A Context-Oriented Framework and Decision Algorithms for
Computation Offloading in Vehicular Edge Computing

Alisson Barbosa de Souza'2, Paulo Antonio Leal Rego', José Neuman de Souza'

'Programa de P6s-Graduacio em Ciéncia da Computagio
Universidade Federal do Ceara (UFC)
Fortaleza, CE, Brasil

2Universidade Federal do Ceard (UFC)
Quixada, CE, Brasil

{alisson,pauloalr,neuman}@ufc.br

Abstract. Some increasingly popular vehicular applications have critical time
requirements. As vehicles still do not have enough computation power, they
cannot satisfy these demands satisfactorily. One option to deal with this prob-
lem is to enable vehicles to transfer computational tasks to cooperating devices
through the offloading technique. However, performing this technique in vehic-
ular scenarios is challenging due to the fast movement of network nodes and
the frequent disconnections. Thus, we propose a context-oriented framework
and decision algorithms to reduce the execution time of vehicular applications
reliably through computation offloading in vehicular edge computing systems.
Experimental results show that our solutions can significantly improve the exe-
cution time of vehicular applications.

1. Problem Statement and Contributions

The advent of autonomous vehicles and new and popular applications demand massive
computing resources to deal with complicated data processing and critical latency require-
ments [Boukerche and Sotoro 2020, [Liu et al. 2020]. Unfortunately, despite technologi-
cal advances, vehicles do not yet have sufficient on-board computing resources to handle
all the vehicular applications requirements in a feasible time [Zhang and Letaief 2019].

One manner to assist vehicles with latency and processing requirements is the
Vehicular Edge Computing (VEC) system. In this system, computational processing can
be done on vehicles or edge servers [Souza et al. 2020a]. With these resources available,
the computation offloading technique can be applied to improve applications’ execution
time and decrease processing overload. This technique offloads smaller parts or tasks of
an application to remote devices. Then, these servers process the tasks and return the
result to the client vehicle [Rego et al. 2017, Xu et al. 2018]].

Nevertheless, it is challenging to carry out computation offloading in VEC sys-
tems. Servers chosen to process tasks may already be overloaded. Overloaded servers
and the rapid movement of nodes in these networks lead to frequent disconnections and
offloading failures [[Al-Sultan et al. 2014]]. Furthermore, finding the optimal way to as-
sign computation tasks to different servers for maximum reduction in execution time of
vehicular applications is a Non-Deterministic Polynomial-Time (NP)-hard problem. In

addition, the entire computation offloading process must be reliable, i.e., offloading fail-
ures must be avoided, minimized, or handled. Thus, the problem addressed in this thesis
can be summarized as: How to minimize the execution time of vehicular applications re-
liably through computation offloading in VEC systems? Based on this problem, the main
contributions of this thesis are:

* A context-oriented framework for computation offloading in VEC systems.

* Three decision and task assignment algorithms to minimize the execution time of
vehicular applications reliably.

» Use of several contextual parameters, including a new one called known routes of
vehicles.

* Simultaneous use of WAVE and 5G technologies.

* An extensive literature review to guide future research in the area
[Souza et al. 2020al].

2. Related Work

Although some works present computation offloading solutions for vehicular networks,
some consider only a single type of communication technology [Sun et al. 2019] or a sin-
gle server type [Rahman et al. 2020]]. In addition, to improve the computation offloading
process, other works consider only greedy or limited gain solutions [Feng et al. 2018,
Qiao et al. 2018]]. Finally, some works evaluate their solutions only in a single type of
scenario [Liu et al. 2020] or vehicular density [Chen et al. 2020]].

On the other hand, our solutions fill the gaps left by the other works. For example,
we simultaneously use different communication technologies and server types when of-
floading. With this, we increase the network’s transmission capacities and took advantage
of all available computing resources. In addition, we use several contextual information,
such as CPU capacity and availability and known routes of vehicles. This last informa-
tion refers to vehicle trajectories from their on-board navigation systems shared between
devices. Itis used to predict vehicle positioning more accurately and avoid offloading fail-
ures. Finally, we use algorithms to assign tasks so that the best available servers execute
them to minimize the applications’ execution time and the number of offloading failures
in any scenario.

3. Computation Offloading Framework and Decision Algorithms

Intending to improve the execution time of vehicular applications, satisfying mobility and
energy constraints, we present below our framework and decision algorithms for compu-
tation offloading in vehicular edge computing systems.

3.1. Computation Offloading Framework

Figure (1| shows the Application and Partitioner modules and conceptual architecture of
the framework. The box with dotted lines represents an application running on a vehicle,
along with the Partitioner module and the proposed framework. The latter is represented
by the smaller box with a gray background. The arrows indicate the direction of the
information flow between the modules.

The Application module sends data to a Partitioner module in order to analyze
whether the application workload can be partitioned. If it is possible, the Partitioner

Application

Decision Local
Maker Execution

Data and
Context Task

Gatherer Distributor

sevsoLumie] s

PROPOSED
FRAMEWORK

Figure 1. Architecture of the framework.

divides the application workload into smaller tasks that can be executed on different de-
vices and in a parallel, asynchronous, and independent way. The application workload
then moves to the Decision Maker module, which decides where each task should exe-
cute and reports the decision to the Task Distributor module. The latter distributes tasks
for local or remote execution. After the workload has been processed, the Application re-
ceives the results through the Local Execution or the Data and Context Gatherer module,
when the results come from remote devices. The Application also receives information
from local sensors and other devices. This information is captured through the Data and
Context Gatherer module.

Such framework manages all the steps of the computation offloading process,
which are: (1) Resources discovery, (2) Offloading decision, (3) Send/receive tasks, and
(4) Failure recovery. In step 1, the Decision Maker module receives tasks from the Ap-
plication/Partitioner and triggers the resources discovery. At this time, the client vehicle
sends requests through different communication technologies. If the servers meet the pre-
viously established criteria, they accept to participate in the offloading process and send
their contextual information.

After waiting a certain amount of time, the client proceeds to the task assign-
ment/scheduling decision (step 2). Then, after congregating all the necessary information,
the Decision Maker module executes an algorithm to decide the assignment/scheduling
of tasks. It must assign each task to a server (local or remote) to execute and choose the
communication technology to be used.

In step 3, after the decision, the Decision Maker module transfers the tasks to
the Distributor module that forwards the tasks to the appropriate modules (for local or
remote execution). In this way, as shown in Figure 2] the client (red) distributes tasks to
remote servers (vehicles and edge server) to start execution. Thus, multiple servers can
simultaneously collaborate to provide computing services to the client. In this approach,
server vehicles may be more likely to cause offloading failures due to mobility. However,

they help to parallelize task processing and are important sources of computational power.
Furthermore, if the distribution of tasks is well calculated and coordinated, failures can
be minimized.

- ."” 'll
I =)
N N S
Vehicle iD .u ._ Sc - :
TaskQueue [N . (100 MR (oo -
CPUCacy & ™~ D & Y
Tasks (o

Figure 2. Sending of tasks to the chosen servers.

Following processing, each chosen server returns the processing result to the
client. Suppose any failure is detected in the offloading process. In that case, the Data and
Context Gatherer module informs the Decision Maker module in step 4. Then, the Task
Distributor module, which has copies of the lost tasks, distributes them to be executed
locally on the client. Hence, even if the client loses contact with some servers, the lost
tasks are re-executed, ensuring that all are processed.

3.2. Decision Algorithms

The decision process is the core of the framework described in the previous section. This
process assigns each application task to execute on a server. With enough contextual in-
formation at its disposal, the Decision Maker module executes an algorithm to decide
the assignment/scheduling of tasks. The objective of the decision is to minimize the ap-
plications’ execution time, trying to optimize task distribution and following established
constraints to avoid offloading failures and lack of energy on the network nodes. The
following sections present the developed decision algorithms.

3.2.1. GCF Algorithm

Greedy for CPU Free (GCF) is a decision and task assignment algorithm that prioritizes
sending tasks to servers with the highest processing availability (lowest queuing time) and
the shortest distances to the client. This prioritization is done by sorting the set of feasible
servers. Such sorting is done only once for each workload. In the event of a tie in the
server evaluation, the algorithm breaks the tie by the following order of priority: edge
servers, client, and nearby vehicles. After sorting, the algorithm goes through the set of
feasible servers and allocates as many tasks as possible to its servers.

3.2.2. GTT Algorithm

Greedy Task by Task (GTT) is a decision and task assignment algorithm that seeks the
best possible server to execute each application task. The algorithm classifies a server as

better mainly by the following context parameters: CPU capacity, CPU availability, and
distance to the client. Thus, the best server tends to have high CPU capacity, low queue
time, and a short distance to the client. Moreover, the algorithm updates the best servers
list in real-time as it decides where to send tasks and uses information about known routes
of vehicles. Therefore, the main characteristics of the GTT that differentiate it from the
GCEF are: use of contextual information of known routes of vehicles and CPU capacity;
case-by-case analysis to allocate each task (first traversing the set of tasks and not the set
of feasible servers); update of the best server at each allocation with different criteria.

3.2.3. BCV Algorithm

Artificial Bee Colony (ABC) for Computation Offloading in Vehicular Edge Computing
(BCV) is a decision, task scheduling, and intelligent algorithm based on the ABC meta-
heuristic. This algorithm is inspired by the behavior of honey bees when searching for
food sources. As shown in Figure [3] the BCV considers a food source (nectar from a
flower) as a feasible solution. This solution is an association between each computation
task in the workload (71, 72, 73, 74) and the server where it will be executed. An infeasible
solution is one that can cause offloading failures. These possible failures are predicted by
calculations of the algorithm. They indicate a future lack of connectivity between client
and server or of energy of some node.

Task | 1 | 2| B | ©

Server | @D g @ ™

Figure 3. Figurative depiction of bees looking for solutions in the BCV search
space.

Figure [3 uses the scenario in Figure [2] which shows the servers available for the
client (red vehicle). The algorithm evaluates the fitness of each solution based on the sum
of the time to execute each workload task on the different chosen servers (Z;,:q;). The
lower t;,:4;, the greater the fitness of the solution.

4. Evaluation

We employed the SUM(ﬂ and ns—SE] simulators with a SG/mmWaveE] module to evalu-
ate our offloading algorithms. Simulations were used because they reduce the financial
costs of evaluations, avoid logistical difficulties, provide increasingly robust and realistic
models, allow reproducible and better-controlled tests, and are the most used technique to
perform network experiments [Souza et al. 2020al]. The simulations were performed on
a computer with an Intel Xeon E5645 processor @ 2.40 GHz and 32 GB RAM. In terms
of scenarios, we used an adapted stretch of a Brazilian highway with 5 km in length and
an adapted urban stretch of 2 km? of Manhattan, New York, USA. Besides, we used three
types of vehicular densities in each scenario: 11, 55, and 120 vehicles/km in the highway
scenario and 25, 120, and 250 vehicles/km? in the urban scenario.

Initially, we made some preliminary assessments of parameters such as the com-
munication range, configurations of the BCV algorithm, and the percentage of known
routes of vehicles. Regarding the last parameter, although some public vehicles (e.g.,
buses) already make this information available, not all drivers of private vehicles may be
willing to make it available for privacy reasons. Therefore, we carried out experiments
to evaluate how the algorithms that use this information (GTT and BCV) are impacted
according to different percentages of vehicles that provide their routes. From this evalua-
tion, we concluded that the more vehicles with known routes, the greater the reduction of
computation offloading failures.

Then, we compared the performance of BCV with other four algorithms:
FIFO (First In, First Out - used to show the behavior of choosing servers at ran-
dom) [Souza et al. 2021]], HVC (Hybrid Vehicular edge Cloud - an of the main and
most cited state-of-the-art solutions) [Feng et al. 2018], GCF (Greedy for CPU Free)
[Souza et al. 2020b] and GTT (Greedy Task by Task) [Souza et al. 2021]]. The perfor-
mances of the different algorithms were evaluated with a massive amount of experiments
according to the two main metrics of this thesis: tasks by occurrence type and reduction in
execution time. The first metric evaluates the percentage of successes and failures in the
offloading processes. The second metric evaluates how much each algorithm has reduced
in terms of the workload execution times when compared to the totally local execution by
the client. We saw that the developed algorithms outperformed the totally local execution
and the FIFO and HVC algorithms in the two metrics.

In the tasks by occurrence type metric, the BCV, GTT, and GCF outperformed
FIFO and HVC in 41, 40, and 39 of 60 cases of failure rates, respectively. In some groups
of experiments, the BCV, GTT, and GCF presented, respectively, up to 0.0 %, 0.1 %,
and 1.1 % of failures. As can be observed, there is no guarantee that all the offloading
processes will be successful. The offloading failures occur because vehicular mobility is
not entirely and precisely predictable. Even so, the number of failures was minimized
with the three developed algorithms. Moreover, all the lost tasks by network partition
were recovered and executed locally on client vehicles.

In the reduction in execution time metric, the Table 1| shows that the BCV outper-

Uhttps://sumo.dlr.de/
Zhttps://www.nsnam.org
3https://apps.nsnam.org/app/mmwave/

https://sumo.dlr.de/
https://www.nsnam.org
https://apps.nsnam.org/app/mmwave/

formed the FIFO and HVC algorithms in 59 of 60 groups of experiments, with a reduction
record of 75.6 % and showing the best performance in 48 of 60 groups of experiments.
From the evaluation, we concluded that the BCV algorithm had the best performance for
different workloads and presented the best ways to reduce the execution time of vehicular
applications reliably.

Table 1. Results summary of the algorithms in reduction in execution time metric.

Outperformed | Reduction Best

FIFO and HVC | Record | Performance
BCV 59/60 75.6 % 48/60
GTT 51/60 73.9 % 28/60
GCF 36/60 66.5 % 1/60

The results presented are significant because they show that the computation of-
floading technique, when well managed, can reliably improve the performance of vehic-
ular applications through other cooperating devices in the vehicular environment. There-
fore, we believe that the work developed in this thesis can offer a promising alternative to
enable the execution of these applications.

5. Publications

The list of publications related to this thesis is as follows.

1. A. B. Souza, P. A. L. Rego, T. Carneiro, P. H. G. Rocha, and J. N. Souza.
“A Context-Oriented Framework for Computation Offloading in Vehicular Edge
Computing using WAVE and 5G Networks”. Vehicular Communications, vol-
ume 32, 2021. 96 % (Scopus highest percentile).

2. A. B. Souza, P. A. L. Rego, T. Carneiro, J. C. Rodrigues, P. P. R. Filho, J. N.
Souza, V. Chamola, V. H. C. Albuquerque, and B. Sikdar. “Computation Offload-
ing for Vehicular Environments: A Survey”. IEEE Access, volume 8, 2020. 87
9 (Scopus highest percentile).

3. A.B. Souza, P. A. L. Rego, P. H. G. Rocha, T. Carneiro, and J. N. Souza. “A Task
Offloading Scheme for WAVE Vehicular Clouds and 5G Mobile Edge Comput-
ing”. IEEE Global Communications Conference - IEEE GLOBECOM, 2020,
Taipei, Taiwan. Al (Quali@.

4. A. B. Souza, P. A. L. Rego, and J. N. Souza. “Exploring Computation Offload-
ing in Vehicular Clouds”. IEEE International Conference on Cloud Networking -
IEEE CloudNet, 2019, Coimbra, Portugal. B1 (Qualis).

5. A. M. Sousa, Souza, A. B., P. A. L. Rego, J. N. Souza, and J. A. F. Macedo.
“Um Algoritmo de Offloading Computacional para Nuvens Veiculares”. Simpdsio
Brasileiro de Telecomunicacdes e Processamento de Sinais - SBrT, 2017, Sao
Pedro, Brasil.

4Period: 2013-2016; Area: Computer Science.

References

Al-Sultan, S., Al-Doori, M. M., Al-Bayatti, A. H., and Zedan, H. (2014). A comprehen-
sive survey on vehicular ad hoc network. Journal of network and computer applica-
tions, 37:380-392.

Boukerche, A. and Sotoro, V. (2020). Computation offloading and retrieval for vehicu-
lar edge computing: Algorithms, model and classification. ACM Computing Surveys
(CSUR), 53(4):1-35.

Chen, C., Chen, L., Liu, L., He, S., Yuan, X., Lan, D., and Chen, Z. (2020). Delay-

optimized v2v-based computation offloading in urban vehicular edge computing and
networks. IEEE Access, 8:18863—18873.

Feng, J., Liu, Z., Wu, C., and Ji, Y. (2018). Mobile edge computing for the internet
of vehicles: Offloading framework and job scheduling. IEEE Vehicular Technology
Magazine, 14(1):28-36.

Liu, Y., Wang, S., Zhao, Q., Du, S., Zhou, A., Ma, X., and Yang, F. (2020). Dependency-
aware task scheduling in vehicular edge computing. IEEE Internet of Things Journal,
7(6):4961-4971.

Qiao, G., Leng, S., Zhang, K., and He, Y. (2018). Collaborative task offloading in vehic-
ular edge multi-access networks. IEEE Communications Magazine, 56(8):48-54.

Rahman, A. U., Malik, A. W., Sati, V., Chopra, A., and Ravana, S. D. (2020). Context-
aware opportunistic computing in vehicle-to-vehicle networks. Vehicular Communica-
tions, 24:100236.

Rego, P. A., Costa, P. B., Coutinho, E. F,, Rocha, L. S., Trinta, F. A., and de Souza,
J. N. (2017). Performing computation offloading on multiple platforms. Computer
Communications, 105:1-13.

Souza, A. B., Rego, P. A., Carneiro, T., Rodrigues, J. D. C., Reboucas Filho, P. P,
De Souza, J. N., Chamola, V., De Albuquerque, V. H. C., and Sikdar, B. (2020a). Com-
putation offloading for vehicular environments: A survey. IEEE Access, 8:198214—
198243.

Souza, A. B., Rego, P. A. L., Carneiro, T., Rocha, P. H. G., and de Souza, J. N. (2021). A
context-oriented framework for computation offloading in vehicular edge computing
using wave and 5g networks. Veh. Commun., 32:100389.

Souza, A. B., Rego, P. A. L., Rocha, P. H. G., Carneiro, T., and de Souza, J. N. (2020b).
A task offloading scheme for wave vehicular clouds and 5g mobile edge computing. In
GLOBECOM 2020-2020 IEEE Global Communications Conference, pages 1-6. IEEE.

Sun, Y., Guo, X., Song, J., Zhou, S., Jiang, Z., Liu, X., and Niu, Z. (2019). Adaptive
learning-based task offloading for vehicular edge computing systems. IEEE Transac-
tions on Vehicular Technology, 68(4):3061-3074.

Xu, D., Li, Y., Chen, X., Li, J., Hui, P., Chen, S., and Crowcroft, J. (2018). A survey
of opportunistic offloading. IEEE Communications Surveys & Tutorials, 20(3):2198—
2236.

Zhang, J. and Letaief, K. B. (2019). Mobile edge intelligence and computing for the
internet of vehicles. Proceedings of the IEEE, 108(2):246-261.

	Problem Statement and Contributions
	Related Work
	Computation Offloading Framework and Decision Algorithms
	Computation Offloading Framework
	Decision Algorithms
	GCF Algorithm
	GTT Algorithm
	BCV Algorithm

	Evaluation
	Publications

