
Routing based on Reinforcement Learning for
Software-Defined Networking

Student: Daniela Maria Casas Velasco1

Advisor: Nelson Luis Saldanha da Fonseca1

Co-advisor: Oscar Mauricio Caicedo Rendón2

1Institute of Computing – Universidade Estadual de Campinas – Brazil
2Department of Telematics – Universidad del Cauca – Colombia

danielac@lrc.ic.unicamp.br, omcaicedo@unicauca.edu.co,

nfonseca@ic.unicamp.br

Abstract. Traditional routing protocols employ limited information to make
routing decisions, leading to slow adaptation to traffic variability and restricted
support to applications quality of service requirements. This paper introduces
the work developed in the MSc. thesis entitled “Routing based on Reinforcement
Learning for Software-Defined Networking”, which defines routing approaches
based on (deep) reinforcement learning. The results show that our solutions
surpass routing algorithms based on Dijkstra as well as they are practical and
feasible solutions for routing in Software-Defined Networking.

Resumo. Os protocolos de roteamento tradicionais empregam informações li-
mitadas para tomar decisões de roteamento, levando a uma adaptação lenta
à variabilidade do tráfego e ao suporte restrito aos requisitos de qualidade
de serviço das aplicações. Este artigo apresenta o trabalho desenvolvido na
tese de mestrado intitulada “Roteamento baseado em Aprendizado por Reforço
para Redes Definidas por Software”, que define duas abordagens de roteamento
baseadas em aprendizagem (profunda) por reforço. Os resultados mostram que
nossas soluções superam o desempenho dos algoritmos de roteamento basea-
dos em Dijkstra bem como são soluções práticas e viáveis para roteamento em
Redes Definidas por Software.

1. Introduction

Routing is a fundamental network mechanism that determines the path taken by packets
from a source to a destination node. In the Internet, traditional routing protocols have
successfully delivered best-effort traffic for the past decades. However, such protocols
use limited information to make routing decisions, leading to slow adaptation to dynamic
traffic changes. Software-Defined Networking (SDN) provides a solution to this problem
by unveiling new capabilities in routing [Gopi et al. 2017]. SDN employs a centralized
view of the network which facilitates the use of intelligent mechanisms such as those
based on Machine Learning (ML).

The thesis proposes two approaches that use Reinforcement Learning (RL)
and Deep Reinforcement Learning (DRL) techniques for routing in SDN networks
called Reinforcement Learning and Software-Defined Networking for Intelligent Routing



(RSIR) and Deep RSIR (DRSIR), the approaches add a Knowledge Plane based on RL
in the SDN architecture. By considering metrics related to the state of the links and
paths, RSIR explores, learns, and exploits potential paths for intelligent routing even un-
der dynamic traffic changes. RSIR leverages the interaction with the environment, and
the intelligence provided by RL, as well as the global view and control of the network
provided by SDN, to compute and proactively install, in advance, optimal routes in the
routing tables of the switches located on the Data Plane. DRSIR is an extension of RSIR
based on DRL that enhances the performance even further, especially when considering
large scenarios (i.e., settings with larger number of state and action spaces). The per-
formance of RSIR and DRSIR was extensively evaluated by emulation considering the
stretch, delay, packet loss, and network throughput as performance metrics. Our solu-
tions were compared to centralized Dijkstra-based routing when link-state metrics (delay,
loss, and available bandwidth) are considered individually or jointly. Results show that
RSIR and DRSIR outperform Dijkstra-based routing. Results evince that both RSIR and
DRSIR are promising solutions to replace traditional routing protocols in SDN.

The contributions of this thesis are: i) an architecture and its prototype [Casas-
Velasco et al. 2021] that uses RL/DRL for achieving efficient and intelligent routing in
SDN, ii) a proactive RL-based routing algorithm for RSIR that considers link/path state
metrics to explore, learn, and exploit potential routes, iii) a proactive DRL-based routing
algorithm for DRSIR that considers path-state metrics to calculate potential routes and
enhance the performance of RSIR when considering larger number of states and actions
into the routing scenario, and iv) a prototype of a centralized version of the Dijkstra-
based routing in SDN. The novelty of these contributions is that, unlike most existing
works, RSIR and DRSIR allow the establishment of multiple optimization targets to find
an optimal routing policy by leveraging the centralized view, control, and programma-
bility of SDN, as well as the cognitive capabilities of RL/DRL. They proactively define
and install routing paths based on decisions made by using information on the state of
the network with no dependence on traditional routing protocols. Moreover, they do not
add any signaling overhead to the network operation. These contributions are quite rel-
evant for cognitive self-driving networks due to employment of intelligence in network
decision-making processes.

2. Related Work

SDN and ML techniques have been envisioned to provide innovation to routing proto-
cols. The work in [Gopi et al. 2017, Shirmarz and Ghaffari 2020] enhanced traditional
routing protocols by leveraging SDN features. However, they do not fully exploit knowl-
edge about the network operation to accomplish intelligent routing. Other approaches
attempted to improve routing by using ML techniques [Chaudhary and Johari 2020, Ser-
hani et al. 2020]; but distributed routing is typically assumed, which increases signal-
ing overhead and can contribute to congestion formation. The solutions in [Mao et al.
2017, Martı́n et al. 2019] employ both ML and SDN, but they require building labeled
data which implies high computational complexity and makes the routing solutions de-
pendent on traditional routing protocols to build such datasets. The work in [Wang et al.
2018,Yu et al. 2018] employed RL and DRL techniques to optimize either the selection of
routing algorithms or the link cost for further calculation of paths, but these works focus
only on delay optimization.



3. RSIR: Routing in Software-Defined Networks based on Reinforcement
Learning

RSIR follows the concept of Knowledge-Defined Networking (KDN) by adding a Knowl-
edge Plane to SDN. In the Knowledge Plane, information is transformed into knowl-
edge by using ML techniques for improving decision-making processes as routing. The
KDN architecture also includes the traditional SDN planes (i.e., Management, Applica-
tion, Control, and Data) aimed at supporting network automated management and control.
RSIR was designed for automatic routing by using network-state information. RSIR em-
ploys RL to find the best route for all the source-destination pairs by employing network-
state metrics as features for the RL process. We conceived RSIR with two types of met-
rics, link and path metrics. RSIRlinks uses link-state metrics (i.e., link available bandwidth,
link loss, and link delay) and RSIRpaths uses paths-state metrics (i.e., path available band-
width, path loss, and path delay).

Figure 1. RSIR architecture

Overall, RSIR operates as shown
in Figure 1 as follows: i) the Control Plane
collects raw data about the network state
by periodically querying the Data Plane,
ii) the Management Plane retrieves these
data to calculate and store network-state
information, iii) the Knowledge Plane re-
covers information from the Management
Plane, iv) the RL-agent uses this informa-
tion to explore all the possible routes for
each pair of nodes, v) the routes computed
by the RL-agent are stored, vi) the Con-
trol Plane retrieves route information to in-
stall paths in the flow tables of the switches
proactively. In this way, the Data Plane
can forward packets without consulting the
controller, eliminating the latency result-
ing from the queries sent to the controller.
The RL-agents find a routing policy to avoid links/paths with large delay and loss ratio
and prioritize links/paths with large available bandwidth. In RL, an agent iteratively inter-
acts with the environment; at each step, the agent receives a representation of the state of
the environment, selects an action, receives a numerical reward, and moves to a new state.
The RSIR agent uses the Q-learning technique [Sutton and Barto 2018], which is model-
free and value-based method that defines a value function called Q-function to update the
quality value of an action on a state. The agent visits all action-state pairs to approximate
the optimal Q-function; such a function defines the routing policy.

To establish multiple optimization objectives to find a routing policy, the Reward
function considers the available bandwidth, loss, and delay metrics that characterize either
the link or path state. An SDN controller collects network statistics and the Management
Plane further computes link loss, delay and throughput. In particular, the link throughput
and loss are computed by using the number of packets that passed through the switch port
connected to the link. Then, the available link bandwidth is computed as the difference be-



Hour
0:00 01:00 03:00 05:00 07:00 09:00 10:00 11:00 12:00 14:00 16:00 18:00 20:00 22:00

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Generated traffic (Mbps)
15021.3 14530.7 13146.9 13945.9 16713.6 18311.5 18521.9 18311.5 17694.7 15434.9 12347.9 13891.4 15021.3 15434.9

S
tr

et
ch

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7 RSIR
links

RSIR
paths

Dijkstra
comp

Dijsktra
delay

Dijsktra
loss

Dijkstra
bw

(a) Mean stretch along the day
Hour

0:00 01:00 03:00 05:00 07:00 09:00 10:00 11:00 12:00 14:00 16:00 18:00 20:00 22:00
0

1

2

3

4

5

6

7

8

9

10

Generated traffic (Mbps)
15021.3 14530.7 13146.9 13945.9 16713.6 18311.5 18521.9 18311.5 17694.7 15434.9 12347.9 13891.4 15021.3 15434.9

D
el

ay
 (

m
s)

0

1

2

3

4

5

6

7

8

9

10
RSIR

links
RSIR

paths
Dijkstra

comp
Dijsktra

delay
Dijsktra

loss
Dijkstra

bw

(b) Mean delay along the day

Hour
0:00 01:00 03:00 05:00 07:00 09:00 10:00 11:00 12:00 14:00 16:00 18:00 20:00 22:00

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Generated traffic (Mbps)
15021.3 14530.7 13146.9 13945.9 16713.6 18311.5 18521.9 18311.5 17694.7 15434.9 12347.9 13891.4 15021.3 15434.9

L
o

ss
 (

%
)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

RSIR
links

RSIR
paths

Dijkstra
comp

Dijsktra
delay

Dijsktra
loss

Dijkstra
bw

(c) Mean loss along the day
Hour

0:00 01:00 03:00 05:00 07:00 09:00 10:00 11:00 12:00 14:00 16:00 18:00 20:00 22:00
0

2000

4000

6000

8000

10000

12000

Generated traffic (Mbps)
15021.3 14530.7 13146.9 13945.9 16713.6 18311.5 18521.9 18311.5 17694.7 15434.9 12347.9 13891.4 15021.3 15434.9

A
v

er
g

ae
 o

f 
m

ea
n

 l
in

k
 t

rh
o

u
g

h
p

u
t 

(M
b

p
s)

0

2000

4000

6000

8000

10000

12000 RSIR
links

RSIR
paths

Dijkstra
comp

Dijsktra
delay

Dijsktra
loss

Dijkstra
bw

(d) Mean link throughput along the day

Figure 2. Performance metrics results of RSIRlinks for a 32-node topology

tween the link capacity and the instantaneous throughput of the link. The computation of
the instantaneous delay is conducted following the process described in [Liao and Leung
2016], which uses messages of the Link Layer Discovery Protocol (LLDP) and OpenFlow
protocol. The Management Plane uses the computed link-state metrics to further compute
path-state metrics by using the metrics of each link composing a path.

We evaluated RSIR considering different topologies. In these topologies, each
switch has a host that forwards and receives traffic. We deployed the Data Plane using
Mininet 2.2.1 and used the tool iperf3 for generating traffic regarding traffic matrices at
different times of the day. We compared the performance of RSIR to different varia-
tions of the Dijkstra algorithm using different edge weight such as instantaneous delay
(Dijkstradelay), instantaneous loss (Dijkstraloss), and link available bandwidth (Dijkstrabw)
as well as a value computed by using these three metrics (Dijkstracomp). The routing
functions based on these variations of Dijkstra’s algorithm were subject to the same traf-
fic scenario and are executed as an application on the SDN controller. The performance
metrics used in the comparison were instantaneous link throughput, loss ratio, and delay.
Moreover, we evaluated the stretch of the paths given by RSIR with those given by the
Dijkstra algorithm. The stretch compares the length of a path to the theoretical shortest
path. An evaluation of the learning parameter values defined for the RL-based agent is
reported in the thesis and omitted in this paper due to space limitation.

Next, for the sake of brevity we only present the results of RSIRlinks for a 32-
node topology. Figure 2a presents the mean stretch calculated for all the paths found by
RSIRlinks and the variations of the Dijkstra’s algorithm. The mean stretch values show
that RSIRlinks chooses a higher number of shorter paths than do Dijkstradelay, Dijkstraloss,
and Dijkstracomp. RSIRlinks indicates paths with 15%, 3%, and 8% stretch values smaller



than those obtained by Dijkstradelay, Dijkstraloss, and Dijkstracomp algorithms, respectively.
Results also show that RSIRlinks chooses paths with stretch values slightly higher (< 4%)
than those produced by Dijkstrabw. Figures 2b and 2c demonstrate that RSIRlinks indicates
paths that produce lower mean delay and mean loss ratio than those produced by the four
Dijkstra’s variations. The mean delay given by RSIRlinks are 21%, 16%, 15% and 11%
lower than those given by the Dijkstradelay, Dijkstraloss, Dijkstrabw, and Dijkstracomp, re-
spectively. Also, the mean loss ratio values produced by RSIRlinks are on average 25%
and at most 55% lower than those produced by the four Dijkstra’s variations. The values
of mean link throughput presented in Figure 2d show that the distribution of traffic by
RSIRlinks uses a higher number of paths less utilized than do all the four Dijkstra’s varia-
tions. The link throughput is at most 33%, 19%, 24% and 17% lower than those produced
by Dijkstradelay, Dijkstraloss, Dijkstrabw, and Dijkstracomp, respectively.

RSIRpaths overperformed RSIRlinks. Results showed that RSIRlinks produced values
of mean delay slightly higher (< 2%) and mean loss ratio values 27% higher than those
produced by RSIRpaths. By providing the RL-agent with path-state metrics, the learning
process is simplified. The agent directly explores and exploits the path options as routing
decisions instead of extracting information from the link-state to determine paths. Con-
sequently, the employment of path-state metrics contributes to the achievement of better
performance than RSIRlinks since decisions based on local (link) information may be not
aligned with the state of other links on a path to the destination node.

4. DRSIR: Routing in Software-Defined Networks based on Deep
Reinforcement Learning

When the size of the State and Action Spaces increases, the RL algorithms may present
limited performance due to the increase in the number of learning episodes necessary for
the RL-based agent to converge when having to iteratively experience more state-action
pairs to achieve reliable estimations. Furthermore, RL algorithms could require huge
storage space to store the experience information. To address such a problem, DRL is
employed since it leverages the function approximators employed in Deep Learning (DL)
to improve the learning speed and the performance of RL algorithms. DRSIR is a DRL-
based solution for routing in SDN that aims at providing intelligent routing regarding
a network-state defined by path-state metrics since it showed to be more advantageous
when making routing decisions. The DRSIR architecture differentiates from the RSIR
one by the employment of DRL at the Knowledge Plane. The DRL-agent uses the Deep
Q-Network (DQN) technique [Mnih et al. 2015] composed of two independent Neural
Networks (NNs) called Online and Target Networks and a Replay Memory database. The
Online and Target NNs have the same structure. The former estimates the Q-values on the
current state, while the latter outputs the Q-values on the next state. For setting learning
parameters, we used the convergence of a minimized reward in episodic training as a
parameter for comparison.

We evaluated DRSIR for three different topologies, 23-nodes, 32-nodes, and 48-
nodes to assess its performance in scenarios with different number of state-actions pairs
by using the same performance metrics used to evaluate RSIR. Several preliminary tests
were conducted to set the more suitable learning parameter values. The results of such
tests were not included in this paper for the sake of brevity but are available in the thesis.
DRSIR was compared with RSIRpaths and the variations of Dijkstra’s algorithm. For the



Hour
0:00 01:00 03:00 05:00 07:00 09:00 10:00 11:00 12:00 14:00 16:00 18:00 20:00 22:00

1

1.1

1.2

1.3

1.4

1.5

1.6

Generated traffic (Mbps)
15021.3 14530.7 13146.9 13945.9 16713.6 18311.5 18521.9 18311.5 17694.7 15434.9 12347.9 13891.4 15021.3 15434.9

S
tr

et
ch

1

1.1

1.2

1.3

1.4

1.5

1.6 DRSIR RSIR Dijkstra
comp

Dijsktra
delay

Dijsktra
loss

Dijkstra
bw

(a) Mean stretch along the day
Hour

0:00 01:00 03:00 05:00 07:00 09:00 10:00 11:00 12:00 14:00 16:00 18:00 20:00 22:00
0

10

20

30

40

50

60

Generated traffic (Mbps)
15021.3 14530.7 13146.9 13945.9 16713.6 18311.5 18521.9 18311.5 17694.7 15434.9 12347.9 13891.4 15021.3 15434.9

D
el

ay
 (

m
s)

0

10

20

30

40

50

60

DRSIR RSIR Dijkstra
comp

Dijsktra
delay

Dijsktra
loss

Dijkstra
bw

(b) Mean delay along the day

Hour
0:00 01:00 03:00 05:00 07:00 09:00 10:00 11:00 12:00 14:00 16:00 18:00 20:00 22:00

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generated traffic (Mbps)
15021.3 14530.7 13146.9 13945.9 16713.6 18311.5 18521.9 18311.5 17694.7 15434.9 12347.9 13891.4 15021.3 15434.9

L
o

ss
 (

%
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5 DRSIR RSIR Dijkstra
comp

Dijsktra
delay

Dijsktra
loss

Dijkstra
bw

(c) Mean loss along the day
Hour

0:00 01:00 03:00 05:00 07:00 09:00 10:00 11:00 12:00 14:00 16:00 18:00 20:00 22:00
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Generated traffic (Mbps)
15021.3 14530.7 13146.9 13945.9 16713.6 18311.5 18521.9 18311.5 17694.7 15434.9 12347.9 13891.4 15021.3 15434.9

A
v

er
g

ae
 o

f 
m

ea
n

 l
in

k
 t

rh
o

u
g

h
p

u
t 

(M
b

p
s)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
DRSIR RSIR Dijkstra

comp
Dijsktra

delay
Dijsktra

loss
Dijkstra

bw

(d) Mean link throughput along the day

Figure 3. Performance metrics results of DRSIR in 48-nodes topology

sake of brevity, we show results only for a 48-nodes topology. Figure 3 shows results
for stretch, link delay, loss ratio, and link throughput obtained by DRSIR, RSIR with
path-state metrics, and the Dijkstra variations. Figure 3a depicts that DRSIR produces a
higher number of shorter paths than Dijkstradelay, Dijkstraloss, and Dijkstracomp. DRSIR
produces paths that have 23%, 7%, and 17% stretch values smaller than those obtained by
Dijkstradelay, Dijkstraloss, and Dijkstracomp algorithms, respectively. DRSIR obtains paths
with stretch values slightly higher (< 1%) than those produced by Dijkstrabw. Figures
3b and 3c show the mean delay and mean loss ratio. The mean delay values of DRSIR
are on average, 32%, 31%, 19% and 36% smaller than those produced by Dijkstradelay,
Dijkstraloss, Dijkstrabw, and Dijkstracomp, respectively. Results of mean loss ratio observed
with DRSIR are on average 36% and at most 57% lower than those produced by the four
Dijkstra’s variations. Figure 3d shows the mean link throughput values along the day.
The mean link throughput produced by DRSIR is at most 36%, 34%, 25% and 40% lower
than those produced by Dijkstradelay, Dijkstraloss, Dijkstrabw, and Dijkstracomp, respectively.
DRSIR indicates paths with links less utilized than do the Dijkstra’s variations.

When comparing DRSIR and RSIRpaths, results showed that DRSIR indicates
paths with stretch values lower (9% and at most 14%) than the paths indicated by
RSIRpaths. The mean delay and mean loss ratio values obtained by DRSIR were 24%
and 10% lower than those produced by RSIRpaths, respectively. Moreover, DRSIR and
RSIRpaths indicate paths that produced a similar distribution of flows over the network.
The mean link throughput values produced by DRSIR are slightly lower than those pro-
duced by RSIRpaths (on average 10%). DRSIR selects paths slightly shorter and less con-
gested than RSIRpaths. The paths selected by DRSIR produce lower mean delay and loss
values than those selected by RSIRpaths. The agent of DRSIR computed all the routes for
the 48-nodes topology in ≈ 7.2s, while the centralized variations of Dijkstra spent ≈ 6s,



which is a non-significant difference.

RIP and OSPF are wildly used routing protocols in networks. We assess the re-
action time to topological changes of RSIR and DRSIR and compare them to those of
the RIP and OSPF. The topology change handling process of RSIR and DRSIR involves
times detecting the topology changes tchad, calculating new routes tlear, and installing
them tinst. For RSIR and DRSIR, the setup of tchad is 1s. The RL-agent of RSIR (using
path-state metrics) computes all routes for the 48-nodes topology in tlear = 4.7s. The
Flow Installation module spends on average tinst = 1.6s for updating the flow entries;
thus, RSIR takes on average tchad+tlear+tinst = 8.1s to handle change in the topology. In
DRSIR, the agent computes all routes in tlear = 7, 2s and takes on average 9.8s to handle
a topology change. DRSIR obtained a tlear higher than the achieved by RSIR because the
DRL-agent spends more time training the NNs. However, superior performance offsets
this cost. In comparison with RIP that would typically take 30s to handle a topological
change, DRSIR presents a slower response time due to the centralized controller global
view of the network, the generalization provided by the DRL-agent, and the adoption of
a network-state routing approach. The OSPF reaction to topological changes when con-
sidering a minimum hello-interval = 1s and an spf-delay = 1s is approximate 9s (5s + the
average execution time of the Dijkstra’s algorithm), which is slightly lower than the time
DRSIR takes.

5. Scientific production

• Casas-Velasco, D. M., Villota-Jacome, W. F., da Fonseca, N. L., & Rendon, O. M.
C. Delay Estimation in Fogs Based on Software-Defined Networking. In 2019 IEEE
GLOBECOM (pp. 1-6). Qualis A1. H-index 96.

• D. M. Casas-Velasco, O. M. C. Rendon and N. L. S. da Fonseca, ”Intelligent Routing
Based on Reinforcement Learning for Software-Defined Networking,” in IEEE Trans-
actions on Network and Service Management, vol. 18, no. 1, pp. 870-881, March
2021, doi: 10.1109/TNSM.2020.3036911. Qualis A1. IF 3.878.

• DRSIR: A Deep Reinforcement Learning Approach for Routing in Software-Defined
Networking. Submission to IEEE Transactions on Network and Service Management,
2021. Qualis A1. IF 3.878.

6. Conclusion

In this thesis, we introduced routing approaches for SDN named RSIR and DRSIR based
on RL and DRL, respectively. Results evince several conclusions. In RL-based algo-
rithms, the optimization targets can be flexibly adjusted by changing the reward func-
tion. The reward functions and the action/state spaces of both RSIR and DRSIR allowed
achieving routing policies that outperformed the Dijkstra algorithm. In DRSIR, the DRL-
agent benefits from DL to handle large state/action spaces improving the performance
of RSIR. DRSIR indicates paths shorter and less congested most of the time than those
indicated by Dijkstra and RSIRpaths. As a consequence, the mean delay and loss pro-
duced by DRSIR are lower. RSIR and DRSIR do not need labeled datasets for training
the agents since they learn by interacting with the environment. The acquisition of such
datasets is costly and makes the routing solutions dependent on traditional routing proto-
cols, which use limited information for routing. RSIR and DRSIR are promising solutions



for routing in SDN. Moreover, our architecture prototype using RL/DRL for routing of-
fers developers a basis to create network management applications for optimizing and
automating network tasks. For future work, we intend to explore multi-level RL schemes
to face centralized control challenges such as scalability on larger-scale networks. We
also intend to improve the setting up of the learning parameters in order to turn the agent
self-configurable.

References
Casas-Velasco, D. M., Caicedo, O. M., and Da Fonseca, N. L. S. (2021). Rout-

ing based on (deep) reinforcement learning for software-defined networking. In
https://github.com/danielaCasasv/DRSIR-DRL-routing-approach-for-SDN.

Chaudhary, S. and Johari, R. (2020). Oruml: Optimized routing in wireless networks
using machine learning. International Journal of Communication Systems.

Gopi, D., Cheng, S., and Huck, R. (2017). Comparative analysis of sdn and conventional
networks using routing protocols. In CITS, pages 108–112. IEEE.

Liao, L. and Leung, V. C. (2016). Lldp based link latency monitoring in software defined
networks. In CNSM, pages 330–335. IEEE.

Mao, B., Fadlullah, Z. M., Tang, F., Kato, N., Akashi, O., Inoue, T., and Mizutani, K.
(2017). Routing or computing? the paradigm shift towards intelligent computer net-
work packet transmission based on deep learning. IEEE Transactions on Computers,
66(11):1946–1960.

Martı́n, I., Troia, S., Hernández, J. A., Rodrı́guez, A., Musumeci, F., Maier, G., Alvizu,
R., and de Dios, Ó. G. (2019). Machine learning-based routing and wavelength as-
signment in software-defined optical networks. IEEE Transactions on Network and
Service Management, 16(3):871–883.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control
through deep reinforcement learning. nature, 518(7540):529–533.

Serhani, A., Naja, N., and Jamali, A. (2020). Aq-routing: mobility-, stability-aware
adaptive routing protocol for data routing in manet–iot systems. Cluster Computing,
23(1):13–27.

Shirmarz, A. and Ghaffari, A. (2020). An adaptive greedy flow routing algorithm for
performance improvement in software-defined network. International Journal of Nu-
merical Modelling: Electronic Networks, Devices and Fields, 33(1).

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction- second
edition, volume 1. Cambridge, Massachusetts.

Wang, C., Zhang, L., Li, Z., and Jiang, C. (2018). Sdcor: Software defined cognitive
routing for internet of vehicles. IEEE Internet of Things Journal, 5(5):3513–3520.

Yu, C., Lan, J., Guo, Z., and Hu, Y. (2018). Drom: Optimizing the routing in software-
defined networks with deep reinforcement learning. IEEE Access, 6:64533–64539.


