
Consistent Composition of Data Plane Programs
Ricardo Parizotto

Advisor: Alberto Schaeffer-Filho

1Instituto de Informática
Universidade Federal do Rio Grande do Sul (UFRGS)

Porto Alegre – RS – Brazil

{rparizotto, alberto}@inf.ufrgs.br

Abstract. Programmable Data Planes (PDP) enable more flexibility in the op-
eration of networks. To fully reap the benefits of programmability, it should be
feasible to compose and operate multiple PDP functions into a single target
switch as needed. However, existing techniques are not suitable because they
lack abstractions for steering packets through the control flows. As such, they
do not support the modular composition of PDP programs. This work summa-
rizes the thesis called “Consistent Code Composition and Modular Data Plane
Programming” that proposes PRIME, a composition mechanism of in-network
functions that also addresses the fundamental needs of packet steering between
PDP program modules. We present a design of PRIME, along with use cases.
The results show that it is possible to achieve module-wide compositions at little
additional cost in throughput.

Resumo. Plano de Dados Programáveis (PDP) permitem maior flexibilidade
ao operar redes de computadores. Nós argumentamos que, para obter todos os
benefı́cios da programabilidade, deve ser viável compor e operar várias funções
em um único switch. No entanto, as técnicas existentes não são adequadas pois
carecem de abstrações para o direcionamento de pacotes através das funcional-
idades compostas. Portanto, elas não suportam a composição modular de pro-
gramas para o PDP. Este trabalho sumariza a dissertação chamada “Consis-
tent Code Composition and Modular Data Plane Programming” que propõe o
PRIME, um mecanismo de composição de funções na rede que também aborda
as necessidades fundamentais de direcionamento de pacotes entre módulos. Ap-
resentamos o design do PRIME, juntamente com casos de uso. Os resultados
mostram que é possı́vel obter composições de módulos com pouco custo adi-
cional em termos de vazão.

1. Introduction
Software-based paradigms for networking enable decoupling software solutions from the
hardware they execute, making the management and operation of the network infras-
tructure more flexible and adaptive. Software-Defined Networking (SDN) promotes the
separation of the control logic from the forwarding behavior of network devices. More
recently, Programmable Data Planes (PDP) offer more flexibility in developing protocols
and network functionality while allowing packet processing at the line rate. This moti-
vated many emerging applications to bring part of the processing back to the data plane
to achieve economies of scale and lower operating costs. As such, operators can leverage



programmable hardware to, for instance, process or analyze data, thereby enabling faster
reactions in contrast to packet mirroring to middleboxes or controller-based applications.

1.1. Problem Statement
Rather than writing monolithic functions, it should be straightforward for PDP soft-
ware to be shared and composed into switches as needed. However, existing languages
for data plane programming do not support modular development. P4 (“Programming
Protocol-independent Packet Processors”) [Bosshart et al. 2014], one of the most popu-
lar languages for PDPs, requires developers to perform extensive modifications into the
function source code to deploy it on existing applications. For instance, if a network op-
erator wants to install a new program in a switch that is already running a P4 program,
both programs would require modifications. As a result, researchers have responded with
composition approaches that can allocate multiple PDP functions into the same physi-
cal target [Hancock and van der Merwe 2016]. The composition typically refers to code
merging techniques or virtualization techniques, which can be utilized as a programming
model or for the automation of development. Hence, composition tries to avoid rewriting
code from different functions manually and maintains the system semantics.

Unfortunately, while composing multiple functions may promote better usage of
network resources, the management becomes more complex and error-prone. Current ef-
forts to compose various programs in a single target switch make use of an excessive num-
ber of flow tables and parser states [Hancock and van der Merwe 2016, Zhang et al. 2017,
Zheng et al. 2018]. Consequently, these techniques can severely limit throughput and in-
crease latency in general-purpose hardware or do not fit in specialized hardware, such as
NetFPGAs or ASICs. Moreover, state-of-the-art techniques do not suffice to provide tran-
sitional consistency between steering configurations. Without transitional consistency,
changes in the steering of flows through the program modules can create intermediary
states, which may cause misrouting and security holes [Reitblatt et al. 2012]. Thus, new
techniques are required to allow new applications to be composed, preserving transitional
packet consistency of traffic steering, without degrading the performance of the data plane
operation.

1.2. Research Goals
Composition of Programs: We need to provide a data plane composition mechanism,
allowing operators to use the mechanism in different scenarios. The composition must
allow different data plane programs to share the same switch resources, promoting better
resource usage than monolithic functions on sequences of separate switches. The pro-
cess of sharing resources must provide intuitions about source code merging to improve
resource utilization.

Figure 1. Switch state transition

Steering Definition: Composing multiple P4 programs into devices brings to-
gether the necessity of abstractions to steer flows through the composed modules. This,



in turn, creates new difficulties for the network operation. We must provide ways to steer
packets internally between composed programs. The steering configuration must be easy
to manage and semantically coherent with the policy specified by the network operator
[Han et al. 2015], i.e., we must support dynamic steering of internal functions avoiding
that each update creates state configurations with intermediary states. For example, Fig-
ure 1 presents two different states of traffic steering. In the example, network state i steers
Flow 1 packets through programs (E1, E3) and Flow 0 through programs (E2, E3), re-
spectively. For some reason, it might be desirable to achieve a transition between the state
configuration i to state i′, in which (E1, E2) process Flow 1. However, this change of
configuration is error-prone and can create undesirable intermediary states, i.e., a packet
may see part of state i and part of state i’. In the example, an intermediary state can
be created by performing the update of E1 before updating E2, leading a new packet to
reach E2 without having the proper instructions to process it.

1.3. Summary of Contributions

The main contributions of this thesis [Parizotto 2020] can be summarized as follows: (i)
We design a system for the composition of data plane programs, called PRIME, which
also deals with consistent updates of the steering configuration; (ii) We implement a case
study based on the V1Model architecture of our system and evaluate its performance
using the behavior model (BMv2) software switch also comparing with a state-of-the-
art approach. Our results demonstrate that it is possible to compose multiple data plane
programs at a single switch without imposing significant overhead for packet processing.

2. PRIME: Programming In-network Modular Extensions

Figure 2 presents the high-level architecture of PRIME. Firstly, network operators write
separated and independent programs, running independently from each other (Figure 2,
Step 1). Secondly, the source code of multiple programs is merged into a host program
(Figure 2, Step 2), which provides primitives to steer packets through them. The compo-
sition performs an analysis of the packet parsers and control flows to ensure the program
will operate with no loops or ambiguous states. If the merged code passes this analysis,
the new program is deployed on the switch (Figure 2, Step 3). Network operators may
define which sequences of programs will process a flow dynamically by using a steering
interface. The interface updates the switch state to multiplex packets to a specific set
of program modules (functions) (Figure 2, Step 4). Specifically, the steering interface
produces switch table entries and installs them on the switch (Figure 2, Step 5).

2.1. Programming the PDP

The composition engine is responsible for merging smaller modules into a special pro-
gram called the host program. The first phase of the composition combines the parser
from different modules to the host program parser. This process combines states with
the same name and structure and performs the union of transitions. Next, the parser goes
through an analysis phase, which identifies conflicts between different parsers. If the
parser does not pass this analysis, PRIME triggers a warning. Otherwise, we can merge
the resulting parser into the host program. The new deparser will operate by emitting the
headers in an order consistent with the order that the parser instantiated them.



Figure 2. High-Level Architec-
ture of PRIME.

Figure 3. Traffic steering
through program mod-
ules

After composing parsers and deparsers, we compose the program control flows.
Control flows of P4 programs include definitions of match+action tables, stateful regis-
ters, and apply blocks. Composing different programs may create conflicts between the
definitions of control flow variables. As a consequence, a program could write variables
of other composed programs and potentially create conflicting operations. To avoid these
conflicts, PRIME identifies equivalent definitions of variables and isolates them by solv-
ing ambiguities between their ID and their invocation inside the apply block. This process
prevents operations over the variables of a program from affecting the state of another pro-
gram. After solving these conflicts, we can finally place the program source code into the
host program structure and deploy the composition into the switch. Further, an additional
table, called the steering table, can steer packets for a specific order of modules.

2.2. Consistent Steering between Programs

In an update transition, the switch forwarding is updated to a new behavior for a specific
flow. We represent an update as a partial function from local packets to a list of pro-
grams. To apply an update, PRIME then translates the code to the tuple of parameters
of the steering table. When an incoming packet matches the table, an action that we call
‘catalog’ loads the parameters supplied by the administrator to the internal state. Subse-
quently, these user-supplied parameters will be stored as packet metadata and used by the
host program to determine the order in which program modules are processed.

Figure 3 presents an example of how the steering table can map flows to sequences
of programs. In the example, packets that match 10.0.*.* are mapped to be processed
by programs P3, P1 and P2 respectively. For this, after matching the table, the catalog
points to the ingress control flow of P3 and follows to its egress. Next, the packet recircu-
lates and follows to P1 ingress and egress. Finally, the packet recirculates a third time to
P2. It is important to note that the same data plane structure supports the execution in a
different order if the network administrator wishes.

3. Experimental Evaluation
To validate the feasibility of PRIME, we composed existing P4 programs with our host
program and deployed on the behavioral model (BMv2). We performed ten thousand



requests for each composition and gathered switch timestamps to calculate the latency, as
in [Dang et al. 2017]. Since this set of experiments focus on analyzing the composition of
programs in a single switch, we configured a topology consisting of two hosts connected
to a single switch. We traversed a synthetic workload that triggered packets in an interval
of 1sec from one host to another. The experiments were performed on a Linux virtual
machine with 2 CPU cores at 2.00GHz and 2GB of RAM.

Figure 4. Latency

Figure 5. P4Visor vs PRIME:
Throughput

We make use of a monitoring mechanism [Castanheira et al. 2019], a telemetry
system [Kim et al. 2015], and the Paxos coordinator [Dang et al. 2020]. We compose
these programs with a host program and compare the latency with the original version.
Figure 4 presents the latency that each composition imposes in the data plane. Latency
increases compared to the original monolithic version. For example, when PRIME steers
packets through the coordinator, the average latency is nearly 200 µs higher than the
original program. The same happens with throughput, where the original program reached
nearly 3Mbits/sec more than the composed version. This occurs because the insertion of
additional states to the parser and steering primitives increase CPU consumption. Despite
this small overhead, we argue that this is acceptable because our solution has two main
advantages: first, it allows multiple programs to share the same switch resources; second,
it enables modular compositions, making programming and management easier.

Comparison with the State-of-the-Art: We also compare PRIME with one of the
state-of-the-art approaches, P4Visor [Zheng et al. 2018], to compose programs. P4Visor
is a system which compose two different versions of a program using source code merg-
ing. Specifically, we utilized the Differential testing Operator of P4Visor to compose
programs. We could not build the case studies we presented earlier because P4Visor does
not currently support the composition of more than two programs. Thus we show two
simple scenarios: a production version of a router with a testing version of the same
program, and LetFlow with the simple router program.

Similarly to PRIME, P4Visor composes programs into a P4 base program which
has control structures to steer packets internally. In this section, we show how both host
programs impact on the latency of packets. Since every composition will be merged to the
host, the latency of the host will always sum to the latency of compositions. To compare
P4Visor with our program, we had to translate the P4Visor base program to P4v16. The
translation was required to support the same measurement methodology to both systems.
We performed an experiment that traversed a thousand packets through the programs with
no table entries, i.e., we only assessed the standard host program forwarding structure
during the experiment. Figure 5 presents the throughput of both base programs. P4Visor
achieves 8 Mbits/sec, while PRIME achieves about 11 Mbits/sec.



4. Related Work
HyPer4 [Hancock and van der Merwe 2016] composes data plane programs at a single
switch using a virtualization solution. More specifically, the system uses a special P4
program that can emulate many distinct behaviors through its table entries. Each compo-
sition populates these tables to emulate the original program without rebooting the switch.
However, this strategy negatively impacts the performance of the original program with
all the overhead of the additional table entries that perform the emulation.

P4Visor [Zheng et al. 2018] proposed the idea of lightweight virtualization of pro-
grammable data planes. The system provides multiple operators with different semantics
to compose programs to a host program. It performs several optimizations during the
merging to reduce the resource consumption of control flows and preserve program iso-
lation. Although techniques to optimize the number of tables between modules (or func-
tions) help reduce resource consumption, P4visor still uses eight tables. Besides that,
P4Visor is conceptually designed for merging a test version to a production version of a
program. Consequently, it supports only two compositions at a time and requires modifi-
cations to the traffic control to allow more functions to be composed.

Dejavu [Wu et al. 2019] proposes the use of switch hardware for Service Function
Chaining (SFC). The system uses a customized header to index network functions (NFs)
and uses recirculation for packets to go through multiple functions. As recirculating pack-
ets can generate a higher overhead on packet processing, Dejavu programs can divide the
same ingress or egress using sequential and parallel operators. These operators reduce
recirculations and, consequently, can allow a higher throughput rate. However, Dejavu
is still limited to single switch compositions and would require additional mechanisms to
ensure end-to-end compositions.

In this work, we present a system to compose multiple modular data plane pro-
grams, considering the ability to perform end-to-end updates consistently in a switch
topology. Different from HyPer4 that uses emulation to compose programs dynamically,
we chose to perform compositions in an offline mode and dynamically steer flows, similar
to P4Visor. P4Visor provides two different testing operators, which compose programs
with other constructs to differentiate testing packets from the production version. Un-
like P4Visor, we do not need to differentiate testing packets, which reduces the size of
constructions necessary for composition. We also describe techniques to steer packets
through multiple program compositions, similar to how Dejavu does for chaining func-
tions. Dejavu provides two different composition operators for a single switch, but it does
not address how to update the steering configuration consistently.

5. Conclusions and Future Work
In this thesis, we presented the design and evaluation of PRIME, a mechanism to help
the modular development and composition of P4 programs. PRIME provides techniques
to allow new applications to be composed, preserving transitional packet-consistency of
traffic steering without degrading the performance of the data plane operation. As future
work, we want to perform experiments on real hardware. We also aim to allow dynamic
compositions, without requiring to shutdown the device to make a switch composition.
Further, in addition to the local guarantees addressed in the composed P4 program, we
aim to investigate global path guarantees.



6. Publications
The contributions of this thesis are published (and/or accepted for publication) in the
following national and international conferences and journal:

• Abordagem de composição de programas P4 em redes programáveis. In: XXXVII
Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuı́dos
(SBRC 2019) (Qualis: A4) [Parizotto et al. 2019]

• PRIME: Programming In-Network Modular Extensions. In: 2020 IEEE/IFIP
Network Operations and Management Symposium (NOMS 2020)(Qualis:
A3) [Parizotto et al. 2020a]

• ShadowFS: Speeding-up Data Plane Monitoring and Telemetry using P4. In: 2020
IEEE International Conference on Communications (ICC 2020) (Qualis: A1)
[Parizotto et al. 2020b]

• Consistent Composition and Modular Data Plane Programming. In: IEEE Com-
munications Magazine (Accepted for Publication) (Qualis: A1, Impact Factor:
11.052) [Parizotto et al. 2021]

Moreover, the efforts made during the development of this thesis also contributed
to the following publications:

• Flowstalker: Comprehensive traffic flow monitoring on the data plane using P4.
In: 2019 IEEE International Conference on Communications (ICC 2019)
(Qualis: A1) [Castanheira et al. 2019]

• A Bottom-Up Approach for Extracting Network Intents. In: International Con-
ference on Advanced Information Networking and Applications (AINA 2020)
(Qualis: A2) [Ribeiro et al. 2020]

References
Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger,

C., Talayco, D., Vahdat, A., Varghese, G., and Walker, D. (2014). P4: Program-
ming protocol-independent packet processors. SIGCOMM Comput. Commun. Rev.,
44(3):87–95.

Castanheira, L., Parizotto, R., and Schaeffer-Filho, A. (2019). Flowstalker: Comprehen-
sive traffic flow monitoring on the data plane using p4. In 2019 IEEE International
Conference on Communications (ICC), pages 1–6. IEEE.

Dang, H. T., Bressana, P., Wang, H., Lee, K. S., Zilberman, N., Weatherspoon, H.,
Canini, M., Pedone, F., and Soulé, R. (2020). P4xos: Consensus as a network ser-
vice. IEEE/ACM Transactions on Networking, 28(4):1726–1738.

Dang, H. T., Wang, H., Jepsen, T., Brebner, G., Kim, C., Rexford, J., Soulé, R., and
Weatherspoon, H. (2017). Whippersnapper: A p4 language benchmark suite. In Pro-
ceedings of the Symposium on SDN Research, SOSR ’17, pages 95–101, New York,
NY, USA. ACM.

Han, J. H., Mundkur, P., Rotsos, C., Antichi, G., Dave, N., Moore, A. W., and Neu-
mann, P. G. (2015). Blueswitch: Enabling provably consistent configuration of net-
work switches. In 2015 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), pages 17–27. IEEE.



Hancock, D. and van der Merwe, J. (2016). Hyper4: Using p4 to virtualize the pro-
grammable data plane. In Proceedings of the 12th International on Conference on
Emerging Networking EXperiments and Technologies, CoNEXT ’16, pages 35–49,
New York, NY, USA. ACM.

Kim, C., Sivaraman, A., Katta, N., Bas, A., Dixit, A., and Wobker, L. J. (2015). In-band
network telemetry via programmable dataplanes. In ACM SIGCOMM.

Parizotto, R. (2020). Consistent code composition and modular data plane programming.
Master’s thesis, Universidade Federal do Rio Grande do Sul.

Parizotto, R., Castanheira, L., Bonetti, F., Santos, A., and Schaeffer-Filho, A. (2020a).
Prime: Programming in-network modular extensions. In NOMS 2020 - 2020
IEEE/IFIP Network Operations and Management Symposium, pages 1–9.

Parizotto, R., Castanheira, L., Bonetti, F., Santos, A., and Schaeffer-Filho, A. (2021).
Consistent composition and modular data plane programming. IEEE Communications
Magazine. (To appear).

Parizotto, R., Castanheira, L., Ribeiro, R. H., Zembruzki, L., Jacobs, A. S., Granville,
L. Z., and Schaeffer-Filho, A. (2020b). Shadowfs: Speeding-up data plane monitor-
ing and telemetry using p4. In ICC 2020 - 2020 IEEE International Conference on
Communications (ICC), pages 1–6.

Parizotto, R., Castanheira, L. B., and Schaeffer-Filho, A. E. (2019). Abordagem de
composição de programas p4 em redes programáveis. In Anais do XXXVII Simpósio
Brasileiro de Redes de Computadores e Sistemas Distribuı́dos, pages 1028–1041. SBC.

Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., and Walker, D. (2012). Abstractions
for network update. In Proceedings of the ACM SIGCOMM 2012 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer Communication,
SIGCOMM ’12, pages 323–334, New York, NY, USA. ACM.

Ribeiro, R. H., Jacobs, A. S., Parizotto, R., Zembruzki, L., Schaeffer-Filho, A. E., and
Granville, L. Z. (2020). A bottom-up approach for extracting network intents. In In-
ternational Conference on Advanced Information Networking and Applications, pages
858–870. Springer.

Wu, D., Chen, A., Ng, T. S. E., Wang, G., and Wang, H. (2019). Accelerated service
chaining on a single switch asic. In Proceedings of the 18th ACM Workshop on Hot
Topics in Networks, HotNets ’19, pages 141–149, New York, NY, USA. ACM.

Zhang, C., Bi, J., Zhou, Y., Dogar, A. B., and Wu, J. (2017). Mpvisor: A modular pro-
grammable data plane hypervisor. In Proceedings of the Symposium on SDN Research,
SOSR ’17, pages 179–180, New York, NY, USA. ACM.

Zheng, P., Benson, T., and Hu, C. (2018). P4visor: Lightweight virtualization and com-
position primitives for building and testing modular programs. In Proceedings of the
14th International Conference on Emerging Networking EXperiments and Technolo-
gies, CoNEXT ’18, pages 98–111, New York, NY, USA. ACM.


