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Abstract. This work aims to enable self-driving networks by addressing the lack
of trust that network operators have in Machine Learning (ML) models for net-
working problems. To achieve this, we propose a natural-language conversa-
tional interface (LUMI) and a new ML pipeline that uses techniques from the
emerging field of eXplainable Artificial Intelligence (XAI) to scrutinize models.
We also propose a new XAI method called TRUSTEE to extract explanations
from any given black-box ML model in the form of decision trees of manageable
sizes. Our results indicate that ML models used in networking problems need to
be put under proper scrutiny and corrected to fulfill their tasks properly.

1. Introduction

As networks grow larger and more complex, they become more susceptible to human
errors. To reduce these errors, both industry and academia are automating network man-
agement and control tasks [Apostolopoulos 2020, Mirsky et al. 2018], with the ultimate
goal of creating a network that is autonomous and capable of making decisions with-
out human interactions. Autonomous networking has been a longstanding goal, but it
has not been fully realized due to technological limitations. Recent advances in Ar-
tificial Intelligence (AI) and Machine Learning (ML) have brought new hope to this
idea, which has been rebranded as self-driving networks [Feamster and Rexford 2018].
Although the definition of a self-driving network varies among companies and re-
searchers [Feamster and Rexford 2018][Huawei 2019] , there are some common design
elements in their definitions. To provide clarity, we define a self-driving network as an
autonomous network capable of acting according to high-level intents from an operator
and automatically adapting to changes in traffic and user behavior. To achieve this vision,
a self-driving network must be able to (i) understand high-level intents, (ii) monitor itself
based on those intents, (iii) predict and identify changing patterns from monitored data,
and (iv) adapt itself without operator intervention. Figure 1 presents a high-level design
of a self-driving network summarizing features and requirements found in the literature.

This self-driving network design is composed of two management loops. On the
left side of Figure 1, we see the first management loop (1, 2, 3, and 4), which starts
with an operator (1) specifying high-level intents, in natural language, that dictate how
the network should behave—e.g., defining goals related to quality of service, security,
and performance–without worrying about the low-level details that are necessary to pro-
gram the network to achieve these goals (a.k.a. Intent-Based Networking — IBN). Using
natural language to describe network intents requires the network to employ state-of-the-
art ML techniques from Natural Language Processing (NLP), which are always prone to
generate errors and misclassifications. Hence, after extracting relevant information from
input intents, a self-driving network would then (2) validate the extracted data with the
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Figure 1. Self-driving network design.

operator before (3) compiling them into actual configurations and deploying them to the
network substrate. To close the first management loop, the network would then monitor
itself according to the described intents and collect the traffic behavior to (4) present it for
operators to verify if the implemented behavior corresponds to the initial goals.

In Figure 1, the second management loop (5, 6, and 7) begins after intents are
deployed into the network, where devices are instrumented with monitoring capabilities to
collect usage and traffic data. Such data is then (5) analyzed and processed to (6) produce
(autonomous) decisions using trained ML models, which would ideally adapt and re-train
themselves constantly as new data is collected. Decisions made by such ML models
would then be (7) processed and compiled into configurations to fine-tune the network
behavior (akin to 3), closing the second management loop. For instance, decisions may
include the identification of attack traffic that needs to be blocked or mitigated. Note
that, despite relying on error-prone ML techniques, it would be impossible to include
human validation on this second management loop given the time frame and frequency
such decisions have to occur to keep up with incoming traffic.

As both management loops in the self-driving network presented in Figure 1 rely
heavily on ML models to make decisions and classifications that impact the network,
one particular issue becomes prominent with this design: trust. Applying ML to solve
networking management tasks, such as the ones described above, has been a popular trend
among researchers recently [Boutaba et al. 2018]. However, industry operators have been
reluctant to take advantage of such solutions, mainly because of the black-box nature of
ML models that produce decisions without any explanation or reason. In production
networks, the high stakes make it impossible to trust an ML model that can take system-
breaking actions automatically. This poses a significant challenge that must be addressed
to achieve a self-driving network design, which is crucial to the scope of this thesis.

2. Problem Statement and Contributions
This thesis addresses the challenges of creating trustworthy self-driving networks with
ML. We first investigate and evaluate the accuracy and credibility of classifications made
by ML models used to process high-level intents. Then, we analyze and assess the accu-
racy and credibility of decisions made by ML models used to self-configure the network
according to monitored data. Lastly, we investigate whether there is a viable method to
improve the trust of operators in the decisions made by ML models in both management
loops. In this thesis, we make the following main contributions.

• We develop an end-to-end IBN management system with a conversational interface
that allows operators to use natural language to define desired intents for the network,
called LUMI (Fig. 2a).



• We survey the existing literature on the use of ML techniques for network security
and scrutinize several use cases to analyze the credibility of decisions made by highly-
accurate ML models that enable a self-driving network.

• We introduce a novel model-agnostic XAI method to produce explanations from any
given black-box ML model in the form of decision trees, called TRUSTEE (Fig. 2b),
which domain experts can use to spot issues in the decision-making process of the
black-box model.
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Figure 2. Thesis contributions overview.

3. Machine Learning for IBN

Modern enterprise networks face significant challenges when deploying policies as oper-
ators need to break down high-level policies into low-level tasks and deploy them across
the network. Intent-based networking (IBN) has been proposed to address this issue, al-
lowing operators to specify high-level policies (e.g., defining goals for quality of service,
security, and performance) without worrying about how the network is programmed to
achieve the desired goals. [Clemm et al. 2019]. IBN should enable operators to simply
state the desired behavior, with the network breaking down the intent into configurations
and deploying them correctly. Supporting IBN is a core principle of a self-driving net-
work, as it minimizes human intervention and reduces errors caused by human mistakes.

One of the main reasons that IBN has not yet fulfilled its promise of fast, au-
tomated, and reliable policy deployment is its inability to use network policies docu-
mented in natural language as input to intent-based management systems. While some
research efforts have used natural language to interact with the network [Liu 2021,
Birkner et al. 2018], they lack support for IBN or other critical features like operator con-
firmation and feedback. However, expressing intents in natural language offers benefits
such as allowing operators to express the same intent using different phrasings while
avoiding the pitfalls of traditional policy deployment approaches (e.g., learning new net-
work programming languages or introducing human errors while manually breaking down
policies into configuration commands). On the other hand, generating configurations from
natural language input can be challenging due to the need for unambiguous and accurate
capturing of operator intent, which is not easily achieved through ML models.

We contribute to the ongoing IBN efforts by designing and implementing LUMI,
a system that enables an operator “to talk to the network,” focusing on campus networks
as a use case. LUMI takes as input an operator’s intent expressed in natural language,
correctly translates these natural language utterances into configuration commands, and
deploys the latter in the network to carry out the operator’s intent. We designed LUMI in a
modular fashion, with the different modules performing, in order: information extraction,



intent assembly, intent confirmation, and intent compilation and deployment. Our mod-
ular design allows for easy plug-and-play, where existing modules can be replaced with
alternative solutions, or new modules can be included. As a result, LUMI’s architecture is
extensible and evolvable and can easily accommodate further improvements.

3.1. LUMI in a Nutshell
Figure 2a illustrates the high-level goal of LUMI with the intent example “Hey, Lumi!
Inspect traffic for the dorm” and shows the breakdown of the workflow by which LUMI
accomplishes the stated objective. Below, we provide a brief overview of the four key
components that define this workflow (i.e., the LUMI pipeline) and the contributions we
make in addressing the various challenges described above.

First, we use ML for the Information Extraction module to extract and label en-
tities from operator utterances through a chatbot-like conversational interface. We use
existing ML algorithms for Named Entity Recognition (NER) to extract and label entities
from the operator’s natural language utterances and augment them for LUMI to learn from
operator-provided feedback. Second, the Intent Assembly module composes a network
intent using the previously extracted entities. To that end, we developed the Network In-
tent Language (Nile) to serve as an abstraction layer between natural language intents and
network configuration commands for LUMI. Nile resembles natural language, accounts
for critical network management features, such as rate-limiting or usage quotas, and elimi-
nates the need for operators to learn new policy languages. Third, the Intent Confirmation
module presents the syntactically-correct Nile intent from the Intent Assembly module
to the operator and asks for feedback. If the feedback is negative, the system iterates
with the operator until confirmation, continuously learning from the operator’s feedback
to improve labeling accuracy. Once confirmed, the Nile intent is forwarded to the Intent
Deployment module, which compiles it into Merlin configuration commands and deploys
them in the network.

We evaluate LUMI’s accuracy in information extraction, its ability to learn from
operator feedback, and its compilation and deployment times in a campus topology. Our
datasets consist of synthesized and real-world intents from 50 different campus networks
in the US. We find that LUMI can extract entities accurately, learn from feedback, and
compile and deploy intents in less than a second. We also report findings from a small
user study with 26 subjects that solicited feedback on the perceived value of using natural
language for network management with LUMI and the intent confirmation stage. We de-
veloped LUMI using a combination of tools and libraries such as Google Dialogflow and
Scikit-learn library. The full implementation and datasets used in our evaluation are pub-
licly available. Our evaluation and user study demonstrate that LUMI is a promising step
towards achieving fast, automated, and reliable policy deployment in IBN. By enabling
operators to express their intents in natural language, LUMI simplifies their job and saves
them time.
3.2. Selected Results
Evaluating systems like LUMI is challenging due to a lack of publicly available datasets
and difficulties in generating synthetic datasets that reflect real-world Natural Language
Intents (e.g., operators we contacted gave proprietary reasons for not sharing their data).
To address this problem, we created two hand-annotated datasets for information extrac-
tion: the alpha dataset with 150 synthetic examples and the campi dataset with real-world



intents obtained by crawling 50 US university websites. We manually tagged the en-
tities in each of the 200 intents to train and validate our information extraction model.
We tested our NER model using both datasets, alone and combined, with a 75%-25%
training-testing random split. The results in Table 1 demonstrate the high accuracy of
LUMI’s information extraction module for the alpha dataset, campi dataset, and their
combination. The excellent performance for the alpha dataset was expected due to the
way we created the training examples. However, even with the unstructured nature and
smaller number of examples in the campi dataset, LUMI’s performance remained close to
0.99. This success can be attributed to recent advances in machine learning for natural
language processing and the small yet expressive set of LUMI-defined entities.

Table 1. Information extraction evaluation using the alpha and campi dataset.

Dataset # of Entries Precision Recall F1

alpha 150 0.996 0.987 0.991
campi 50 1 0.979 0.989

alpha + campi 200 0.992 0.969 0.980

Since human interaction is expected to be minimal to express network intents in
a self-driving network, humans can verify and correct the classifications made by ML
models that extract relevant information from natural language intents. This feedback
loop enables operators to trust the decisions made by these models.

4. Machine Learning for Network Security
Recent research has demonstrated the superiority of AI/ML models over simpler rule-
based heuristics in identifying complex network traffic patterns for a wide range
of network problems [Boutaba et al. 2018]. However, reluctance among operators
to adopt these models in production settings persists due to their black-box na-
ture [Arp et al. 2022]. More concretely, the inability to explain how and why these models
make their decisions renders them a hard sell compared to existing simpler but typically
less effective rule-based approaches. This tension is not unique to networking but applies
to any learning model that can have significant societal implications. Efforts to solve
this issue have led to the emergence of areas such as “interpretable ML,” “explainable
AI (XAI),” and “trustworthy AI.” Ensuring the practical use of these efforts in specific
AI/ML domains, like network security, requires addressing several fundamental research
problems and qualifying notions such as model interpretability or trust [Lipton 2018].

Applying AI/ML to network security poses challenges due to the mismatch be-
tween the black-box nature of some models and the need for practitioners to understand
them. While black-box learning models are inherently incapable of providing insights
into their “inner workings” or underlying decision-making process, operators and secu-
rity experts are particularly keen on gaining a basic understanding of how these proposed
models work in practice so they can be trusted in real-world production settings. For
this thesis, we equate “an end user having trust in an AI/ML model” with “an end user
being comfortable with relinquishing control to the model” [Lipton 2018]. We focus on
research challenges related to quantitatively deciding when an end user is comfortable
with relinquishing control to a given AI/ML model, including identifying if the model
suffers from the problem of underspecification [D’Amour et al. 2020].



The problem of underspecification in AI/ML refers to whether the success of a
trained model is due to its innate ability to encode some essential structure of the under-
lying system or data or is the result of inductive biases that the trained model encodes.
In practice, inductive biases typically manifest themselves in an inherent inability for
out-of-distribution (o.o.d.) generalizations (i.e., test data distribution is unknown and dif-
ferent from the training data distribution) which, in turn, often reveals itself in the form
of specious learning strategies (e.g., shortcut learning or spurious correlations). Such in-
ductive biases imply that their presence in trained AI/ML models prevents these models
from being credible or trustworthy. Thus, for establishing the specific type of trust in an
ML model considered in this section, it is critical to identify these inductive biases, and
this section takes the first step toward achieving this ambitious goal.

4.1. TRUSTEE

To detect underspecification in learning models for network security problems, we de-
velop TRUSTEE (TRUSt-oriented decision TreE Extraction). TRUSTEE augments the tra-
ditional ML pipeline (Figure 2b) by taking a black-box model and training data as input
and outputting a high-quality decision tree explanation. TRUSTEE focuses on balancing
model fidelity and complexity while ensuring decision rules are intelligible and in agree-
ment with domain knowledge. Here, complexity refers to the decision tree’s size and
aspects of the tree’s branches. In particular, when viewing the tree’s branches as decision
rules, we are concerned with their explicitness/intelligibility and coverage; that is, we re-
quire these rules to be readily recognizable by domain experts, be largely in agreement
with the experts’ domain knowledge, and describe how the given black-box model makes
a significant number of its decisions. TRUSTEE also outputs a trust report associated with
the decision tree explanation, which operators can use to determine whether there is evi-
dence that the given black-box model suffers from underspecification. If such evidence is
found, the information provided in the trust report can be used to identify components of
the traditional ML pipeline (e.g., training data, model selection) that need to be modified
to improve upon an ML model that TRUSTEE has found to be untrustworthy.

Our work contributes to the growing ML literature on model explainability/in-
terpretability and differs from existing approaches in significant ways. First, replacing
black-box models with “white-box” models like decision trees is generally impractical
for complex networking learning problems. Second, existing methods that provide local
interpretability (e.g., SHAP [Shapley 2016]) are not suitable for examining instances of
the underspecification problem as they can explain the decisions of a trained AI/ML model
in a local region near a particular data point. Finally, methods for global interpretabil-
ity [Bastani et al. 2018] are either limited to specific learning models (e.g., reinforcement
learning) or suffer from poor fidelity. These approaches are insufficient for providing the
level of model explainability needed for network operators to decide if they are comfort-
able with relinquishing control to a black-box model.

4.2. Use Cases Summary

We apply TRUSTEE to scrutinize a number of recently published black-box models de-
veloped for network security-related problems that are accompanied by publicly available
artifacts required for assessing whether the models are credible. All datasets, models, and
results presented in this section are publicly available (see thesis for the repository).



Table 2. Case Studies.

Problem Dataset(s) Model(s) Trustee Fidelity Type of inferred inductive bias

Detect VPN traffic ISCX VPN-nonVPN dataset 1-D CNN 1.00 Shortcut learning
Detect Heartbleed traffic CIC-IDS-2017 RF Classifier 0.99 Out-of-distribution samples
Detect Malicious traffic (IDS) CIC-IDS-2017, Campus dataset nPrintML 0.99 Spurious correlations
Anomaly Detection Mirai dataset Kitsune 0.99 Out-of-distribution samples
OS Fingerprinting CIC-IDS-2017 nPrintML 0.99 Potential out-of-distribution samples
IoT Device Fingerprinting UNSW-IoT Iisy 0.99 Likely shortcut learning
Adaptive Bit-rate HSDPA Norway Pensieve 0.99 Potential out-of-distribution samples

Table 2 summarizes our use cases, which demonstrate the limitations of ML
models for networking problems. The first use case illustrates how an apparently high-
performant neural network learns shortcuts to distinguish between two types of traffic
(VPN vs. Non-VPN). The second use case analyzes a black-box model (i.e., random
forest) trained with a popular synthetic dataset CIC-IDS-2017 [Sharafaldin et al. 2018]
and shows that the developed model is vulnerable to o.o.d. samples. This use case
cautions against an over-reliance on synthetic datasets that often include measurement
artifacts that commonly-considered black-box models exploit to achieve high accuracy.
The third use case warns against the indiscriminate use of high-dimensional feature
spaces built from bit vectors instead of carefully engineered and semantically mean-
ingful features [Holland et al. 2021]. The fourth use case corroborates previous crit-
icism [Arp et al. 2022] of a complex neural network ensemble [Mirsky et al. 2018] to
perform traffic anomaly detection (e.g., Mirai attack) and shows that the model is also
vulnerable to o.o.d. samples. We used TRUSTEE to analyze other ML-based models for
networking and network security problems in the literature, which we discuss in the thesis.

The use cases analyzed show that ML models used for networking problems fail
to perform under minimal adverse conditions. This finding indicates that operators are
correct not to trust ML and cannot trust ML models to configure the network based solely
on monitored data. However, TRUSTEE exposes decisions made by black-box ML clas-
sifiers, increasing trust in those decisions. With this knowledge, operators can choose to
relinquish control to the ML model if they agree with its decision.
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