of polynomial connectivity with a backbone: analytical (lines) ×
empirical (triangles). Empirical Probability of “polynomial connectivity w/ backbone”
(PE

poly) and “ad hoc” (PE
conn) connectivity. Shaded region: ≥ 95% optimal backbone.

is well-adjusted to the simulated data. In Figure 3b, we compare the empirical and the
analytical lower bound for Ppoly (expression 4), which is dependent on the size of the
grid g. In Figure 3b, we can see that the data adjusts well to the analytic expression 4. It
should be noted that we can clearly distinguish regions of zero probability as opposed to
those of probability one and that the curve captures very well these different regions.

In Figures 3c and 3d, we plot the empirical probability PE
poly of the event of poly-

nomial connectivity with a backbone, as well as PE
conn, the empirical probability of con-

nectivity without a backbone infrastructure, i.e., the probability of connectivity of a ad
hoc Random OWN. The area indicated between these curves represents the region in
which our work shows its strength. For these regions, in addition to demonstrating that
the backbone is essential, we offer an algorithm to compute close-to-optimum solutions
in polynomial time to a NP-complete problem.

5. Conclusion and Acknowledgements
In this work we analyzed how connectivity scales in large ad hoc obstructed wireless net-
works and focused on the problem of establishing connectivity using a connected back-
bone infrastructure in sub-critical scenarios. This work was supported by CNPq, Fapemig
and CAPES.

References
[Almiron et al. 2013] Almiron, M. G., Goussevskaia, O., Loureiro, A. A., and Rolim, J.

(2013). Connectivity in obstructed wireless networks: From geometry to percolation.
In Proc.of ACM, MobiHoc’13, pages 157–166, New York, NY, USA. ACM.

[Garey and Johnson 2002] Garey, M. R. and Johnson, D. S. (2002). Computers and in-
tractability, volume 29. wh freeman New York.

[Levin 2008] Levin, A. (2008). Approximating the unweighted k-set cover problem: greedy
meets local search. SIAM Journal on Discrete Mathematics, 23(1):251–264.

[Neto et al. 2017] Neto, M. F., Goussevskaia, O., and dos Santos, V. F. (2017). Connec-
tivity with backbone structures in obstructed wireless networks. Computer Networks,
127:266 – 281.


	1 Connectivity with backbone structures in Obstructed Wireless Networks
	2 Related work
	3 Model
	4 Main contributions
	4.1 Scalability of connectivity in ad hoc Obstructed Wireless Networks
	4.2 Obstructed Wireless Network Backbone Cover problem
	4.3 Approximation algorithm
	4.4 Characterizing polynomial complexity instances
	4.5 Experimental results

	5 Conclusion and Acknowledgements

