IDIT-SDN: Intrusion Detection Framework for
Software-defined Wireless Sensor Networks

Gustavo A. Nunez Segura’, Arsenia Chorti?, Cintia Borges Margi’

'Escuela de Ingenieria Eléctrica — Universidad de Costa Rica
2ETIS UMRS051, CY Université, ENSEA, CNRS, F-95000, Cergy, France
3Escola Politécnica — Universidade de Sdo Paulo, Sdo Paulo, SP, Brazil

gustavoalonso.nunez@ucr.ac.cr, arsenia.chorti@ensea.fr, cintia@usp.br

Abstract. Software-Defined Networking has been used to leverage security so-
lutions for wireless sensor networks. However, this paradigm turns networks
vulnerable to distributed denial of service attacks. IDIT-SDN is a tool for
Software-defined Wireless Sensor Networks devised for DoS and DDoS attacks
simulation and detection. This tool provides a framework for anomaly detec-
tion and a communication protocol to share security wise information from the
sensor network to the controller. We demonstrate its use by showing a coop-
erative DDoS attack detection and attacker identification application based on
distributed (every node) and centralized (controller) anomaly detection.

1. Introduction

Wireless Sensor Networks (WSN) is a data collection technology used for Internet of
Things (IoT) and Industry 4.0 applications. We can find WSNs deployed in different
places, such as: shopping centers, hospitals, cities, or even inside the forest, deserts or
water masses. Moreover, the type of data collected might change according to the appli-
cation. A WSN can be deployed inside a building for environmental monitoring while in
the same building someone could be using a wearable for blood pressure control. Perhaps
losing a temperature sample packet is not critical but for the blood pressure control it is.
This means, there is a wide range of service requirements a WSN should fulfill.

Security is a challenging requirement for WSNs. An specific application that
collects sensible or private data using resource constrained devices may be deployed in a
hostile location. In these conditions, the network is vulnerable to all kind of attacks and
have few resources to detect and mitigate them.

Software-Defined Networking (SDN) [McKeown et al. 2008]] has been explored
to improve security in WSNs. SDN proposes to move control decisions from network
devices to dedicated hardware, commonly known as SDN Controller. The controller re-
ceives or collects data from network devices to then configure forwarding rules on them.
This view of the network is instrumental to detect and mitigate attacks, however, cen-
tralization of control decisions turns SDN networks prone to DoS and DDoS attacks
[Kreutz et al. 20135]], since the whole network operation depends on the controller.

One strategy to reduce this vulnerability is to implement part of the attack detec-
tion in the network devices [Naous et al. 2009, /Ahmad et al. 2015]]. Doing this, we aim

to detect the attack before it reaches the controller. To attain this objective, we devel-
oped IDIT-SDN, a security framework for Software-Defined Wireless Sensor Networks
(SDWSN). IDIT-SDN includes a security and a management module in every node in the
network. The management module collects information to calculate performance metrics
and the security module uses these metrics to detect anomalies in its behavior. Then, the
security modules are able to share this information with the SDN Controller to determine
if the network is under attack.

In this paper, we explain the architecture of the framework, the communication
protocol, the detection algorithm and its implementation. Then, we show its basic config-
uration and a demonstration of its use.

2. Architecture

IDIT-SDN enables the cooperation between the sensing layer and the control layer. This
cooperation aims to improve DoS and DDoS detection in SDWSN.

A security and a management applications run on the SDN controller. The man-
agement application receives data from the management application in every network de-
vice to calculate global performance metrics, such as delivery rate and control overhead.
The security application uses the metrics calculated by the management application to per-
form statistical analysis and detect anomalies on the network behavior. From this point,
we will use the names CSec and CMan for the security and management applications in
the SDN controller, respectively. Likewise, a security and a management applications run
on every network device. The operation is similar to the case in the SDN controller: the
security application uses the metrics from the management application to detect anoma-
lies. However, in this case the data source of the management application is the network
device itself. Some examples of metrics are: number of packets transmitted and process-
ing resources usage (time). From this point, we use the names NSec and NMan referring
to the security and management applications in every network device, respectively.

Individually, every network device and the SDN controller are able to detect
anomalies that could relate to DoSs or DDoS attack. Then, we propose that CSec re-
ceives information from the NSecs, such as notifications of anomaly detection and the
metric, or metrics, where an anomaly was detected. We believe the main contribution of
this tool is the implementation of security policies that take advantage of centralized and
distributed information in the SDN controller to improve DoS and DDoS attacks detec-
tion. The architecture of IDIT-SDN is depicted in Figure

3. IDIT-SDN implementation

IDIT-SDN is currently implemented on I'T-SDN [Alves et al. 2017]] version 0.41 ﬂ IT-
SDN is an open source SDWSN developing framework, implemented as a Contiki OS
network driver. This framework is composed by three main protocols: Southbound pro-
tocol, Neighbor Discovery protocol and Controller Discovery protocol. The Southbound
protocol handles the communication between the SDN controller and the network device,
which includes the definition of the packet format, the processing of packets and the op-
eration workflow. The neighbor discovery protocol manages neighborhood information

'Available at https://sites.google.com/usp.br/cintia/it—sdn

https://sites.google.com/usp.br/cintia/it-sdn

SDN Controller
- Metric request
Security Management
CSec Metric value CMan Control
T " T layer
IT-SDN
"""""""""""""""" Southbound protocol
v , v .
Security |Metic reaues Iy o nagement Pe:ceptlon
. ayer
NSec Metric value NMan
Network device

Figure 1. IDIT-SDN architecture

and controller discovery protocol is in charge of obtaining a route to reach the controller.
The operation of these three protocols is orchestrated by an event based SDN core.

I'T-SDN includes a controller software implementation. This software collects and
stores topology information to construct the topology graph and takes routing decisions
based on Djikstra algorithm. One network device works as a bridge between the controller
and the WSN. A serial protocol to communicate the controller and this bridge is also part
of the implementation provided. IT-SDN performance was evaluated in topologies with
up to 289 nodes and it is similar to RPL’s performance [Alves et al. 2019]].

The CSec and CMan are applications that reside in the SDN Controller while the
NSec and NMan are applications that reside in the Network device. However, the IT-SDN
control plane and Southbound protocol remains without changes.

3.1. Anomaly detection

Intrusion detection is classified in two categories: signature-based and anomaly-based.
Signature-based detection uses pattern matching to identify known attacks but is not ef-
fective to zero-day attacks. Anomaly-based detection is meant to identify abnormal be-
haviors by using statistical methods or machine learning, regardless they match a pattern
or not.

A symptom of a DoS and DDoS attacks is an anomaly behavior on packets traf-
fic. We implemented a real time anomaly detector based on Change Point (CP) analysis,
following the work proposed in [Skaperas et al. 2019]. Their proposal is composed of
an off-line phase, an on-line phase and a trend indicator. The off-line phase is a training
period employed to configure the on-line phase and the trend indicator determines the
direction of the change. Since the anomaly detector should fit in resource-constrained
devices, we decided to implement only the on-line phase and configure the parameters
according to our requirements: accuracy versus detection speed. The low-complexity
(i.e. O(Nlog N), where N is the length of the time series), success rate and access to the
original code were the main reasons to choose it.

3.2. NSec and CSec

NSec was implemented as a Contiki process thread that initiates after all the communica-
tion processes are up. The anomaly detection algorithm iterates between monitoring and

detection routines. The monitoring routine is meant to obtain statistical information of the
network devices behavior while the detection routine is meant to detect anomalies. The
monitoring routine follows the next two steps: 1), a time series with samples of the metric
of interest is constructed; ii) after M samples, the cumulative sum and variance of the time
series are calculated and stored. The value of the metric is provided by the NMan.

The detection routine starts immediately after the monitoring routine. The de-
tection routine continues the metric sampling and, after every new sample, executes an
hypothesis test. If a CP is detected, an alarm is triggered and a message is sent to the
CSec. On the other hand, if after M samples no CP is detected, the algorithm goes back
to the monitoring routine. Since there are memory restrictions on the device, the first
D samples of the current monitoring time series are discarded and the D samples col-
lected during the detection routine are copied to the monitoring time series. Then, a new
cumulative sum and variance are calculated.

The CSec executes the same CP detection algorithm explained for the NSec.
The information to construct the time series is provided by the CMan. Since the CSec
is supposed to run in a server without resource constraints, we are able to implement
multiple detectors, where each detector could monitor one metric. Monitoring multi-
ple metrics enables the implementation of policies to determine the type of the attack
[Segura et al. 2022] or confirmation of attack based on multiple CP.

Other security policies or detection algorithms could be implemented using the
information received from the NSecs. One example is attacker identification. When the
CSec receives an alarm from a NSec, it is able to ask to the SDN controller about the
neighborhood of this node. If the CSec receives more alarms from the same neighborhood,
it is possible that the attacker be within this area. We have implemented an attacker
identification algorithm that works in case of new-flow-based attacks. In this algorithm,
the network device has to determine a suspect before sending the alarm. To solve this
problem, the network device is aware of packets with flow identifiers that are not in its
flow table and required a flow request to route it. The network device stores the address of
the source of the packet in a buffer and, when an anomaly is detected, it checks the buffer
and counts the repetition of each address. The address with more repetitions is the one
reported to the CSec. The CSec can now take a decision based on the number of alarms
received reporting the same address [Segura et al. 2022].

3.3. Communication

The NSec is able to inform to the CSec when an anomaly is detected through the com-
munication protocol for management communication proposed in [Luz et al. 2019]]. This
protocol has two packets: Request Packet and Monitoring Packet. The Request Packet al-
lows a centralized management to request information to a specific network device. The
network device replies using the Monitoring Packet. The protocol supports asynchronous
communication for periodic monitoring, thus network devices are able to send manage-
ment information to the centralized application even without receiving a request.

Every network device is able to communicate an alarm to the CSec by sending
a packet with flow 7, which is the flow identifier IT-SDN uses to reach the controller.
The packet should be identified as SDN_PACKET_MNGT_NODE_DATA to be routed to the
CMan application. Then, the CMan message handler checks the message header. If the

header matches with SDN_SEC_CP_DETECT_ALARM, the message handler forwards the
information to the CSec.

Figure [2| depicts the Monitoring Packet format. The header contains packet type
(1 byte), TTL (1 byte), sequence number (1 byte), source address (2, 6 or 8 bytes) and one
byte reserved for compatibility with Rime packets in the Contiki communication stack.
Flow ID contains the flow identifier (2 bytes). Management metrics are two bytes to
inform the metrics values contained in the message. Each bit is a flag that represents one
metric; if one bit is /, the metric related to this bit is contained in the message. Thus, the
protocol supports up to 16 metrics. In the current version of IDIT-SDN, we use the eighth
bit to send an alarm to the CSec. In this case the suspect address is contained in the metric
value.

Management .
IT-SDN header Flow ID i Metric value
metrics

6, 10 or 12 bytes 2 bytes 2 bytes 1 to 64 bytes

Figure 2. Monitoring Packet format

4. Configuration

IDIT-SDN has been used in networks up to 225 nodes, obtaining DDoS attack detection
results above 95% and intrusion identification above 93% [Segura 2021]]. However, our
intention is to show its use as a research tool for security in WSN and IoT environments.
For this purpose, we will explain the basic configuration of the NSec and CSec.

The NSec was implemented as a Contiki process thread named secu-
rity_node_process. Its code is located in the file sdn-node-security-module.c inside the
folder sdn-common. The number of samples for the monitoring window (m_win) and
detection window (d_-win) should be set in this file. Results about the impact of these
parameters on the detection performance are presented at [Segura et al. 2022]]. Also, it is
worth to consider memory usage in case of resource constrained devices.

The sampling period is configurable. It was implemented assuming a uni-
form sampling during the whole simulation, thus, a flag in the makefile (Make-
file_enabled node) could be activated to set this time. The options implemented are:
SONETWSEC for one hundred and twenty seconds, SSIXTYSEC for sixty seconds,
STHIRSEC for thirty seconds and STENSEC for ten seconds.

The CP detection algorithm has two configurable parameters: sensitivity (g) and
critical value (ca). However, the values of these parameters are restricted. The sensitivity
can be set to: 0, 0.15, 0.25, 0.35, 0.45, 0.49. The critical value depends on another
parameter, which is not configurable for NSec, but all the possible values are available in
the file sdn-security-module.c. We use ca = 2.82 by default. The discussion about these
parameters is presented in [Segura et al. 2022].

In the current version of IDIT-SDN, NSec is able to monitor just one metric at a
time. By default, it uses the transmitting time to detect anomalies. This metric is the time
the radio module remains on transmitting. The detection performance of DoS and DDoS
attacks using this metric can be found it [Segura et al. 2022].

The CSec was implemented as an application that resides in the SDN controller.
The main code is located in the file sdn-security-module.c inside the folder controller-
server.

The code is split in two parts: one part for the centralized detection and the other
part to receive and process the alarms from the NSecs. The centralized detection is com-
posed by two CP detectors, one detector to analyze control packets overhead and the other
one to analyze data packets delivery rate behavior. To enable the operation of the detec-
tors, you should set the flags CTRL_OV_DETECT and DATA_DR_DETECT in the makefiles
and in the file controller-pc.pro.

The sensor nodes should be configured to provide the information required to
calculate the control overhead and data packets delivery rate metrics in the CMan. For
this, there are four flags that define the periodicity of this report. The options implemented
are: MONETWSEC for one hundred and twenty seconds, MSIXTYSEC for sixty seconds,
MTHIRSEC for thirty seconds and MTENSEC for ten seconds. The time set for the sensor
nodes should be the same set for the CMan in the file controller-pc.pro. However, there is
a parameter that should be manually configured. In the current version, IDIT-SDN is not
able to synchronize the report of data packets sent by every sensor node and the number
of data packets received by the sink, thus, the number of data packets expected should be
set in the file sdn-metrics-cal.c located in the folder controller-server.

The parameters S_SKIP, T_-WIN, GAMMA and S_VAL are configurable. S_SKIP
is a number of samples ignored by the CP analysis. This is meant to avoid the transitory
behavior during the initial configuration of the network. T_WIN is the size of the monitor-
ing window. GAMMA (y) and S_VAL («) are the parameters to calculate the critical value.
Please check references [Segura et al. 2022] to deepen this topic.

In the case a detector raises an alarm, the algorithm checks which metric triggered
the detector and classifies the possible attack. We have tested the attack identification for
two type of DDoS attacks: new-flow-based and neighborhood-information-based. Our
results showed that new-flow-based attacks are detected first by monitoring the number of
control packets and that neighborhood-information-based attack are detected first by data
packets delivery rate [Segura et al. 2022].

The module that receives the NSecs alarms provides a list of suspects and a list of
attackers, based on the hypothesis that suspects with multiple indications are considered
as attackers. The number of indications depends on the number of neighbors of this node
and a threshold, which is configurable. This parameter is named D_THRESHOLD and is
set by 0.5 as default.

4.1. Case of use: 36 nodes

Figure [3a] shows square grid topology of 36 nodes, composed of one SDN controller,
two sinks and 33 sensor nodes. The CSec and CMan were configured to monitor control
packets traffic and data packets delivery rate. The NSec and NMan were configured to
monitor transmitting time. Three of these sensor nodes are programmed to behave as at-
tackers and execute a new-flow-based attack variation named False Data Flow Forwarding
(FDFF) [Segura et al. 2019]. In brief, the attackers fool their neighbors to flood the net-
work with flow requests packets by sending data packets with unknown flow identifiers.

The attackers are identified with numbers 40, 41 and 42. The results expected are the CP
detected by the NSecs, the CP detected by the CSec and the list of attackers identified.

_._H_._H_ Attacker Sensor node Controller
flow id = random
® © ® © & @
DATA_PACKET
@ . . @ . @ rule match?
L FLOW_REQUEST
@ @ @ & "
!ﬂ R N i \,\ calculates rule
FLOW_SETUP
lci.ﬂ.ce-e @ 19&:-% @ @
y
‘ @ saves new rule
#.® 0 00
(b) FDFF attack message ex-
(a) Topology with 36 nodes change

Figure 3. Demonstration topology and attack message exchange

The simulation was executed using COOJA Simulator, which is part of Contiki.
COOJA is capable of emulating WSN platforms. For these experiments, we used the
sky mote (i.e. TelosB mote). This platform is equipped with a 8 MHz MSP430 microcon-
troller and the total footprint, considering IT-SDN stack, IDIT-SDN modules and a simple
data monitoring application, is 48162 B of ROM and 9374 B of RAM. Table[I|summarizes
the simulation parameters for this demonstration. The source code and user manual for
IDIT-SDN is available at https://github.com/gnunezucr/idit—sdn, while
the video demonstrations are available at https://youtu.be/sYbSuFbgL2c and
https://youtu.be/vFcMjfWg_UQ.

Acknowledgment

This study was financed in part by the Coordenacdo de Aperfeicoamento de Pessoal de
Nivel Superior - Brasil (CAPES) - Finance Code 001 and by the ELIOT project (ANR-18-
CE40-0030 / FAPESP 2018/12579-7). Gustavo A. Nunez Segura is supported by Univer-
sidad de Costa Rica. Cintia B. Margi is supported by CNPq fellowship #311687/2022-9.

References

Ahmad, I., Namal, S., Ylianttila, M., and Gurtov, A. (2015). Security in software defined
networks: A survey. IEEE Communications Surveys & Tutorials, 17(4):2317-2346.

Alves, R. C. A., Oliveira, D., Segura, G. N., and Margi, C. B. (2017). IT-SDN: Improved
architecture for SDWSN. In XXXV Simposio Brasileiro de Redes de Computadores.
Available at https://sites.google.com/usp.br/cintia/it—sdn.

Alves, R. C. A., Oliveira, D. A. G., Nunez Segura, G. A., and Margi, C. B. (2019). The
Cost of Software-Defining Things: A Scalability Study of Software-Defined Sensor
Networks. IEEE Access, 7:115093-115108.

The firmware used to implement the FDFF attack is included in the current version of IDIT-SDN. It
can be found in /it-sdn/applications/attack-fdff.c.

https://github.com/gnunezucr/idit-sdn
https://youtu.be/sYbSuFbqL2c
https://youtu.be/vFcMjfWg_UQ
https://sites.google.com/usp.br/cintia/it-sdn

Table 1. Simulation Parameters

| Simulation parameters |

Simulation time 36000 s
Data traffic rate 1 packet/ min [payload: 10 bytes]
Attack begins after 8400 s

NSec parameters
Monitoring window (m_win) | 200
Detection window (d_win) | 50

Sampling period 60 s

Critical value (ca) 2.82
sensitivity (g) 0

CSec parameters

Monitoring period 60 s
S_SKIP 10 samples
T_WIN 210 samples
GAMMA 0.45

S_VAL 0.95

Kreutz, D., Ramos, F. M. V., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., and
Uhlig, S. (2015). Software-defined networking: A comprehensive survey. Proceedings
of the IEEFE, 103(1):14-76.

Luz, T. C., Nunez, G. A., Margi, C. B., and Verdi, F. L. (2019). In-network performance
measurements for software defined wireless sensor networks. In 2019 IEEE 16th In-
ternational Conference on Networking, Sensing and Control (ICNSC), pages 206-211.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., and Turner, J. (2008). Openflow: Enabling innovation in campus net-
works. SIGCOMM Comput. Commun. Rev., 38(2):69-74.

Naous, J., Stutsman, R., Mazieres, D., McKeown, N., and Zeldovich, N. (2009). Delegat-
ing network security with more information. In Proceedings of the 1st ACM Workshop
on Research on Enterprise Networking, WREN 09, page 19-26, New York, NY, USA.
ACM.

Segura, G. A. N., Chorti, A., and Margi, C. B. (2022). Centralized and Distributed Intru-
sion Detection for Resource-Constrained Wireless SDN Networks. [EEE Internet of
Things Journal, 9(10):7746-7758.

Segura, G. A. N., Margi, C. B., and Chorti, A. (2019). Understanding the Performance
of Software Defined Wireless Sensor Networks Under Denial of Service Attack. Open
Journal of Internet Of Things (OJIOT). Special Issue: Proc. Int. Workshop Very Large
Internet of Things (VLIoT 2019) in conjunction with the VLDB 2019.

Segura, G. N. (2021). Cooperative Intrusion Detection for Software-Defined Resource-
Constrained Networks. PhD thesis, Universidade de Sao Paulo.

Skaperas, S., Mamatas, L., and Chorti, A. (2019). Real-time video content popularity
detection based on mean change point analysis. /IEEE Access, 7:142246-142260.

	Introduction
	Architecture
	IDIT-SDN implementation
	Anomaly detection
	NSec and CSec
	Communication

	Configuration
	Case of use: 36 nodes

