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Abstract. Enterprise network managers need to control the access to their
network resources and protect them from malicious users. Current Network
Access Control (NAC) solutions rely on approaches, such as firewalls, VLAN,
ACL, and LDAP that are inflexible and require per-device and vendor-specific
configurations, being error-prone. Besides, misconfigurations may result in vulne-
rabilities that could compromise the overall network security. Managing security
policies involve dealing with many access control rules, conflicting policies, rule
priorities, right delegation, dynamics of the network, etc. This work presents
HACFlow, a novel, autonomic, and policy-based framework for access control
management in OpenFlow networks. HACFlow simplifies and automates the
network management allowing network operators to govern rights of network
entities by defining dynamic, fine-grained, and high-level access control poli-
cies. We analyzed the performance of HACFlow and compared it against related
approaches.

Resumo. Gerenciadores de redes corporativas devem controlar o acesso aos
recursos disponı́veis na rede, assim como, protegê-los de usuários maliciosos.
As soluções atuais de controle de acesso à rede consistem em firewalls, VLAN,
ACL e LDAP. Tais tecnologias são inflexı́veis e exigem configurações especı́ficas
por cada dispositivo e fornecedor diferente, sendo desta forma, propensa à
erros de configuração podendo resultar em vulnerabilidades que comprometam a
segurança geral da rede. Gerenciar polı́ticas de segurança envolve lidar com um
grande número de regras de controle de acesso, polı́ticas conflitantes, prioridades
de regras, delegação de papéis, assim como, lidar com a natureza dinâmica da
rede. Este trabalho apresenta HACFlow, um framework autônomo e baseado
em polı́ticas para gerenciamento de controle de acesso em redes OpenFlow.
HACFlow tem por objetivo simplificar e automatizar o gerenciamento de redes,
permitindo que os operadores da rede governem os direitos das entidades da
rede através de polı́ticas de controle de acesso dinâmicas, em alto nı́vel e de
forma granular. Analisamos o desempenho do HACFlow e comparamos-o com
soluções similares.

1. Problem definition
During the last decade, advances in the Internet architecture and communication system
technologies together with the introduction of the Fog Computing and Internet of Things
(IoT) paradigms contributed to the growth of the network and the number of interconnected



heterogeneous devices. These devices exchange information and interact with each other
and with humans and machines. Besides, they have different roles and different levels
of access rights between them. Ensuring the security and privacy of these entities and
defining and managing access rights to protect them from unauthorized access becomes a
challenge [Sicari et al. 2015].

From the network operator perspective security tasks like authorizing the access
between and for each network entity (users, sensors, printers, services, among others), are
complex and challenging to manage due to many reasons. For example, misconfigurations
may result in vulnerabilities that may compromise the overall network security. Besides,
large and dynamic network environments and sensitive information also increase the
management complexity. Due to those concerns, there is a need for a more sophisticated
access control solutions based on high-level and autonomic policy implementations to
minimize costs, and the network administrator effort and errors [Kreutz et al. 2015].

The Software-Defined Networking (SDN) paradigm stands to replace low-level
configurations by high-level network access control mechanisms. Furthermore, it offers
new opportunities (programmability, flexibility, dynamicity, and standardization) to over-
come the above issues [ONF 2014]. Despite this, those problems in traditional networks
perseveres in SDN.

Recently, researchers focused effort to address those problems as well as poin-
ting out challenges and open problems regarding the NAC management in SDN. In
[Ahmad et al. 2015] authors highlight challenges regarding the Synchronization of
Network Security and Network Traffic (they need to be synchronized according to
network changes and events) and the Network Security Automation (avoid human inter-
vention and manual configurations, which are prone to errors).

Besides, authors in [Wickboldt et al. 2015] discuss challenges and management
requirements in SDN such as From High-level Rules to Network Configuration (refers
to the loss of low-level information when using high-level commands or rules, so the
lost information needs to be reconstructed in the translation process) and Autonomic and
In-Network Management (regards the autonomic reaction against network events). In
addition, the Open Networking Foundation (ONF) document [TR-516 2015] specified
requirements to be met by the SDN architecture such as the use of Network Interaction
Policies (the need to create mechanisms to express, distribute, and manage interaction
policies that define which operations can be performed by network entities).

Therefore, based on those challenges and problems, we point out the following
research questions: i) How to simplify the Network Access Control management in current
networks? ii) How to allow the definition of high-level access control policies to configure
the network? iii) How to automate the reaction of security policies against network state
changes and events? iv) How to maintain the synchronization between high-level policies
and the network configurations?

2. Access control management in traditional networks

In traditional networks, the Network Access Control (NAC) management relies on a
series of network devices like firewalls, routers, and switches, together with protocols,
standards and technologies like RADIUS, IEEE 802.1x Port-based Network Access Control



(PNAC), Access Control List (ACL), Virtual Local Area Network (VLAN), Lightweight
Directory Access Protocol (LDAP) (OpenLDAP and Active Directory), among others.
Those solutions are inflexible and require per-device and vendor-specific configurations,
being prone to errors.

Furthermore, changes in the network (dynamic networks) require manual reconfi-
gurations in the network devices to comply with the established network security policy
as well as network operator needs. Also, managing and maintaining them are expensive,
which even in a small network, requires a management team [Liu et al. 2016]. Therefore,
these approaches work well for stable networks and are hard to integrate and configure.
Due to those concerns, there is a need for a more sophisticated access control solutions
based on high-level and autonomic policy implementations to minimize costs and the
network administrator effort and errors [Kreutz et al. 2015].

The aforementioned approaches (firewalls, PNAC, VLAN, LDAP, and Kerberos),
normally rely on manual configurations (through human intervention) in firewalls, RADIUS
server, routers, and switches, being highly exposed to misconfigurations, and resulting in
a time-consuming task [Matias et al. 2014]. Therefore, the deploy of those technologies
becomes harder in dynamic and large networks scenarios. Besides, there is a lack of
granularity and expressiveness to implement the network access control, requiring the
combination of different solutions. Figure 1a depicts the combination of these solutions
(firewall, PNAC, VLAN, LDAP) to control the access in a traditional network.
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Figura 1. (a) Access control management in traditional networks. (b) Access
control management in SDN with HACFlow.

3. HACFlow: access control management in OpenFlow networks
HACFlow is a High-level Access Control management framework for OpenFlow networks
and is based on the Organization Based Access Control (OrBAC) model. HACFlow aims
to simplify and automate the NAC management providing mechanisms to define dynamic,
fine-grained, and high-level access control policies, detect and solve conflicting policies,
delegate roles, and react to network state changes and events (see Figure 1b).

The HACFlow framework architecture is composed of many components that
work together to comply with all the previous issues. Next, we describe the core compo-
nents of HACFlow. For a detailed description of all components and how they interact
with each other refer to [Rosendo et al. 2017].



OrBAC API: Network Interaction Policies - the OrBAC API allows the defini-
tion of high-level and context-aware security policies. Besides, it provides mechanisms to
detect and solve conflicting policies. The OrBAC API is composed of a policy implementer,
policy checker, policy parser, and policy inference. The policy implementer allows the
creation of predicates (Organization, Role, Activity, View, and Context), entities (Subject,
Action, and Object), and abstract permission and prohibition policies. Then, the policy
checker checks for constraints and conflicts in those abstract policies. Next, the policy
parser generates the concretes rules from the abstract policies. Lastly, the policy inference
infer the concrete rules considering its states, that can be active or inactive (in/out of
context), and preempted or not preempted (lower/higher priority).

Event Listener: Synchronizing the Network Security and Network Traffic -
HACFlow automatically processes network events and policy context changes. HACFlow
receives those events from an SDN application and they can be the result of a user
authentication, a vulnerability alert detected by a security service (IDS, DPI, or DDoS),
among others. The main role of the event listener is to maintain the synchronization
between the high-level security policies to network configurations. In order to HACFlow
be able to react to those events, network operators must previously define context conditions
(circumstances) and link it to a security policy. Therefore, HACFlow allows the network
operator to describe how to react in case malicious traffic is detected.

The Policy Translator: From High-level Rules to Network Configuration -
HACFlow allows network operators to define policies in a high-level way without taking
care of how they will be implemented in the network. Such high-level of abstraction results
in the loss of low-level network information (e.g. IP address, MAC address, port number,
connected switch, among others). Therefore, these low-level data must be reconstructed in
the translation process. This way, while translating a high-level security policy into a low-
level OpenFlow flow rule, the HACFlow’s components (OrBAC API, Policy Translator,
and Entity Manager) must work together to perform the translation. Figure 2 depicts the
whole translation process.
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As an example, once a user authenticates on the network, a third party SDN
application responsible for authenticating the user will notify HACFlow (through its REST
API) to start the authorization process. At first, once notified HACFlow will (step one)
get the user’s high-level policies through the OrBAC API and (step two) pass them to the
Policy Translator. Next, the Policy Translator (step three) gets from the Entity Manager
the low-level data and then translates the high-level rule (OrBAC policy) into the low-level
rule (OpenFlow flow rule). Lastly, HACFlow (step four) returns the OpenFlow rules to the
third party SDN application to enforce the user’s rules in the network. Finally, the user
will be able or not to access the network entities (hosts, printers, services, among others).

4. Evaluation and Comparison
Our testbed consists of a physical machine with Ubuntu 15.04 with a Core i7-3770 CPU
3.40GHz and 16GB of RAM. On top of it, we configured three virtual machines. The first
virtual machine refers to the HP VAN SDN controller version 2.5.15. The second one is the
Mininet network emulator version 2.2 with Open vSwitch 2.4.0. Lastly, the third one refers
to the HACFlow framework. Next, we developed a SDN application for the HP VAN SDN
controller that interacts with HACFlow through its REST API. This application enforces
the OpenFlow security rules provided by HACFlow. The network topology consists of one
SDN controller, three OpenFlow-enabled switches, and two hosts.

4.1. HACFlow Performance Evaluation

Network State Change - Vulnerability Alert: we evaluated the required time to HAC-
Flow block the access of a user to a server after a vulnerability alert is detected. When a
network alert is triggered by a security monitoring system the SDN application notifies
HACFlow to reconfigure the network. From the results (see Figure 3a) HACFlow needed
8.24 ms in average (32.1% of the total time) to react to a vulnerability alert.

Dynamic Security Policies: are context-aware policies that may have their state
changed (active or inactive) depending on some circumstances (day of a week, an hour of
a day, and so on). HACFlow is able to automatically react to these contextual changes, not
requiring any manual per-device reconfiguration of the network devices. In this experiment,
we simulate a security policy being out of context, that means, being out of a circumstance
imposed by the network operator. According to results (see Figure 3b), we point out that
HACFlow required 7.57 ms in average (30.9% of the total time).

Role Delegation: once a delegation occurs, HACFlow assigns the new security
rules to the granted network entity and sends the rules to be enforced in the network.
According to the results (see Figure 3c) HACFlow required 119.45 ms in average (30.8%
of the total time) to delegate a single role linked to a single security policy.

High-level to Low-level Policy Inference: we analyzed the scalability of HAC-
Flow to infer the OpenFlow flow rules. In this analysis, HACFlow infers 1, 4, 16, 32, 64,
128, and 256 rules. We divided the flow rule inference into two steps. The first (1. Security
rule filter) refers to the filtering of rules through the OrBAC API and the extraction of
low-level data about the network entities. The second one (2. Policy translation) refers to
the process that obtains the OpenFlow flow rules from the OrBAC rules. From results, we
highlight that HACFlow needed 0.4791ms to translate 256 rules. Furthermore, the whole
process (filter and translate 256 rules) required 1.1 seconds on average.



4.2. Comparison Against Existing Solutions
Policy Translation: here, we compared HACFlow against Frenetic and OpenSec fra-
meworks regarding the required time to translate a high-level security policy into low-level
OpenFlow flow rule. The experiment was executed 256 times and the results are the mean
and standard deviation. From Figure 3d, we point that HACFlow, Frenetic, and OpenSec
require similar times to translate a single security rule. But, Frenetic required a lower time.

Event Reaction Delay: next, we compared HACFlow against OpenSec regarding
how long each one requires to react to a network state change and event. The reaction time
includes the moment that the framework receives the alert until it returns the OpenFlow
flow rules to reconfigure the network. The experiment was run 256 times and our results
represent the mean and standard deviation. From Figure 3e, OpenSec required a lower
time, 8.1ms against 8.5ms by HACFlow.

Figura 3. (a) Reaction of HACFlow against a vulnerability alert. (b) Reaction of
HACFlow against a dynamic policy. (c) Role delegation in HACFlow. (d) Policy
translation comparison. (e) Event reaction comparison.

5. Related work
Frenetic [Foster et al. 2011] is a high-level language for OpenFlow networks based on
Functional Reactive Programming (FRP) and SQL-like queries. The Frenetic architecture
consists of an implementation of the FRP operations (to define high-level policies), a
run-time system (to translate high-level policies into low-level packet-processing rules and
manage the policy enforcement), and the NOX SDN controller. HACFlow and Frenetic
manage the network traffic by defining high-level policies. In both, network managers do
not take care of how those policies will be implemented and enforced on the network.

FRESCO [Shin et al. 2013] is a security framework focused on enforcing security
constraints to SDN applications. With FRESCO, those applications can replicate security
functions like firewalls and attack deflectors. In FRESCO, network operators define
high-level security policies based on a scripting language. This language relies on the
block, deny, allow, redirect, and quarantine security primitives. While, in HACFlow,
the high-level policies are based on the OrBAC model. To detect and solve conflicts,
FRESCO includes a Security Enforcement Kernel (SEK) module integrated to the NOX
SDN controller. Therefore, supporting FRESCO in other SDN controllers require the
implementation of this module, not being a straightforward integration. On the other hand,
the OrBAC component in HACFlow framework detects and solve conflicting policies. The
HACFlow deployment does not require any extension or modification in SDN controllers,
as FRESCO requires.



OpenSec[Lara and Ramamurthy 2016] is a security framework to automate the
implementation of security policies. In OpenSec, the network operator defines high-level
goals (high-level security rules) to determine by which processing units (DDoS, DPI,
spam detection, among others) a traffic must be monitored. While HACFlow implements
high-level security policies to determine which actions network entities can perform.
OpenSec and HACFlow react dynamically to network alerts by enforcing switch-level
rules. Besides, they allow network managers to previously define how this reaction must
be implemented/enforced according to the alert received.

6. Conclusions

This work proposes HACFlow, a novel SDN framework that aims to simplify and automate
the management of access control policies in OpenFlow networks by providing mechanisms
to i) express, distribute, delegate, and manage interaction policies; ii) define dynamic, fine-
grained, and high-level access control policies; iii) translate high-level security policies into
network configurations; iv) maintain the synchronization between the security policies and
the network traffic. We analyzed the performance of HACFlow and the results showed that
it reduces the effort (HACFlow is faster and less prone to errors than manual configurations)
to implement a variety of network configurations. We also compared HACFlow against
related approaches and the results showed that HACFlow offers more management features
(based on the points motivated). Besides, results showed that HACFlow requires a similar
time to translate security policies and react to network events.

6.1. Contributions

Our main contributions can be highlighted as (1) We demonstrate how SDN, OpenFlow,
and the OrBAC model can be used together to improve and automate the network access
control management. (2) We propose a framework for the definition of high-level and
human-readable policies, trying to simplify the management of access control policies and
minimize misconfigurations. (3) We propose a novel solution to define high-level network
security policies that dynamically react to network events and rule state changes, taking
advantage of SDN flexibility and programmability features to reconfigure the network. (4)
We show that SDN may be leveraged to offer ACL at a much finer granularity where more
flexible rules may be defined, as opposed to existing port and VLAN based rules only. (5)
We improve network access control management without modifying the SDN architecture
(e.g., the OpenFlow protocol, controllers, and switches). (6) We present a quantitative and
qualitative analysis of HACFlow framework and compare it against related solutions.

(7) Publications: this research resulted in two publications. The first publication
[Aschoff et al. 2017] was accepted in IFIP/IEEE International Symposium on Integrated
Network Management (IM 2017). In this paper, we proposed an SDN-based Network
Access Control (S-NAC) solution that authenticates and authorizes network entities. In the
second publication [Rosendo et al. 2017], we evolved the idea and proposed HACFlow, a
novel SDN framework with much more management capabilities. It was accepted in the
International Conference on Network and Service Management (CNSM 2017).

(8) OrBAC API bugfix: we helped to improve the OrBAC model API by notifying
a bugfix. Such bug regards the NotifyContextStateChange() method in the AbstractOr-
bacPolicy class which was not correctly monitoring concrete rule state changes, making



it impossible to create dynamic security policies. The OrBAC API developers corrected
this bug, then we tested it to validate the bugfix, and lastly, we confirmed the correction to
them. Then, a new version was released. In the MotOrBAC web page (MotOrBAC version
2.5 and OrBAC API 1.5.1 from 12/04/2016 at http://motorbac.sourceforge.net), inside the
changelog.txt file they thank us: ”Big thanks to Daniel Rosendo for pointing this out!”.
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