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Abstract. Virtual Reality (VR) content is gaining popularity, demanding solu-
tions for its efficient distribution over the Internet. Microservices present an
ideal model for deploying services at different levels of a Fog computing ar-
chitecture for managing traffic and provide Quality of Experience (QoE) guar-
antees to VR content. However, it is crucial to efficiently find the fog node to
allocate the microservices, which directly impact the QoE of VR services. This
paper proposes INFORMER, an integer linear programming model aiming to
optimize the placement of caching services according to delay, migration time,
and resource utilization rate. Based on the insights from INFORMER, the paper
presents Fog4VR, a mechanism for the dynamic allocation of content based on
a heterogeneous microservice architecture. Results obtained with INFORMER
serve as a baseline to evaluate Fog4VR on different scenarios using a simulation
environment. Results demonstrate the efficiency of Fog4VR compared to existing
mechanisms in terms of cost, migration time, fairness index, and QoE.

1. Introduction
Virtual Reality (VR) technologies are growing in popularity. For instance, Youtube started
supporting 360◦ content for VR playback, which uses Video-on-Demand (VoD) to parti-
tion a VR video into spatially related tiled videos. However, VR services have stringent
requirements, such as a latency below 20 ms and a bitrate greater than that of traditional
videos, due to its panoramic nature and high video resolution. Hence, it is challenging to
deliver VR video streams with QoE support over the current communication infrastruc-
ture [Li et al. 2018].

In this context, fog computing enables to offer VR services closer to mo-
bile users, ensuring the delay and bandwidth requirements for content distribution
[Rosário et al. 2018]. A fog infrastructure can expand dynamically according to the user
demand for VR video streams, where a microservices architecture is ideal for deploying
the components for VR video distribution. In particular, content delivery can benefit from
a microservice architecture because it reduces the cost to instantiate and migrate cache
instances according tso changes in the behavior of user demand [Tian et al. 2018]. Con-
sequently, the content distribution system can adapt faster to changes in user demand and
reduce resources wasted on unnecessary service instances.

Allocating microservices in a fog infrastructure to provide Quality of Experience
(QoE) support for VR video streams comprises two steps: (i) decision and allocation of
microservice, and (ii) Content migration. The first step finds the best node for deploying
the microservice in a heterogeneous fog computing architecture. The second step encom-
passes the transference of content and forwarding of user requests to the allocated fog
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node. In this context, the decision step must have an efficient design because the location
of caching microservices influences migration time and delay, directly impacting the per-
formance of VR services. Hence, the design for the decision step must take into account
different metrics to assess the performance of fog nodes, networks, and users to make
efficient decisions.

This paper presents the contributions in the master thesis [Alencar 2022], which
tackles the challenge of allocation of microservices for VR content delivery in a fog com-
puting architecture. We also take into account the user side using QoE metrics as a way to
evaluate our model and corroborate our proposal. The research conducted and presented
in this thesis advances the state-of-the-art in in the following ways: i) First, we design
a controller to allocate and migrate microservices in a heterogeneous fog computing ar-
chitecture called Fog4MS. ii) We provide an optimization model for microservices posi-
tioning called INFORMER, which considers transmission delay, content migration time,
and resource utilization rate of a fog node to determine the optimal position for alloca-
tion. Next, based on the insights from INFORMER, we introduces Fog4VR to distribute
VR content with QoE support using the concepts of microservices and heterogeneous fog
architectures. It uses the same parameters as INFORMER to identify suitable fog nodes
to allocate microservices, improving the QoE of VR contents. iii) Simulated experiments
shows the proximity of Fog4VR to the optimal results obtained with INFORMER. For
instance, Fog4VR reduces cost in 7% and migration time in 12%, while delivering VR
video stream with QoE 50% better than compared to existing mechanisms.

2. Related Works

This section presents a brief summary of the state-of-the-art on dynamic microservices
allocation for VR video streaming. Many papers have tried to solve the challenges of
this scope, however, many of these works do not consider all the aspects presented in the
problem. For example, some works only account the QoS characteristics, which does not
characterize the experience obtained by the end-user. Other works take into account the
QoE only in part, considering only one metric and not taking into account the nuances
related to the video streaming characteristic of the VR application.

Table 1 summarizes the main characteristics of reviewed studies intended to pro-
vide content allocation regarding QoE and Quality of Service (QoS) awareness, Video on
Demand (VoD) capability, VR aspects, and the allocation mechanism technique. These
characteristics prevent users from abandoning the service due to stalls, stalls duration, and
the playback start time. A content allocation mechanism must dynamically manage each
request, finding the fog node capable of meeting resource demands based on QoS and
QoE characteristics of VR streaming services to maximize QoE. However, most works
consider only one aspect. The lack of VoD support can lead to problems related to this
application’s peculiarities, mainly associated with video playback user perception (QoE).
Finally, it is preferable to use a heuristic technique as this has less computation time and
complexity. To the best of our knowledge, only Fog4VR considers every critical char-
acteristic for existing microservice allocation in a fog computing environment for VR
distribution with QoE support. More details about the related works can be found in the
Thesis [Alencar 2022].

3. Allocation Architecture and Mechanism

This section describes the fog computing architecture and mechanism for the dynamic
allocation of VR microservices.
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Table 1. Summary of Characteristics of Related Works

Works Characteristics
QoE QoS VoD VR Approach

[Rigazzi et al. 2019] ✓ ✓ Mathematical Modeling
[Mehrabi et al. 2021] ✓ ✓ Heuristic Model
[Apostolopoulos et al. 2020] ✓ Game Theory (PNE)
[Ni et al. 2017] ✓ ✓ Petri Network
[Mishra et al. 2020] ✓ AHP-EV
[Yousefpour et al. 2019] ✓ ILP+Greedy
[Mahmud et al. 2019] ✓ Fuzzy
[Lai et al. 2020] ✓ ✓ ILP+Heuristic Model
Fog4VR (Proposal) ✓ ✓ ✓ ✓ AHP

3.1. Architecture

We consider fog nodes deployed anywhere in a network organized into tiers between mo-
bile devices (at the bottom) and cloud (at the top) [Rosário et al. 2018]. The cloud keeps
the original copy of all VR content. It also distributes VR content for each user request
and maintains an overview of each service and node status. Moreover, the cloud runs an
allocation mechanism, such as Fog4VR, to select the fog node, allocate the microservice,
and distribute VR content adaptively and proactively.

A heterogeneous organization of fog nodes consists of a computational infrastruc-
ture with various characteristics to allocate content as closely as possible to the user. Each
fog node is represented by fi ∈ F , which has a unique identity i ∈ [1, n]. For instance,
a microservice for VR streaming could be deployed in a fog node fi to speed up content
distribution while improving the QoE. As a result, a fog node fi could have one or more
instances of microservices, which deliver the requested content to the user. Finally, the
Client application requests and displays VR content to users.

Figure 1. Architecture to deploy virtual reality VoD with microservices

3.2. Mechanism Operation

The Fog4VR mechanism is found in the Service Controller module. It manages the de-
cision steps (i.e., positioning of microservices in computing at a given fog node fi) and
content migration (i.e., transferring content and directing requests to that node). Fog4VR
receives the microservice request m ∈ M , which is a 3-tuple with content id id, con-
tent size s, and location l of the microservice requisition. Based on such information,
the mechanism verifies which fog fi is suitable to allocate the microservice m. To this
end, it computes the resource utilization rate ui based on microservice size ms, allocated
memory Ami, and total storage available Tsi in a given fog fi.
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If the fog node fi has enough storage resources to allocate the microservice m,
then Fog4VR must compute the migration time Tmi to transfer the microservice from the
cloud to a given fog node fi, where W is the TCP window size, and di,r is the packet trans-
mission time. Lastly, it updates the vector Li with the values of delay dfi,ml

, migration
time Tmi, and resource utilization rate ui.

Fog4VR mechanism computes the cost Ci for allocating the microservice m in
given fog node fi based on Eq. 1. The cost Ci takes into account different metrics (i.e.,
delay dfi,ml

, content migration time Tmi, and resource utilization rate ui), which have a
varying degree of importance.

Ci = w1 · dfi,ml
+ w2 · Tmi + w3 · · ·ui (1)

Fog4VR considers a multi-criteria decision-making method to balance inputs with
different degrees of importance, where we argue AHP to compute the best response ac-
cording to the significance of each parameter to another. Specifically, AHP decomposes
a complex problem into a hierarchy of simpler sub-problems, combining qualitative and
quantitative factors for analysis. Fog4VR mechanism builds a comparison matrix Vj,k for
each fog node fi to compare all pairs of criteria based on Eq. 2.

Vj,k =


dfi,ml

Tmi ui
dfi,ml

1 4 8
Tmi 1/4 1 2
ui 1/8 1/2 1

 → [0.72 0.18 0.10] (2)

As a result, we obtain the eigenvector P = [0.72,0.18,0.10], indicating the weights
of metrics, such as 0.72 for delay (dfi,ml

), 0.18 for migration time (Tmi), and 0.10 for re-
source utilization rate (ui). These weights are used to compute the cost Eq.1 for allocating
a cache microservice m in a given fog node fi. At the end of the process, the fog node
with the highest score is chosen, and the microservice is allocated to the node.

4. INFORMER optimization model
We introduce the INFORMER optimization model to perform the dynamic allocation of
VR microservices in heterogeneous fog computing environments, minimizing the delay
and consequently maximizing the QoE. The results derived by INFORMER can be used
as a benchmark to those achieved by other heuristics, due to INFORMER representing
the optimal solution for the same scenario.

INFORMER aims to maximize QoE following Eq. 3. Consequently, the equation
seeks to minimize the delay and migration time to better QoE. This minimization is es-
sential because VR streaming is very sensitive to delay. In this case, low delay leads to a
smaller number and duration of stall events, increasing the overall QoE of VR services.
The INFORMER model chooses the fog node with lower delay and minimum migration
time to deploy the microservice. Moreover, INFORMER allocates the microservice M in
a fog node following the restriction, where each microservice m must be allocated in a
fog node according to Eq. 4. Additionally, we cannot overflow the maximum fog storage
capacity of Tsi, as shown in Eq. 5. Finally, we do not exceed the bandwidth Bi limit of
each fog fi, as shown in Eq. 6. Therefore, INFORMER returns a binary variable ϑm,f ,
which correlates for each microservice the index of the fog to be allocated.

Min D =
∑

m=0 ∈ M

∑
fi=0 ∈ F

(dfi,Mlm
+ dz,Mlm

)× ϑm,fi (3)
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Subject to:

∑
fi=0 ∈ F

ϑm,fi = 1 ∀m ∈ M (4)

∑
m=0 ∈ M

ϑm,fi ≤ Tsfi ∀fi ∈ F (5)

∑
m=0 ∈ M

ϑm,fi ≤ Bfi ∀fi ∈ F (6)

5. Experimental Results
Experimental results were implemented in the NS3, and the source code is available on
GitHub1. Each simulation was performed 33 times with different randomness seeds, and
the results show the values with a 95% confidence interval. The scenario considers a vary-
ing number of requests to microservices (i.e., 20, 40, 60, 80, and 100), modeled according
to a Poisson distribution. The microservice considers a video streaming for VR service
based on a MPEG-DASH application. Each user can choose the video from a catalog of
100 different VR content. The selection of video is given by the Zipf distribution with α
= 0.7 so that the preference for content is better distributed. Videos have a fixed duration
of 30min and have an encoding of 25Mbps for a 4K VR stream. The scenario considers
the virtual topology of the FIBRE project network to assign the delays. More simulation
parameters and evaluation metrics can be found in the Master thesis [Alencar 2022].

We evaluate our proposal into two use cases; (i) Fog4MS aims to allocate VoD
microservices in a fog computing architecture using the AHP decision making described
in Section 3.2, but it tries to allocate with little migration time while making a load balance
across the network. In summary, Fog4MS do not prioritize the elements which return
a better QoE for users, its preference give a better service from the service providers
perspective, i.e., without consider the QoE. (ii) Fog4VR aims to allocate VR microservices
in a fog computing architecture with QoE support. Fog4VR considers all steps introduced
in Section 3.2.

5.1. Fog4MS Results
Figures 2(a) and 2(b) present the average time of content migration and video buffering
when allocating the microservice in the fog, respectively. The video buffering has a direct
impact on the QoE perceived by VoD users, as the shorter the buffering time, the higher
the user’s QoE and the lower the video abandonment rate. Thus, it is essential to observe
metrics such as service migration time and buffering time for QoE analysis.

Figure 2(a) shows that the cloud has a non-existent migration time, as the content
is already stored, and it is only necessary to instantiate the service. However, it can be
seen in Figure 2(b) that the initial buffering time of the video increases with the number of
microservices. It occurs because the cloud receives all the requests, so its load increases
with the number of microservices, degrading its performance. In turn, the greedy mech-
anism decides based on the latency between the client and the fog point, so it always has
a low buffering time. However, this mechanism has a poor performance concerning con-
tent migration time, as it often allocates the video to remote points in the network. The
random mechanism has an arbitrary decision that varies significantly and its performance
is always unsatisfactory. Finally, Fog4MS has intelligent decision-making that considers

1https://github.com/D3F3R4L/Fog4VR
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latency and migration time, obtaining the lowest content migration time, even if there is a
slight increase in buffering, i.e., the cost/benefit of the mechanism is entirely justifiable.
It is essential to highlight that Fog4MS is the only method to reduce content migration
time with the increase in the number of microservices.

Figure 2(c) presents the fairness index for the use of fog points resources in the
scenario simulation. This index expresses how much the load is being distributed across
the network. The worst case is to use only the cloud, i.e. when allocating microservices in
only one location. The greedy and random mechanisms have a similar distribution. In a
random mechanism, the chance for allocation in fog is the same among all possible fogs.
The index of Fog4MS mechanism is 33% and 30% lower than the indexes of greedy and
random mechanisms, respectively. Furthermore, Fog4MS is still able to distribute the load
on the network when necessary, as shown by the increase in the number of microservices.
Thus, Fog4MS provides higher efficiency in content distribution since its decision-making
prioritizes efficiency in favor of network balancing. The results of Fog4MS is better
described on [de Alencar et al. 2020].
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Figure 2. Simulation results for Fog4MS

5.2. Fog4VR Results
As Fog4VR focus on the support for QoE, Figure 3 refers to the QoE results in terms of
stall durations, buffering time, and percentage of unserved users, provided by different al-
location mechanisms for VR distribution according to a different number of microservice
requests. The results in Figure 3(a) indicates that Fog4VR provided the lowest number
of stalls with the shortest duration, which is an essential behavior since high values may
induce users to leave the VR service entirely. This performance is explained by the fact
that Fog4VR prioritizes VR microservice allocation on fog nodes with lower delay, taking
into account the migration time and resource utilization rate, enabling Fog4VR to choose
the best locations for the VR microservice to minimize the number and duration of stalls.

The Fog4VR heuristic provides results close to the best solution available (i.e., IN-
FORMER optimization model). Specifically, Fog4VR increases the number of stalls by
50% in the worst case, and the stall duration is by 5% to 40% compared to INFORMER.
Additionally, Fog4VR reduces the number of stall events by 45% to 75% and the dura-
tion of stall events by 54% to 74% compared to the AHP-EV mechanism depending on
the number of microservice requests. Compared to QoS-Greedy, Fog4VR reduces the
number of stall events by 33% to 45% and the stall duration by 9% to 45% because QoS-
Greedy focuses on allocating microservice in fog nodes with a shorter delay. QoS-Greedy
lacks other relevant metrics, which is crucial for optimal decision-making, leading to bad
decisions and overloading fog nodes. This deficiency is more prominent in highly de-
manding scenarios where other metrics (i.e., utilization rate) are essential to achieving a
high QoE.
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Figure 3(b) shows that INFORMER and Fog4VR have almost the same buffering
time (i.e., initial buffering time). This behavior is because Fog4VR can efficiently deter-
mine the fog node to allocate microservice based on multi-criteria metrics combined with
different degrees of importance for each metric, leading them to better allocation decisions
for users with low delay without overloading the fog nodes. QoS-Greedy have similar
performance compared to INFORMER for scenarios with up to 60 microservice requests,
i.e., low demand. Simultaneously, the buffering time is 20% worst than INFORMER for
a scenario with more than 80 microservice requests. The AHP-EV mechanism tends to
assign users to more distant locations like the cloud, which gives more delay to users and,
consequently, a higher buffering time.

Figure 3(c) shows the ratio of users who will probably be unsatisfied with the VR
experience obtained.Results indicate that Fog4VR have similar performance compared
to INFORMER since Fog4VR provides a lower number of stalls with a short duration,
leading to a lower number of unsatisfied users. In turn, AHP-EV presented the worse
ratio in all scenario cases. QoS-Greedy have a similar ratio of unsatisfied users compared
to INFORMER and Fog4VR in low demand scenarios. Fog4VR have 11% to 22% less
unsatisfied users than QoS-Greedy, 27% to 56% less unserved users than AHP-EV, and
only 20% to 28% more unsatisfied users than INFORMER.

20 40 60 80 100
Number of Microservices

0

2

4

6

8

10

St
al

ls 
Du

ra
tio

n 
(s

)

INFORMER Fog4VR QoS-Greedy AHP-EV

(a) Stalls Duration

20 40 60 80 100
Number of Microservices

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

B
u
ff

e
ri

n
g

 T
im

e
 (

s)

INFORMER Fog4VR QoS-Greedy AHP-EV

(b) Buffering time

20 40 60 80 100
Number of Microservices

0

10

20

30

40
R

a
ti

o
 o

f 
U

n
se

rv
e
d
 U

se
rs

 (
%

)

INFORMER Fog4VR QoS-Greedy AHP-EV

(c) Percentage of Unserved User

Figure 3. Simulation results for Fog4VR

Our performance evaluation analysis identified that Fog4VR have the best over-
all performance for QoE and service provider perspectives compared to other allocation
mechanisms. Fog4VR has a multi-criteria that considers delay, migration time, and re-
source utilization, which is desirable for the microservice allocation and VR application.
Therefore, Fog4VR provides higher efficiency in distributing content since its decision-
making prioritizes efficiency in favor of balancing the network, or vice-versa, when nec-
essary, delivering more QoE to users with better resource usage. The results of Fog4MS
is better described on [Alencar et al. 2022].

6. Conclusion and Thesis Impact
The necessity to deliver a good quality of experience to the users in VoD services has
brought a great challenge to researchers and companies service providers, especially with
VR applications. In this sense, we propose the Fog4VR mechanism which takes into
account delay, content migration time and utilization rate in the fog for the allocation of
microservices VR content in the fog computing infrastructure.

The results obtained showed that the Fog4VR mechanism can reduce stalls and
stalls duration by almost half, compared with AHP-EV and Greedy mechanism, while
staying closest to the INFORMER optimal solution. For future works, the Fog4VR can
be extended to manage the allocation of services in edge mobile computing in conjunction
with UAVs to support and increase the QoS of applications in a challenged scenario.
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7. Publications
The results of this Master Theses are published on:

Table 2. Summary of Results Published

Works Qualis Local Google Scholar Citations
[Alencar et al. 2022] A4 SBRC -

[de Alencar et al. 2020] A2 TNSM 11
[Santos et al. 2020] A1 Computer Networks 7
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