
A Heuristic Algorithm for Minimizing Server Maintenance
Time and Vulnerability Surface on Data Centers
Paulo Silas Severo de Souza1, Tiago Coelho Ferreto (Advisor)1

1Pontifical Catholic University of Rio Grande do Sul (PUCRS)
Ipiranga Avenue, 6681 - Building 32 – Porto Alegre – RS – Brazil

Abstract. As cyberattacks against the cloud become more frequent, operators
must define efficient maintenance strategies to safeguard data centers. Exist-
ing maintenance strategies strive to minimize the maintenance duration and the
number of migrations. However, such solutions overlook the period that servers
wait for their update, which represents a vulnerability window that attackers
can exploit. Accordingly, this study introduces a novel metric, Vulnerability
Surface, which assesses maintenance strategies regarding servers’ exposure. In
addition, we present Salus, a heuristic that minimizes servers’ exposure during
maintenance. Experimental results show that Salus reduces the Vulnerability
Surface by 19.44% compared to baseline strategies.

1. Introduction
With the rise of cloud computing, customers can access computing resources from any-
where through the Internet without any commitment to physical infrastructure. In ad-
dition, Service Level Agreements (SLAs) guarantee that a minimum level of service is
maintained [1]. As a result, cloud operators must regularly perform corrective mainte-
nance to ensure cloud infrastructure can deliver the expected performance.

Unlike routine maintenance that usually does not require a strict completion dead-
line, safeguarding the cloud against security vulnerabilities usually means that patching
must be applied promptly to mitigate the chances of attack propagation across the data
center. In such a scenario, defining which servers to update and how to do so determine
the effectiveness of maintenance strategies.

Previous research concentrates on minimizing the maintenance duration and num-
ber of migrations. Throughout this study, we demonstrate that such a strategy does not
ensure maintenance effectiveness on safeguarding servers against threats. Therefore, we
introduce the concept of Vulnerability Surface, which aids cloud operators in evaluating
the effectiveness of maintenance strategies on minimizing security breaches. We also
present Salus, a heuristic that reduces servers during maintenance. In summary, this work
makes the following contributions:

• We introduce the Vulnerability Surface, a novel metric that effectively represents
how long maintenance strategies expose servers to attackers.

• We present Salus, a heuristic algorithm that safeguard servers 19.44% faster than
other solutions during data center maintenance.
The remainder of this study is organized as follows. Section 2 gives an overview of

maintenance in cloud data centers. Section 3 shows how we formulate the maintenance
problem. Sections 4 and 5 describe the Vulnerability Surface metric and our heuristic
algorithm for performing maintenance in cloud data centers. Section 6 presents the per-
formance evaluation we conducted to validate our proposal. Finally, Section 7 concludes
the document.



2. Maintenance in Cloud Data Centers
Providing guarantees such as high performance and security constitutes the core DNA
of cloud computing, wherein organizations do not have to invest in their own infrastruc-
ture [1]. In such a scenario, cloud equipment must regularly undergo maintenance to
ensure the quality of service meets the high standards promised on the SLAs and applica-
tions stay safeguarded against potential threats.

Security experts fight against threats like Distributed Denial of Service (DDoS)
since the 90s developing solutions to protect the cloud [2]. However, recent waves of
attacks caught the security community’s attention. For instance, major cloud providers
like Amazon Web Services1 and Microsoft Azure2 reported that some of their users could
experience downtime and bottleneck due to maintenance performed in haste to safeguard
their infrastructure against speculative execution attacks [3] [4].

Previous research on data center maintenance concentrates on different goals. Ay-
oub et al. [5] present heuristics for evacuating data centers threatened by natural disasters
while minimizing application downtime and network occupation. Ying et al. [6] introduce
Raven, a migration scheduler that shortens the maintenance time in data centers. Wang
et al. [7] propose heuristics for reducing maintenance batches necessary to update data
centers under strict regulatory rules. Yazidi et al. [8] strive to minimize network satura-
tion and QoS degradation during maintenance by considering inter-VM communication.
Despite their contributions, these investigations overlook servers’ exposure against cyber-
attacks.

3. Problem Formulation
This section describes how we model the maintenance process in cloud data centers. For
convenience, Table 1 describes the symbols used henceforth. The cloud data center main-
tenance process is divided in a set of iterations U. Each maintenance iteration Ui ∈ U may
comprise two operations: (i) server patching and (ii) VM migrations. In such a scenario,
we represent a set of n servers denoted as S← {S1, S2, ..., Sn}. The capacity of a server
Sj is given by a vector Cj ← (CPU,Memory,Disk).

The set of m VMs accommodated in the servers ∈ S is represented by
V ← {V1, V2, ..., Vm}. The demand of a VM Vk is denoted by a vector Dk ←
(CPU,Memory,Disk). The placement of VMs on servers at each maintenance iter-
ation Ui ∈ U is represented by a U× S× V matrix xi,j,k ∈ {0, 1} that gets 1 if server Sj
hosts VM Vk at maintenance iteration Ui and 0 otherwise.

We assume that servers hosting VMs cannot be updated. Therefore, we need to
relocate all VMs from a server before it undergoes maintenance. For conciseness, from
now on, we use “drained” to denote servers hosting no VMs.

The update status of a server Sj ∈ S at Ui is given by wi,j ∈ {0, 1}. We assume
that

∑n
j=1w1,j = 0 in the beginning of iteration U1, which means that all servers must

undergo maintenance to get security patches P ← {P1, P2, ..., Pn}. Updating Sj with its
patch Pj takes ϕj units of time. Once a patch Pj is applied, a set of sanity check tasks
Gj is executed ∈ G to verify the system integrity. Running Gj takes κj units of time.
Therefore, updating Sj takes ϕj + κj units of time.

1https://aws.amazon.com/pt/security/security-bulletins/AWS-2018-013/
2https://azure.microsoft.com/blog/securing-azure-customers-from-cpu-vulnerability/



Table 1. Notation used in this paper.

Symbol Description
n Number of servers
S Set of servers
Cj Capacity vector of a server Sj

m Number of virtual machines
V Set of virtual machines
Dk Demand vector of a virtual machine Vk
U Set of maintenance iterations

xi,j,k Binary matrix that indicates whether Sj hosts Vk at iteration i or not
wi,j Update status of server Sj at maintenance iteration Ui

P Set of patches that must be applied to the servers
ϕj Amount of time needed to apply a patch Pj

G Set of sanity check tests used to verify the integrity of patches ∈ P
κj Amount of time needed to run a set of sanity check tests Gj

µk Amount of time needed to save the state of Vk
νk Amount of time needed to restore the state of Vk
ϑ Network bandwidth available for migrations
εi Duration of maintenance iteration Ui

∂i,j Update cost of Sj

For relocating VMs, we consider a cold migration scheme [9]. Equation 1 denotes
$k, which represents the migration time of a VM Vk. To migrate Vk, first its state is
stored in the origin server. This process takes µk ∈ N+ units of time. Then, the VM
state is transferred throughout the network to the destination server. The duration of
this process depends on the VM size (more specifically, Dk,Memory and Dk,Disk) and the
network bandwidth ϑ. Lastly, the VM state is restored in the destination server. Such a
process takes νk ∈ N+ units of time.

$k ← µk +
Dk,Memory +Dk,Disk

ϑ
+ νk (1)

At the beginning of each maintenance iteration Ui ∈ U, all drained servers simul-
taneously undergo maintenance to receive their patches. Then, VM migrations take place,
draining servers to patch them in the next iteration, Ui+1. Accordingly, the duration of Ui
is given by εi, denoted in Equation 2.

εi ←

Server Patching︷ ︸︸ ︷
max

({
ϕj + κj |j ∈ N+ 6 n ∧ |wi,j − wi−1,j | = 1

})
+

VM Migrations︷ ︸︸ ︷
n∑

j=1

m∑
k=1

$k · |xi−1,j,k − xi,j,k| (2)

4. Vulnerability Surface Metric
Existing studies show that reducing the number of migrations and the maintenance dura-
tion somehow optimizes the maintenance process. However, these metrics overlook that
some actions can be either right or wrong based on when they are taken. Consequently,
these metrics do not account for inappropriate decisions such as precipitated migrations
that may delay server updates.

Accordingly, we present the concept of Vulnerability Surface (VS), which com-
putes servers’ exposure during maintenance. At the end of each maintenance iteration,
Ui ∈ U, VS accounts for the elapsed maintenance time (given by

∑i
q=1 εq) and the number

of vulnerable servers (given by
∑n

j=1wi,j). Therefore, the overall VS of a maintenance
strategy is given by

∑|U|
i=1

∑i
q=1 εq ×

∑n
j=1wi,j .



To illustrate how VS assesses server exposure, we present a sample maintenance
scenario in Figure 1. In such an example, two strategies (S1 and S2) keep servers vulner-
able for different periods despite taking the same amount of time to complete the main-
tenance and performing the same number of migrations. Unlike the existing metrics, VS
catches that difference and gives S1 a better (lower) score. For simplicity purposes, in
this example, VM migrations take 10 + VM size units of time, and server updates take
60 units of time.
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Figure 1. Sample maintenance scenario that demonstrates how the number of
migrations and maintenance duration conceals ineffective decisions.

5. Proposed Heuristic for Server Maintenance
This section presents Salus, our proposed heuristic for updating cloud servers in critical
security scenarios. At first, Salus patches all non-updated servers that are not hosting
VMs in the data center (Algorithm 1, lines 2–5). Then, it starts migrating VMs to drain
out the remaining non-updated servers (Algorithm 1, lines 6–22).

Salus decides if each server Sj is getting drained at an iteration Ui based on a cost
function ∂i,j (denoted in Equation 6), prioritizing servers with larger capacity (Equation 3)
and those it can drain out (Equation 4) and update (Equation 5) within a shorter interval.
Thus, maintenance iterations get shortened, and each time step is used to drain out servers
that could host more VMs in upcoming iterations.

f← 1
3
√
Cj,cpu · Cj,memory · Cj,disk + 1

(3)

℘←
m∑

k = 1

(
µk +

Dk,memory +Dk,disk

ϑ
+ νk

)
· xi,j,k (4)

~← ϕj + κj (5)

∂i,j ← (f× (℘+ ~))
1
2 (6)



Algorithm 1: Salus Maintenance Algorithm.
1 while there are servers to be updated do
2 E← Set of servers ∈ S ready to receive their patches
3 foreach server Sj ∈ E do
4 Patch Sj with Pj and run sanity check Gj

5 end
6 M← Non-updated servers sorted by ascending ∂
7 A← {}
8 foreach server Sj ∈ M do
9 H← VMs hosted by Sj sorted by descending demand

10 W← S− {A ∪ Sj}
11 if Servers ∈W can host all VMs hosted by Sj then
12 foreach Vk ∈ H do
13 Sort servers ∈W by update status and demand
14 foreach server Sl ∈W do
15 if Sl has resources to host Vk then
16 Migrate Vk to Sl

17 break
18 end
19 end
20 A← A ∪ Sj

21 end
22 end
23 end
24 end

Before performing any migration from a given server Sj , Salus checks if the other
servers can accommodate all the VMs Sj hosts. In that way, it avoids migrating VMs from
servers that will not get drained in the current maintenance iteration. Consequently, Salus
manages to shorten maintenance iterations, which leads to servers getting safeguarded
earlier.

While migrating VMs, Salus sorts VMs in decreasing order by their demand (Al-
gorithm 1, Line 9). Then, it populates W with the list of candidate hosts for each VM
(Algorithm 1, Line 12) based on their update status (prioritizing updated servers) and oc-
cupation rate (servers with higher occupation get preference). Such a decision brings two
benefits: (i) it avoids unnecessary migrations in the long term, as VMs migrated to non-
updated servers will be migrated at least one more time during the maintenance, whenever
its new host gets drained to receive the patch; (ii) it allows better packing of VMs.

6. Performance Evaluation
We evaluate Salus against three baseline heuristics named First-Fit-like, Best-Fit-like,
and Worst-Fit-like in three simulated data center scenarios with different occupation rates
(25%, 50%, 75%). All experiment assets can be found in a public GitHub repository3.

The data center network comprises a Fat-Tree network topology with links con-
taining a bandwidth of 1 Gbit/s. We do not allow simultaneous migrations to ensure the
QoS for the applications not being migrated.

We consider three capacity and demand configurations for the servers and the VMs
(Table 2), assined based on an uniform distribution. We define the initial VM placement
using a Random-Fit heuristic. We update servers with three patch types with lengths =
[300, 900, 2700]. Each patch type has a sanity check duration = [600, 1800, 5400]. We
assign these patch configurations to the servers using an uniform distribution.

3https://github.com/GRIN-PUCRS/cloud-simulator



Table 2. Server and virtual machine configurations used during the evaluation.

Configuration Servers Virtual Machines
CPU Memory Disk CPU Memory Disk

Small 4 4 32 1 1 8
Medium 8 8 64 2 2 16
Large 16 16 128 4 4 32

6.1. Low Occupation Scenario
Figure 2 presents the results of the second scenario. In this scenario, the decision-making
necessary to safeguard servers as early as possible is quite simple, and the First-Fit-like
heuristic is capable of updating all servers as fast as Salus, performing just 99 migrations
(1 migration per VM). On the other hand, Best-Fit-Like and Worst-Fit-like were seriously
penalized by migrating several VMs to non-updated servers.
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(c) Vulnerability Surface

Figure 2. Experiment results for the low occupation scenario.

6.2. Medium Occupation Scenario
Figure 3 presents the results of the second scenario. Salus achieved the best results in this
scenario by draining the servers that demand shorter patch and migration time. Besides,
it focuses on migrating VMs to updated servers. Consequently, Salus manages to patch
62 out of the 128 servers 40% faster than the other heuristics while performing only half
of the migrations.

� � � � �

� � � � � �
� � � � � � � � � � � �

� � � � � � 
 � � � � � 
 � � � 
 � 	 �  � � � � � 
 � � � 
 � 	 � 	 � � � � 
 � � � 
 � 	
�

� � � � �

� � � � �

� � � � �

� � � � � �

� � � � � �

�
��

��
��

��
��

��
�


��
�	

�

� � � 	 � � 	 � 	 � � � � � 
 � � � � �

(a) Maintenance Duration

� � �

� � �

� � � � � �

� � � � � � 
 � � � � � 
 � � � 
 � 	 �  � � � � � 
 � � � 
 � 	 � 	 � � � � 
 � � � 
 � 	
�

� � �

� � �

� � �

� � �

�
��

��
	��

��

� � � 	 � � 	 � 	 � � � � � 
 � � � � �

(b) VM Migrations

� � � � 	 � � �

� � � � 	 � � �

� � � � 	 � � � � � � � 	 � � �

� � � � � � 
 � � � � � 
 � � � 
 � 	 �  � � � � � 
 � � � 
 � 	 � 	 � � � � 
 � � � 
 � 	
� � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

��

�

��
��

	
	
�

��
��

��
��

� � � 	 � � 	 � 	 � � � � � 
 � � � � �
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Figure 3. Experiment results for the medium occupation scenario.

6.3. High Occupation Scenario
Figure 4 presents the results of the second scenario. Here, Salus manages to safeguard
half of the data center 31% faster than the other heuristics by performing two critical
decisions. Firstly, it prioritizes the servers it can drain and patch within a shorter period,
shortening maintenance iterations. Secondly, it focuses on updating servers with larger
capacity, as they can host more VMs in upcoming maintenance iterations after receiving
their patches.
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Figure 4. Experiment results for the high occupation scenario.

7. Conclusions and Achievements
This study demonstrates that current maintenance strategies neglect the period that servers
remain exposed to cyberattacks during server maintenance. Accordingly, we introduce
a novel metric, called Vulnerability Surface, for assessing server exposure during data
center maintenance. In addition, we present a heuristic algorithm designed to safeguard
servers as early as possible during maintenance. A paper describing our contributions is
under review by the Journal of Parallel and Distributed Computing. During the develop-
ment of this study, we also contributed to the community with the following publications:

• Performance-Aware Energy-Efficient Processes Grouping for Embedded
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• Evaluating container-based virtualization overhead on the general-purpose
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Wagner Marques, Paulo Souza, Fábio Rossi, Guilherme Rodrigues, Rodrigo Cal-
heiros, Marcelo Conterato, Tiago Ferreto.
IEEE Symposium on Computers and Communications (ISCC), 2018.

• IAGREE: Infrastructure-agnostic Resilience Benchmark Tool for Cloud Na-
tive Platforms
Paulo Souza, Wagner Marques, Rômulo Reis, Tiago Ferreto.
International Conference on Cloud Computing and Services Science (CLOSER),
2019.

• The Impact of Parallel Programming Interfaces on the Aging of a Multicore
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IEEE International Symposium on Circuits and Systems (ISCAS), 2019.
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