
Sunflower: a proposal for standardization on the Internet of
Musical Things environments

Rômulo Vieira1, Flávio Schiavoni2, Débora C. Muchaluat-Saade1

1MidiaCom Lab – Fluminense Federal University (UFF)
Niterói – RJ – Brazil

2ALICE – Arts Lab in Interfaces, Computers, and Everything Else
Federal University of São João del-Rei (UFSJ)

São João del-Rei – MG – Brazil

romulo vieira96@yahoo.com.br, fls@ufsj.edu.br, debora@midiacom.uff.br

Abstract. The Internet of Musical Things (IoMusT) is an interdisciplinary area
of knowledge that aims to improve the relationship between musicians and their
peers, as well as between musicians and audience members, favoring concerts,
studio productions, and music learning. Although emerging, this field already
faces some challenges, especially the lack of standardization and interoper-
ability between its devices. Therefore, the paper presents the design of an
IoMusT environment, called Sunflower, highlighting its architecture, protocols,
and sound features that can contribute to solving this interoperability problem.

1. Introduction

The Internet of Things (IoT) is a field of study that consists of the widespread presence
of a variety of objects that, from unique addresses, can interact with each other and co-
operate with their neighbors to achieve some common goal [Atzori et al. 2010]. When its
domains expand to musical practice, the Internet of Musical Things arises.

This area of knowledge is characterized by being multidisciplinary and formally
defined as a set of interfaces, protocols, and pieces of information related to music that en-
able services and applications with an artistic purpose from interactions between humans
and musical things or between musical things themselves [Turchet et al. 2018].

A musical thing, for its part, can be delineated as an electronic device capable
of acquiring, processing, performing, or exchanging data that serve a musical purpose
[Turchet et al. 2018]. The combination of these devices with musical services and appli-
cations creates an interoperable environment, responsible for interconnecting musicians,
instruments, and audience members, which multiplies the possibilities of interaction in
art shows and provides a relationship of interdependence between the participating ele-
ments [Vieira et al. 2020].

Despite being an area with great artistic and computational potential, IoMusT
lacks standardization in its systems. Although there are some practical implementations
of these concepts, they fall into the use of tools that are preferred by their authors, making
system interoperability and the adhesion of different people more difficult. This motivated



the elaboration of an ecosystem design called Sunflower123, which specifies the structure,
protocols, modules, interfaces, and data that meet the requirements demanded by the
Internet of Musical Things.

The remainder of the paper is organized as follows. Section 2 presents Sunflower,
it is operation mode, protocols, data, and etc., while Section 3 shows the practical imple-
mentation of this environment. Section 4 is responsible for displaying and discussing the
results achieved. Finally, summarized conclusions about the accomplishment of this work
are exposed in Section 5.

2. The Sunflower environment
Such an environment was conceived to suggest a new way of thinking about IoMusT
systems and to indicate possible solutions to the most recurrent problems in this area,
such as the difficulty of dealing with heterogeneous devices and not being comprehensive
for people with different technological and musical knowledge. Sunflower can support
numerous instruments and musical things, along with exchanging information over the
network, which provides an experience that can be tested and inferred from results.

As for their desirable features, they can be divided between those that deal with the
environment and those that concern the devices. For the first category, the authors used
definitions from the IoMusT area and the concepts that permeate it [Turchet et al. 2018].
Consequently, a good network structure for artistic-musical presentations must present
some general aspects, such as low latency, interoperability, and scalability. Further,
there are concepts such as easy user integration, assimilation of different types of data, and
independent implementation of the tools. Due to the difficulty of meeting these require-
ments in a real system, Sunflower focuses on meeting the first three topics mentioned.

As for the desirable features for the devices, aesthetic, expressive, and ergonomic
factors are relevant, since it is a field with artistic concerns. In addition to heterogeneity,
it is also important that the information be made available in a graphical interface.

2.1. Thinking About Pipes-and-Filters

Sunflower has an operation mode analogous to the Pipes-and-Filters architecture. This
is because such architecture allows reuse, replacement, and evolution of the system. In
this way, each musical thing will have a behavior correlative to a filter, being independent
entities that receive data in their inputs, process them and send them to their neighbors,
whose priorities are not previously known. The ducts are responsible for only transmitting
data, not applying any type of processing or modification to them. By bringing this model
to the Internet of Musical Things, it is possible to create a separation of roles and suppose
the flow of information in the environment. With this, it is possible to define that entities
that only generate data are classified as source, while those that only consume are named
as sink. When they play both roles, they are classified as hybrid. It is important to note
that despite being inspired by Pipes and Filters, network implementation still takes place
through the client-server model.

1Manuals and documentation are available at: https://github.com/romulovieira-me/
sunflower_iomust_environment

2How to Setup Sunflower: https://youtu.be/lGW5eobrYwc
3Sunflower Live Action: https://www.youtube.com/watch?v=bWfVCGAda_c



This way of thinking about the environment ensures that it is heterogeneous since
different devices can be present and communicate with each other, besides ensuring ease
of inclusion and/or removal of objects. However, this form of structure is faced with three
problems arising from the diversity of data that travel through it: i) the type of the data
must be agreed between the modules; ii) possible overloads may occur when trying to
standardize data; and iii) the incompatibility in the data type can make it difficult to reuse
filters. To solve this problem while maintaining the main features and contributions of
pipes and filters, Sunflower was divided into 4 distinct and independent buses, presented
in detail as follows.

2.2. Thinking About Buses

Several tools in the area of computer science use a bus architecture, like hardware com-
ponents (USB), network protocols and inter software communication. Generally, this ar-
chitecture is used to isolate implementation details from one device to another, providing
some maintainability for the system. In such a way, the buses in Sunflower are also in-
dependent, being characterized according to the musical things, data types and protocols
present in them. These buses are:

• Digital Audio Bus: As the name implies, it is responsible for exchange digital
audio data in the environment. An important feature of this bus is the ability to
divide the processing between its components, being able to add or remove them
in a way that guarantees the scalability of the system and the musical creation
in a shared way, resulting in improvements in the interactions that occur in these
environments;

• Graphic Bus: Another aspect that contributes to musical performances is the
graphic elements. This bus, therefore, is responsible for ensuring that the system
is able to handle visual representations;

• Control Bus: Responsible for providing to the environment remotely control
methods, capable of changing properties such as volume, frequency, beats per
minute (BPM), etc. These features are modified by musical things designed ex-
clusively to play this role;

• Management Bus: Allows the system administrator to visualize who is connected
to it and what its main features are, only connecting those that can exchange data.

2.3. Protocol Proposal

The devices connected to the above mentioned buses are responsible for providing ser-
vices to the network. However, these services only indicate the operations that a device in
certain bus is able to perform on behalf of its users, but do not inform how these actions
are implemented. Therefore, it is important to have a protocol that represents a set of rules
that controls the format and meaning of the messages that circulate through the system.

Setup Protocol

In Sunflower, each entity at each bus uses a configuration protocol to implement its ser-
vices. This regulation is simple and must be followed by the components, where its main
foundations are: allow any node to indicate its status to the network manager; always
synchronized this status with the network; make each node display its main features and
ports capable of both receiving and sending data; connect only a pair or set of nodes



Credentials /hello/number ID/address IP/human name
Input information /input/ID number/port type/musical thing type/sample rate/bit depth/

audio file formatnumber of channels/sender IP/port number/
port description/network protocol/ musical/information protocol/
human name

Output information /output/ID number/port number/port type/port description receiver/
port number/receiver name

Network setup /network/ID number/device name/IP address/current port
number/new port number/current multicast address

/new multicast address
Audio setup /setup audio/ID number/device name/IP address/bit rate

/bit depth/file type/number of channels
Graphic setup /setup video/ID number/device name/IP address/codec/display

resolution/color pattern/file type
Creating Logical Devices /create/ID number/device name/IP number/

new musical thing/audio features/video features
Deleting Logical Devices /delete/ID number/device name/IP number/

new musical thing/audio features/video features

Table 1. Step 1 and 2 - Discovery and Devices setup messages

that actually support this connection and report that it is being connected or disconnected
from the network. From these definitions, the Sunflower setup protocol was divided into
5 steps, presented and conceptualized below.

Step 1 - Discovery In this first step, Sunflower will behave like a traditional discovery
protocol, looking for other nodes on the network and establishing contact between them.
For this, each musical thing, when connecting to the network, must inform, through an
Open Sound Control (OSC)4 message, its unique identification number, IP address and
human name, according to the pattern shown in the sequence. A credential message
needs to be delivered to all devices in the environment, which should also answer with
their credentials. This eliminates the need for an administrator to go through any data
exchanges in the system. Next, the input ports, responsible for receiving data, must be
reported. As for the output ports, they must reach nodes capable of receiving this data.
For this, they use the pattern seen below. It is worth highlighting that each element differs
from the other because of its features, but these messages are comprehensive enough to
inform the entire system of the main characteristics of each device present in it, creating
the necessary parameters to some communication takes place. The messages to be sent
are presented in Table 1.

Step 2 - Devices setup: The second stage of the protocol allows eventual changes in the
network settings and/or device data. In this way, all attributes informed in the resource
publication can/must contain features messages, which will be answered with environ-
ment update announcements, indicating the current status of each element. Also taken
part of this step 2 are the messages to create logical devices, which are nothing more than
a replication of a musical thing present in the system. In that wise, after a given artifact

4Protocol used in communication between computers, sound synthesizers and other multimedia devices.



Connecting ports /connect/ID number/device name/IP address/input number/output number
Performance Mode /setup/ID number/device name/IP address/actual status /new status
Configuration Mode /performance/ID address/device name/IP address/actual status/new status
Goodbye message /goodbye/ID number/IP address/device name/status

Table 2. Step 3, 4 and 5 Messages

receives this message, it generates a modifiable copy of itself, allowing the audio, video
(when possible), and network features to be modified to satisfy the users’ needs. After
confirming the duplication of an element, the system should answer with a state update,
similar to the one sent when the settings of musical things are changed. The message that
creates this copy can be seen below. If users want to delete a logical device, it must send
a message in the example seen below. In response, you will have again a status update.
These messages can adopt patterns presented in Table 1.

Step 3 - Setting up and connecting the environment: With the devices set up, it is
time to configure and connect the environment. The messages must, therefore, inform
their credentials, the port through which the data will be sent and the input port of the
device that receives this information, according to the pattern presented in Table 2.

Step 4 - Mode Change: Musical things can follow another method of operation when
being used in practice, called performance mode. In this mode, the devices no longer ac-
cept remote setup, which guarantees greater technical and artistic stability to users, while
also facilitating network management. This entails the need to switch from configura-
tion mode to performance mode and vice versa. In this context comes the fourth and
penultimate step in the Sunflower protocol, which deals precisely with this change in the
behavior of musical things. When the first message is sent, it changes the whole environ-
ment and not a single musical thing. As a consequence, the devices receive an answer
that indicates that they are now “unmodifiable”, that is, no longer manageable by users.
Table 2 presents the messages responsible for this.

Step 5 - Close the connection: Finally, the last step of the protocol permanently dis-
connects the musical thing from the network, where it will no longer be able to exchange
data. Table 2 presents this farewell message.

Performance Protocol

This protocol results from the change in the operating mode in the device configuration
and is responsible for dealing with the types of data exchanged in the Sunflower buses.
This results in several implementation possibilities and tools for each of these levels, and
the authors do not intend to limit this behavior.

3. Implementation

Considering the structure and protocols that govern the operation of Sunflower, its four
buses were conceived in a practical way. The system has 27 prototypes of musical things.
They were developed in the Pure Data (version 0.50.2), chosen for being multiplatform,
open-access, easy to program, and for being present in several systems that deal with
music over the network or in real time.



As for sending data to the network, it happens through the UDP and OSC pro-
tocols. This was possible thanks to the use of an external5 called mrpeach, capable of
encapsulating packets with these types of data and sending them to the network in a simple
and fast way.

To further expand the artistic and interactive possibilities of this system, four dig-
ital art were created in the Processing language6 to be connected to the graphic bus. It
allows changes in colors, speeds, and directions movements of the digital art thanks to
the oscP5 library, which receives OSC messages responsible for these changes, providing
new ways of interacting and controlling the environment.

In the control bus, every musical thing can be managed by the network. To fulfill
and manage these and other requirements, a Command Line Interface (CLI) was created
in the Python language (version 3.8.10). From a functional point of view, the CLI presents
information about the IP address and ID number of each musical thing, as well as its input
and output data. It consists of four commands: -i, capable of individually listing the ports
and input data of musical things; -o, responsible for displaying the ports and parameters
of the output data; -c, in charge of connecting the IP:port pair, in a way that eliminates
the need to do this on the device itself; and finally, the -d command, which finishes the
connections.

The CLI runs directly in a terminal. As it also acts as an OSC server to receive
messages from musical things, if no command is entered, it displays only a list of the
device type (with an identification number, IP address, and human-readable name), a
second list with its input settings, and a third list with information about the outputs of
musical things. It is worth mentioning that the CLI must be run before devices connect to
it. Otherwise, even if they are correctly connected to the network, their information will
not be displayed, which can cause problems in the management and functionality of the
system.

Finally, three musical things (drum machine, microphone and tuning fork) were
transferred to smartphones, to be played in the MobMuPlat7, in its version 1.84. In this
way, users gain a new platform to interact with the environment, while Sunflower accepts
an easy and general-use device, allowing the integration of more people.

With all of that exposed, Figure 1 shows an idealized environment for Sunflower.
Note that it is composed of several elements, such as a guitar, effects pedal, audio systems,
smartphones, and wearables. Each one will play a role exposed in Section 2.1, that is,
they can be source, sink, or hybrid. Once connected to the network, they tell the manager
what types of data and protocols they can receive and send through their ports. From
this knowledge, the administrator can interconnect those who have something in common
and who will be able to cooperate with each other. Sunflower works by proposing how
discovery and setup messages should be, classifying musical things according to how they

5Additional function for the Pure Data developed by the community, with operation mode similar to
libraries in traditional languages.

6Created by Ben Fry and Casey Reas in 2001, it is a modification and simplification of the Java language,
removing the original aspects that require a deeper knowledge about programming. In this way, it becomes
light and easy to learn, ideal for visual and digital art.

7Standalone app for iOS and Android capable of hosting and running Pure Data code. It can also perform
sound synthesis, receive MIDI and OSC data via the network, display images and much more.



work, and dividing them into buses. All this increases the heterogeneity of the system and
allows the inclusion of diverse artists and participants.

Figure 1. Environment idealized following the design concepts of Sunflower.

4. Discussion and Results
About initially desired features for the Sunflower, all were achieved in implementation.
The system proved to be heterogeneous when supporting 27 musical things (simulated on
Pure Data), including devices capable of generating and consuming graphic information,
in addition to presenting the circulation of a wide variety of data.

The command line interface, despite being simple and relying only on textual in-
formation, manages to display the main characteristics of each musical thing, as well as
identify them and report their respective connection states, making them show to the sys-
tem all their netowrk features. It displays information about inputs and outputs, fulfilling
another initially intended requirement.

The operation similar to the Pipes-and-Filters architecture was also evident since
the musical things had no prior knowledge of the other elements connected to the network,
being only responsible for processing the data and sending it to the output. The fulfillment
of all these requirements opens the way for the system to present a playful and intuitive
use, allowing multiple users, with different goals and skill levels, to use them without
major problems.

Finally, it is noteworthy that although the proposed protocol is present in the ap-
plication layer of the TCP/IP model, it can also be implemented at other levels, making



the system similar to a mesh network. This changes perspectives on a recurrent issue in
real systems, which is bandwidth usage. Even so, the idea of functioning analogously to
the Pipes-and-Filters architecture is maintained, predicting the existence of source, sinks,
and hybrid filters, ensuring that the five steps of the protocol are met.

5. Conclusions
The Internet of Musical Things area provides new perspectives for musical practice, medi-
ating the interaction of musicians with their peers or of musicians with audience members
through different computational resources. Live concerts, studio recordings, and music
learning tend to benefit from this new trend. Despite the positive points, some issues
are evident, such as the difficulty in dealing with device and data heterogeneity. The Sun-
flower comes up precisely to tackle this issue. By proposing an operation mode analogous
to the Pipes-and-Filters architecture and messages for discovery and setup, it is possible
that each musical thing present in the environment can establish communication with its
neighbors without the need for prior knowledge of the IP address or audio/video data and
protocols they use. In addition, they do not impose communication restrictions due to
their physical characteristics.

The development of this platform proved to be a complex activity, as it requires
knowledge in several areas of computer science, such as computer networks, signal pro-
cessing, software engineering and sound design, as well as concepts from the music area.
This paper aimed to contemplate the artistic-musical creation process and its target audi-
ence is made up of sound engineers, technicians, musicians, music teachers and students,
scientists who are interested in research in the area and audience members.

The tool proved to be promising in meeting the musical and network needs, but
even so, it is not intended to end the discussion about which data and protocols should be
used in IoMusT communication, in the same way, the author does not claim for himself
the authority to say what should or should not be done when planning an environment
along these lines. Such a tool should not be treated as something monolithic, but as an
open solution, capable of receiving contributions from other users and developers, as well
as being incorporated into your own projects.

Acknowledgments
Authors would like to thanks to all MidiaCom Lab and ALICE members. The authors
would like also to thank the support of the funding agencies CNPq, (Grant Number
151975/2019-1), CAPES (Grant Number 88887.668167/2022-00), FAPEMIG and UFSJ.

References
Atzori, L., Iera, A., and Morabito, G. (2010). The internet of things: A survey. Computer

Networks, pages 2787–2805.

Turchet, L., Fischione, C., Essl, G., Keller, D., and Barthet, M. (2018). Internet of musical
things: Vision and challenges. IEEE Access, 6:61994–62017.

Vieira, R., Gonçalves, L., and Schiavoni, F. (2020). The things of the internet of musical
things: defining the difficulties to standardize the behavior of these devices. In 2020 X
Brazilian Symposium on Computing Systems Engineering (SBESC), pages 1–7.


