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Abstract. Smart city applications need data about the city, and this data must
follow specific requirements. Two of these requirements are the maximum deliv-
ery delay and the minimum measurement frequency. Using buses to gather data
and bus stops as gateways can be cost-effective, but data might not fit the appli-
cation requirements. In this thesis, we present a model to minimize the delay of
data delivery, a metric to estimate the coverage, and a prototype of the nodes of
such a network. We use GPS data from the bus fleet of Rio de Janeiro to show
that it is possible to cover a significant part of the city, fulfilling application
requirements specified by the smart city literature.

1. Problem Statement and Contributions
Granting mobility to sensors mobility is a profitable strategy to gather data and build
smart city applications. Under the Internet of Things (IoT) paradigm, we consider in this
work that urban buses carry inexpensive and resource-limited sensors. These IoT devices
collect data and send it to more powerful devices located in the fog, following the current
three-tier hierarchical cloud computing model [Li et al. 2016]. The fog pre-processes data
at the edge of the network, sending it to the cloud through the Internet. Finally, the cloud
processes and makes data available to applications. The city is then covered by a Mobile
Wireless Sensor Network (MWSN), which presents two main trade-offs. First, sensors
move through the city, enlarging their individual coverage and consequently reducing the
amount of IoT devices to cover the same area as a static approach [Liu et al. 2005]. The
cost to that is that each region of the city is not covered the whole time. The second
trade-off comes from the fact that mobile sensors can take advantage of opportunistic
communication. In this situation, there is no need for a network covering the whole city:
sensors collect data and send it when they approach gateways [Ekici et al. 2006]. Since
buses collect data and store it until a connection is possible, there is a delay added to the
data. Given this reasoning, we make three contributions:

• a method to minimize the delivery delay by the optimal positioning of gateways;
• a metric to define the coverage of the applications served by a bus-based MWSN;
• a prototype of SensingBus, a bus-based MWSN.

2. Related Work
Even though the literature presents works to minimize delays on static [Wong et al. 2004,
Umer et al. 2016] and mobile [Ghafoor et al. 2014] Wireless Sensor Networks (WSNs),
their focus is to optimize trajectories or packet routing. Optimizing trajectories is not
possible on a mobile network composed of buses following fixed trajectories. Also, packet
routing is not significant to the case we consider, in which buses deliver data directly to
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Figure 1. SensingBus overview.

Application
Tolerated Measurement

delay frequency
(s) (day−1)

Waste 1,800 24management
Air quality 300 48monitoring
Noise 300 144monitoring

Table 1. Applications data
requirements, according
to [Zanella et al. 2014]

the fog nodes. It is also possible to find extensive work on the coverage of vehicle-based
MWSNs [Ali and Dyo 2017, Gao et al. 2016, Zhao et al. 2013]. These metrics are suited
for MWSNs that are constantly connected. In contrast, we propose a coverage metric that
uses the streets covered by buses, observing the measurement frequency and the delivery
delay as requirements of the targeted applications. Regarding the SensingBus, there are
other bus-based MWSN prototypes in the literature [Zoysa et al. 2007, Gao et al. 2016,
Marjovi et al. 2015, Sanchez et al. 2014]. These prototypes do not consider a fog level
on their architecture. In this work, we implement the three-level fog architecture and
perform experiments related to processing, communication, and mobility.

3. Main Assumptions

Our bus-based MWSN is depicted in Figure 1. In this network, buses collect and store
data throughout their trajectory (i), delivering data to gateways placed into bus stops (ii).
The gateways send the information to the cloud node (iii), that processes the data (iv) and
provides it to the corresponding applications (v). In the present work, the gateways are
fog nodes that receive data and also perform pre-processing, as we explore in Section 6.

To work efficiently, smart city applications have specific requirements on the data
they receive. We select the requirements we believe our scenario impacts the most, the
maximum delivery delay and the minimum measurement frequency. They mean, respec-
tively, that applications must receive data about a region within a certain delay, and that the
measurements about each region must be frequent. Otherwise, the application is not able
to cover the region. Table 1 shows the tolerated delay and the measurement frequency of
the applications we consider in this work, according to Zanella et al. [Zanella et al. 2014].

4. A Delay Optimization Model for Bus-based MWSNs

In the MWSN we consider, buses gather data all the time, but can only deliver it when
a connection to a fog node is possible. We assume that every time a bus gathers a piece
of data, it delivers this piece to the next fog node in its bus path. We also assume that
the fog nodes are located in the bus stops. This means that the time a bus takes between
two bus stops is also the delay experienced by the data gathered between these bus stops.
Throughout their paths, each bus makes contact with several bus stops, delivering all data



Figure 2. Network delay for the
buses filtered at 7,200 s for
different budgets.

Budget (fog nodes) Delay (s) Execution
time (s)

200 1786 1601
300 1786 1643
400 1786 1354
500 1786 1376
600 1786 1378
700 1786 1381

Table 2. Results of the fog
node placement with re-
duced cardinality.

stored since the last contact. A bus stop can receive data from multiple buses, even from
buses not serving passengers on that bus stop.

We assume that the cost might not allow the installation of fog nodes into all bus
stops. In this situation, some fog nodes are removed, meaning that buses that pass by
these stops need to deliver data to the next fog nodes in their paths. Since each bus stop
receives data from buses that cover different paths, removing a bus stop can affect each
bus differently. It is possible to choose the best bus stops to install fog nodes, minimizing
the biggest delay suffered by any data in the network.

We model the optimal fog node placement as a p-center problem, a well-known
facility location problem [Kariv and Hakimi 1979]. In our model, each bus leaving a bus
stop is a demand and the facility candidates capable of serving the demand are the next
bus stops in the bus path. The distance between a demand and a facility candidate is
the time the bus takes to go from the first data acquisition until its delivery. A possible
representation of this problem is as a bipartite graph, in which facility candidates and
demands are the two sets of vertices, and the distances are the edges.

Obtaining a solution to the optimal fog node placement problem is computation-
ally intensive, and instances to the size of a real city can be impractical. We develop an
algorithm capable of finding suboptimal solutions in time O(kmn), where k is the number
of buses, m is the number of bus stops in the longest path of buses, and n is the number of
bus stops of the city. The algorithm calculates a cost to the delay for removing each bus
stop and removes the most expensive one. This procedure is repeated until the number of
remaining bus stops obeys the budget. We use 30 artificial datasets with a known optimal
solution and show that our algorithm, in every case, finds a solution that is no more than
10% distant from the optimal solution.

We collect a dataset with the GPS positions of 6,683 buses of Rio de Janeiro for
24 h and the positions of its 6,272 bus stops. We filter the dataset for inconsistencies, such
as coordinates outside of Rio de Janeiro. We also eliminate from the dataset buses that
have delays considered too big to serve the network. In the sequence, we run the algo-
rithm for different budgets. Figure 2 illustrates the network delay we obtain for different
budgets. In this case, we eliminate from the dataset all the buses that have at least one
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Figure 4. Coverage of the central
region of Rio de Janeiro for
different smart city applica-
tions.

delay bigger than 7,200 s in their paths (5,429 buses remaining). We present results for
other filter values in the thesis [Cruz 2020].

We can use the solutions of our suboptimal algorithm to reduce the cardinality
of the p-center problem. The reduction allows us to find optimal solutions to bigger
instances of the problem. We do this by eliminating from the formulation all the delays
that are bigger than the suboptimal maximum delay. In practice, this means eliminating
from the graph all the edges that are heavier than the suboptimal value. We collect 24 h
of GPS data from 116 buses and the coordinates of 744 bus stops of the South Zone of
Rio de Janeiro. This dataset, when transformed into a p-center problem, generates a set
of 1,122,629,838 edges. After we run the suboptimal algorithm for a budget of 120 bus
stops, the number of edges is 393,157. The runs of the suboptimal algorithm take less than
3 s each. Since we directly use real data, our method considers all the traffic conditions
within the dataset. Table 2 shows the delays and the execution times for different budgets.

5. Coverage of Bus-based MWSNs

The coverage is an important metric for a sensor network, indicating which regions a
certain application can serve. We propose a simple coverage metric and then enrich this
metric to consider the delays and the measurement frequency of each region.

Buses travel through the city and collect data about the streets they visit. A com-
mon representation of the street map of a city is a graph, in which vertices are points of
interest (an intersection, for instance) and an edge between two vertices is a street that
directly connects these two points. We call each edge a street segment. We then associate
to each edge a weight, representing the size of the street segment. We define that a street
segment e is covered if and only if any bus passes through e. We then define the coverage
of a street as the sum of the weights of all covered street segments.

It is possible that budget restrictions exist, and thus not every bus will receive a
piece of sensing equipment. Given this assumption, we formulate a problem that maxi-
mizes the coverage for a limited number of buses. We show that this problem is equiv-
alent to the Maximal Coverage Location Problem [Church and Velle 1974]. We collect
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Figure 6. Temperature difference
between measurements ob-
tained inside and outside an
acrylic case.

a dataset containing 5,496,878 GPS coordinates from 6,075 buses of Rio de Janeiro and
enrich this dataset to reconstruct the routes of the buses in terms of street sections. We
then instantiate the optimization problem to these buses, for different budgets. We show
that 1,024 buses, or approximately 18% of the bus fleet, can cover at least 94% of the
streets served by buses (which is about 50% of the total streets of the city).

5.1. A delay-aware coverage metric
The metric we propose in Section 5 is well suited for applications very tolerant to delays
and low measurement frequencies. Nevertheless, some smart city applications have hard
constraints on these requirements, as we show in Table 1. Hence, we also develop another
metric, that takes into account the constraints of maximum delivery delay and minimum
measurement frequency.

We consider that a street is visited once if a bus with sensing equipment passes
through this street section and makes contact with a fog node before the maximum de-
livery delay of the targeted application. Then we say that this street section is covered if
and only if it is visited with at least the minimum measurement frequency of the targeted
application. The total coverage is the sum of the lengths of covered street sections, nor-
malized by the sum of the lengths of all the street sections. Note that this coverage metric
is application-specific.

We collect 29,155,221 GPS positions of 5,706 buses and enrich this dataset to re-
construct the routes of the buses in terms of street segments, but also to detect contacts
between buses and bus stops. We then build an abacus, relating the coverage to the min-
imum measurement frequency, for different values of maximum delivery delay. Figure 3
illustrates this abacus. To understand the geographic coverage distribution, Figure 4 illus-
trates the coverage map of the targeted applications in the city center of Rio de Janeiro.

5.2. Bus coverage contribution
We also propose a metric for the coverage contribution of each bus. This metric consists
of the parcel of coverage lost when the bus is not participating in the sensing tasks. We
use the real data from Rio de Janeiro to rank the buses, for each application. Figure 5



shows the contribution of each bus for the applications in Table 1, as a function of the
average contribution, obtained for the three applications. We also compare the rankings
two by two, showing the low correlation between coverage contribution for two different
applications, with a Kendall coefficient of 0.21 or less in every case. This shows that the
contribution of each bus is highly correlated to the application the MSWN serves.

Understanding the delay-aware coverage metric and the bus coverage contribution
is important to develop better bus-based MWSN’s. Stakeholders can use the delay-aware
coverage metric to understand the utility of the envisioned MWSN, while the bus coverage
contribution can help deciding the participating buses and maintenance schedules.

6. Prototype of SensingBus Nodes
We develop and evaluate a prototype for the different nodes types of SensingBus, as a
proof-of-concept. SensingBus uses the three-tier architecture mentioned in Section 1.

To develop a sensing node, we use an Arduino UNO, together with an ESP8266,
a GPS and memory shield, and a sensor bank with temperature, light intensity, rain inten-
sity, and barometric pressure sensors. We write software on Arduino to read the sensors
and store data in the memory. We rewrite the ESP8266 firmware to connect to fog nodes
and send the stored data. The equipment is protected by a case made of transparent
acrylic. We perform tests to access the adequacy of the measurements under the presence
of mobility and also to access the effect of the case. Figure 6 illustrates the difference
in the temperature measured by a sensor inside the acrylic case and a sensor outside the
acrylic case. This shows that casing can affect very precise measurements.

We also develop a fog node, capable of receiving data from the sensing node, pre-
processing data, and sending it to the cloud. The pre-processing consists of checking for
common inconsistencies and compressing data. The fog node is a Raspberry Pi model
B with a WiFi dongle. Figure 7 shows a test setup with 20 sensing nodes and one fog
node. In Figure 8, we can observe that the fog node can serve up to 20 sensing nodes
without exhausting its memory and CPU resources. It is worth noting that the average
throughput growth is not linear. This means that the throughput obtained by each sensing
node drops as the number of sensing nodes increases, as a consequence of competition
for the transmission medium.

7. Impact
We list below the published results of this thesis. They were granted two conference
awards. If applicable, the publications are accompanied by acronyms: “QCC” and
“QEIV” stand for the publication Qualis 2013-16 under “Ciência da Computação” or
“Engenharias IV”, whereas “IF” denotes its JCR’2019 impact factor:

1. Cruz, P., Pinto Neto, J. B., Campista, M. E. M., and Costa, L. H. M. K. “On the Accuracy of Data
Sensing In the Presence of Mobility.” In Int. Conference on Network of the Future, Nov. 2016.

2. Cruz, P., Couto, R. S., and Costa, L. H. M. K. “Um Algoritmo de Posicionamento de Pontos
de Coleta para uma Rede de Sensores Baseada em Ônibus Urbanos.” In Simpósio Brasileiro de
Redes de Computadores e Sistemas Distribuı́dos, May 2017. QCC: B2. – Awarded honorable
mention.

3. Cruz, P., Silva, F. F., Pacheco, R. G., Couto, R. S., Velloso, P. B., Campista, M. E. M., and Costa,
L. H. M. K. “SensingBus: um Sistema de Sensoriamento Baseado em Ônibus Urbanos.” In Salão
de Ferramentas do Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuı́dos,
May 2017. QCC: B2. – Awarded best demo paper.



Figure 7. Testbed with 20 sens-
ing nodes and partial view
of the fog node (inside the
red circle).
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Figure 8. Resources usage and
throughput in the fog node
as a function of the number
of devices.

4. Cruz, P., Couto, R. S., and Costa, L. H. M. K. “An algorithm for sink positioning in bus-assisted
smart city sensing.” In Future Generation Computer Systems, pp. 761-769, Oct. 2017. QCC:
A2 ; QEIV: B1 IF: 6.125.
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de Pesquisa Operacional, Aug. 2018.
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of Bus-Based Mobile Sensing.” In Sensors, pp. 1-12, Jun. 2018. QCC: A1; QEIV: A1. IF: 3.031.

9. Cruz, P., Couto, R. S., Costa, L. H. M. K., Fladenmuller, A., and Amorim, M. D. “A delay-aware
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In the context of this thesis, we have also coauthored two publications as a result
of the contribution to the work led by other colleagues of the lab:

1. Couto, R. S., Barreto, H. F. S. S. M., Cruz, P., Silva, F. F., Sciamarella, T., Campista, M. E. M.,
Costa, L. H. M. K, and Rubinstein, M. G. “Building an IaaS cloud with droplets: a collaborative
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3. Silva, F. D. de M., Cruz, P., Couto, R. S., and Costa, L. H. M. K. “Redução de Inconsistências
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The software of the SensingBus prototype is registered with the INPI (Instituto
Nacional da Propriedade Industrial - Brazilian Institute of Industrial Property), under the
number BR512019002626-8.
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