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Abstract. In this dissertation, we introduced the Internet of Things Protocol
(IoTP). An L2 communication protocol for IoT programmable data planes that
supports the implementation of data aggregation algorithms inside hardware
switches, at the network level. Through these features, IoTP provides support
for the design of efficient and adaptable aggregation schemes that can adjust
their operation according to network status and based on the different commu-
nication technologies used by IoT devices. We implemented IoTP using the P4
language and conducted emulation-based experiments through Mininet environ-
ment. Our findings show that IoTP accomplishes a 78% improvement in network
efficiency, as well as allowing control over the average delay generated by data
aggregation techniques.

1. Introduction
Network packet aggregation is a frequently used technique in the Internet of Things (IoT).
Such an approach combines several packets with heterogeneous requirements and charac-
teristics into a single packet transmitted to the next network node. By reducing the number
of packets on the network, this aggregation technique, in general, also reduces the devices’
energy consumption, increases the network’s efficiency, and eliminates the packets recur-
ring headers [Akyurek and Rosing 2018]. When performing aggregation, IoT devices that
operate as sink nodes require more computational resources and present a higher energy
consumption than other network nodes [Akyurek and Rosing 2018]. Therefore, hierarchi-
cal (i.e., tree topology) and clustering strategies carry out the aggregation through a set of
interconnected IoT devices [Rahman et al. 2016, Shen et al. 2017, Wissingh et al. 2017],
instead of solely sink nodes. Besides energy constraints, devices’ computational resource
limitations also restrict algorithm execution and aggregation efficiency.

Solutions like the Priority-based Dynamic Data Aggregation scheme (PDDA) face
resource constraint-related problems by adopting multilayered hierarchical big data ag-
gregation. They enable the deployment of different aggregation schemes according to the
available computational resources (e.g., memory and data processing capability) of the
devices in each layer of the network [Karim and Al-kahtani 2016]. Although adopting
different techniques, these approaches, however, overlook the specifics of the communi-
cation technologies involved (e.g., BLE, 802.11, and LoRa). Conversely, other proposals
implement aggregation mechanisms that adapt themselves to the communication link by
coupling the solution to the supported network protocol. But, the degree of dependence
on one specific network protocol makes them harder to apply in different networking



scenarios. Therefore, the literature reports some attempts to use generic architectures
through which different communication technologies and heterogeneous IoT devices are
integrated to facilitate both data transmission and aggregation [Shen et al. 2017].

Despite the contributions of the initiatives mentioned above, current data aggre-
gation strategies can reap the benefits of data plane programmability through SDN/P4
language technologies that can provide a richer set of network information that had not
been available so far. Based on the features of the communication link, algorithms can
rely on optimization techniques to accomplish a higher data aggregation efficiency. Thus,
this investigation’s main problem statement is how to process network and device in-
formation to support high-efficiency data aggregation on IoT networks?

The main contributions of this work are the following: i) A protocol that allows
data aggregation solutions to be deployed directly in the data plane through programmable
hardware-based switches; ii) A protocol that provides support for data aggregation algo-
rithms that can use the network information provided by the proposed protocol to reduce
network communication overhead while improving network’s efficiency1; iii) A protocol
that can prioritize IoT data retrieval by controlling data aggregation delays.

2. Internet of Things Protocol (IoTP)
The architecture proposed in this dissertation aims to mitigate congestion and improve the
efficiency of IoT networks by performing aggregation of IoT data as it traverses the net-
work switches. Such aggregation improves network efficiency as it reduces the overhead
caused by the repeated packet headers of network protocols. To improve the interoperabil-
ity and make the protocol more generic, we designed IoTP2 to be independent of routing
protocols and link technologies, by redefining the link layer processing (Layer 2). Due to
these features, IoTP can coexist with any other IoT communication technologies, such as
BLE and ZigBee, due to the programmable data plane low-level header processing.

2.1. Protocol Header and Packet Payload

To make L2 processing feasible, the protocol consists of a fixed header made up of five
fields and a stack of data blocks, as described in Figure 1. The IoTP protocol header is
formed by the following fields:
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Figure 1. IoTP Packet Structure [Madureira et al. 2020]

1Network efficiency indicates the communication overhead associated with a protocol, is defined as the
ratio of a total payload by total data transmitted. Refer to Section 3 for further details.

2https://github.com/insert-br/iotp/tree/main/exercises/iotp



• Service ID: This 9-bit field identifies a set of similar data belonging to the same
IoT application. Thus, network switches group incoming data into a single packet.

• Data Counter: IoTP enables IoT devices to send multiple blocks of data in a
single packet, as long as the limit set by the network’s MTU is respected. To this
aim, this 14-bit field identifies the number of data blocks a packet carries.

• Reception Delay: This 48-bit field indicates the time taken from the IoT sensor
data capture to the reception of this information by the IoTP gateway. Thus, the
IoTP switch stores IoT data internally and, when the condition to send the packet
is met, the IoTP switch updates the packet delay and sends the aggregated data.

• Sync Flag: When an IoTP packet with Sync Flag enabled is received by the
switch, it sends all the internally stored data that is associated with the service
ID of the Sync Flag packet to the IoTP gateway. By periodically sending pack-
ets with Sync Flag, the gateway is able to control the trade-off between the data
retrieval delay and the efficiency of the data aggregation strategies.

• Type: This 16-bit field informs which forwarding mechanism should be used to
forward IoTP packets. Therefore, IoTP can be used on any network, regardless
of the underlying communication and routing technologies. For instance, the for-
warding mechanism can be another protocol header such as BLE, 5G, and IP.

Each IoTP packet contains a finite set of up to n blocks of data as payload. Each
block carries the data collected by the IoT devices, and can contain up to 64 bits of in-
formation. Thus, all elements that compose an IoTP network (such as switches, gateways
and IoT devices) are aware of the amount and format of the data carried by each packet,
which facilitates the use of aggregation strategies.

2.2. Protocol Operation

To assess IoTP effectiveness, we implemented a derived version of the Accretion aggre-
gation algorithm [Kim et al. 2006]. In our implementation, IoTP nodes receive various
packets from other network devices and aggregate their data according to the service ID
of the packets. The algorithm has two steps: i) data storage, and ii) data transmission.

First, the aggregation strategy stores the data sent by the IoT devices, as well as the
delays that the data suffered from the moment it was captured to the time it has reached
the IoTP switch (see Algorithm 1). In addition to that, the IoTP switch stores delays
caused by the aggregation strategy that executes alongside the IoTP protocol, within the
IoTP switch. After the storage phase ends, the conditions for sending the data are verified.
The switch calculates the cumulative data aggregation delay, adds this information to the
delays reported by the IoT devices, and sends the stored data (see Algorithm 2).

The aggregation strategy implemented within the IoTP’s switches considers two
conditions for sending the stored data: (i) minimum amount of data blocks reached or (ii)
an IoTP packet with Sync Flag enabled is received by the switch.

In the first condition, each service ID of the IoTP protocol is associated with a
minimum amount of data, called “Trigger Counter”. When this minimum amount of
storage is reached, the switch applies the aggregation strategy to the locally stored data
and sends the aggregated data to the IoTP gateway. The minimum number of data blocks
for each service ID is defined by the SDN controller, according to the characteristics of
the received data and the IoT applications requirements.



Algorithm 1: Data Storage.
1 Function AggregateReceivedData(pkt):
2 if pkt.dataCounter > 0 then
3 STOREDELAY(pkt.serviceID, pkt.delay)
4 foreach data in pkt.dataList do
5 STOREDATA(pkt.serviceID, data)
6 end
7 end
8 end

Algorithm 2: Aggregation and Data Send.
1 Function SendAggregatedData(pkt):
2 id = pkt.id
3 sf = pkt.syncFlag
4 len = LENSTOREDDATA(id)
5 if len >= MINDATA(id) or sf == 1 then
6 pkt.delay = STOREDDELAYS(id)
7 pkt.delay += TIMEDATAINSWITCH(id)
8 pkt.dataCounter = len
9 foreach data in STOREDDATA(id) do

10 pkt.dataList.push(data)
11 end
12 SENDPACKET(pkt)
13 end
14 end

The second condition enables the IoTP to control delays of the aggregation strat-
egy. However, unlike the End-to-End and Accretion algorithms [Kim et al. 2006], IoTP
does not use timers to perform such control. Instead, the delays are controlled by sending
packets with Sync Flag enabled to the IoTP switch. As such packets are received, the
switch retrieves all stored data associated with the service ID. Then, the aggregation strat-
egy is applied over the data and the resulting data aggregate is sent to the IoTP gateway.
So, the IoTP gateway can control the frequency of data reception by sending IoTP packets
with Sync Flag periodically (see Algorithm 3).

3. IoTP Evaluation

In order to assess IoTP’s effectiveness, we conducted experiments comparing End-to-
End (E2E) and IoTP-based3 aggregation strategies. The experiments were conducted in
the Mininet/BMv2 emulation environment using a trace4 created from the Intel Berkeley

3For the sake of simplification, this section uses the term IoTP to refer to the aggregation algorithm
implemented in the IoTP switch.

4The trace contains data from 54 real IoT devices that measure room temperature, humidity, light and
battery voltages for each device. Each Mininet host emulated an IoT device of the trace. Refer to the full
dissertation manuscript for further details.



Algorithm 3: SyncFlag Packet Sending
1 Function SendSyncFlag(pkt):
2 for id in serviceIDList do
3 receptionT ime = TIMELASTRECEPTION(id)
4 if ACTUALTIME - receptionT ime >= RECEPTIONTIMEOUT(id)

then
5 pkt.id = id
6 pkt.delay = 0
7 pkt.dataCounter = 0
8 pkt.syncFlag = 1
9 SENDPACKET(pkt)

Research Lab dataset5 [Madden et al. 2004]. In the emulation environment, we connect
a set of IoT devices and an IoTP gateway to the same switch. We connected the IoT
devices to the switch via Bluetooth Low Energy (BLE) wireless link technology (1 Mbps,
6ms delay), whereas the IoTP gateway was connected via IEEE 802.3u (100 Mbps, 0ms
delay). All remaining emulation parameters were adopted from the Mininet’s defaults.

3.1. Evaluation Methodology
We organized the performance evaluation of the IoTP in three steps. First, we carried out
a conformity test to establish a baseline that allows us to distinguish the emulation en-
vironment performance from the evaluated aggregation mechanisms and protocol stacks.
Then, we applied the full factorial design with k factors (2k design) [Jain 1990]. Finally,
we considered the most effective factors for our performance analysis, as described in
Table 1. The factors were chosen according to the state-of-the-art literature recommenda-
tions. Only the minimum and maximum levels were taken into account for the factorial
design phase. For statistical purposes, we replicated the experiment 20 times, extracted
the average, the standard deviation and calculated the 95% confidence level.

Table 1. Full Factorial Design.

Factors Min - Max Unit
A Data Aggregation 10 - 50 data blocks

B Number of IoT Devices 10 - 50 devices

C IoTP Sync Flag Send Interval 0 - 0.1 seconds

We noticed that all factors (A, B and C) have a big impact over the Average De-
lay and that they interact with each. Thus, IoTP’s performance analysis considered the
combined use of the three factors, and the following performance metrics were used to
evaluate the proposed solution:

• Network efficiency (%): Ratio between the total payload and the total data sent,
which serves as an indicator of efficiency in data transmission on the network, as
described by [Zechinelli-Martini et al. 2011] ;

5http://db.csail.mit.edu/labdata/labdata.html.



• Total rate of packets sent by the switch (pps): Total number of packets sent by
the switch to the gateway divided by the duration of each emulation run;

• Average delay (ms): Time interval between the capture of the data by the IoT
sensor and its reception by the gateway.

3.2. Comparative Analysis

In our experiments, we evaluated the effects of two IoTP strategies that interfere with data
aggregation: (i) periodically sending IoTP packets with Sync Flag (SF) enabled (i.e., SF
IoTP strategy), and (ii) not sending such SF packets (i.e., Non-SF IoTP strategy). When
comparing SF IoTP with Non-SF IoTP, we noted that there is an increase in the number
of packets received by the IoTP gateway when SF IoTP packets are sent, as depicted
in Figure 2. The SF IoTP strategy works by sending SF IoTP packets periodically to
inform the switch that we need to obtain data from IoT devices right away to satisfy a
particular deadline. Therefore, the IoTP switch attempts to meet this demand by sending
a larger number of packets with a small payload. That is, in SF IoTP, we are prioritizing
the deadline over the efficiency of the aggregation strategy implemented within the IoTP
switch. In Non-SF IoTP, we prioritize the aggregation efficiency over the deadline.
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Figure 2. Packets sent by the switch [Madureira et al. 2020]

Statistically, E2E and IoTP presented a similar reduction in the total number of
packets sent over the network when compared to no data aggregation scenarios6, with
E2E presenting a slight advantage over IoTP. As a result of such reduction, the network
efficiency is expected to increase [Akyurek and Rosing 2018]. It can be noted that, the
network efficiency was improved by using IoTP, since the protocol achieved a higher
network efficiency than E2E. We also remark that the IoTP’s network efficiency decreases
when it is periodically sending Sync Flag packets (i.e., SF IoTP), as depicted in Figure 3.
Due to the use of Timers in E2E and Sync Flags in SF IoTP, the average aggregation delay
gets a higher priority than data aggregation efficiency.

In respect to the average delay, IoTP presented lower values when aggregating up
to 10 data blocks in comparison with the E2E strategy, as depicted in Figure 4. However,
when IoTP operates with 50 data blocks, the E2E could achieve the lowest average delay.
We believe that this difference results from the fact that, unlike E2E, IoTP does not operate
with timers. IoTP is a reactive protocol that controls the average delay by receiving Sync
Flag packets (i.e., SF IoTP). Thus, control of the average IoTP delays depends on the

6Network performance of the no data aggregation scenarios are further detailed in the dissertation.
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Figure 3. Network efficiency [Madureira et al. 2020]

timing of sending Sync Flag packets and network characteristics such as propagation
delay and link transmission capacity.

10 20 30 40 50
Number of IoT Devices

30

100

1000

2000

Av
er

ag
e 

Ag
gr

eg
at

io
n 

D
el

ay
 (m

s)

E2E 10 data blocks (No Timer)
E2E 10 data blocks (Timer)
IoTP 10 data blocks (Non-SF)
IoTP 10 data blocks (SF)

(a) Up to 10 aggregated data blocks.

10 20 30 40 50
Number of IoT Devices

100

1000

8000

Av
er

ag
e 

Ag
gr

eg
at

io
n 

D
el

ay
 (m

s)

E2E 50 data blocks (No Timer)
E2E 50 data blocks (Timer)
IoTP 50 data blocks (Non-SF)
IoTP 50 data blocks (SF)

(b) Up to 50 aggregated data blocks.

Figure 4. Average Delay [Madureira et al. 2020]

4. Conclusion

In this dissertation, we present IoTP, a low overhead protocol for IoT sensor networks that
can improve network efficiency, control the average delay induced by data aggregation
and reduce the overhead that repeated protocol headers cause on the network. Our results
show that IoTP has a 78% better network efficiency and is 5 times faster in terms of
average delay when compared to the End-to-End data aggregation strategy.
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