
Developing Algorithms for the Internet of Flying Things
Through Environments With Varying Degrees of Realism

Thiago Lamenza, Josef Kamysek, Bruno José Olivieri de Souza, Markus Endler

1Laboratory for Advanced Collaboration
Departamento de Informática – Pontifical Catholic University of Rio de Janeiro (PUC-Rio)

{tlamenza,bolivieri,endler}@inf.puc-rio.br, josef@kamysek.com

Abstract. Developing for the internet of flying things is a complicated task. The
fragility and cost of the equipment required to deploy in the field motivates the
use of simulation software for prototyping and developing robust applications.
This work proposes GrADyS-SIM NextGen as a solution that enables develop-
ment on a single programming language and toolset over multiple environments
with varying levels of realism. Finally, we illustrate the usefulness of this ap-
proach with a toy problem that makes use of the simulation framework.

1. Introduction
When working with the development of distributed systems populated by autonomous
nodes capable of movement, you end up dealing with networking and mobility, which
highly affect the algorithm’s performance and behavior [Olivieri De Souza et al. 2023].
Algorithms running in these environments require specialized features to achieve their
desired level of robustness. The importance of these features doesn’t become apparent
until the algorithm is exposed to the conditions that motivate their development. The
process necessary to create and validate these systems is very time-consuming and mon-
etarily draining when reliant on field tests. For these reasons, using a simulated envi-
ronment to aid the research and creation processes is essential. Simulation is a common
approach to implementing solutions to problems in these scenarios, [Fabra et al. 2020],
[Guillen-Perez and Cano 2018], [Sánchez-Garcı́a et al. 2018].

Representing and simulating too many specific aspects of the real world at the
same time hinders the development process. The increment in realism comes at a cost
because with the increase in complexity of the simulation software, the development ex-
perience tends to deteriorate. A realistic simulation has a heavy computational cost that
adds a bigger overhead to the execution of simulation scenarios, slowing down the devel-
opment process. The complexity of the software also comes with other disadvantages as
they tend to be harder to set up, have a steeper learning curve and be very specialized,
making it hard to write code that translates well to other environments and the real world.

This work presents GrADyS-SIM NextGen, a framework for simulating distributed
algorithms in a simulated network environment populated by nodes capable of com-
munication and mobility. A short video showcase of the simulator is available, it also
shows the installation process 1. There are ample use cases for a simulator like this.
Examples are simulating systems where unmanned aerial vehicles communicate with sta-
tionary sensors, the simulation of UAV formations that rely on communication to main-

1https://youtu.be/QMmup_nTfhI

tain a desired configuration, predator and prey scenarios and many more. The simu-
lator presented in this work is not unique in the area of simulating networks of UAVs
[Baidya et al. 2018] and work has been done in compiling comprehensive lists of existing
options [Kang et al. 2016] [Phadke et al. 2023]. GrADyS-SIM NextGen distinguishes it-
self from the rest by enabling the iterative development process of distributed algorithms.

That main distinguishing factor manifests itself with the proposal of a general and
environment agnostic way of implementing distributed algorithms that can run in differ-
ent simulated environments and, in principle, in the real world. The main appeal of the
framework is that no code changes need to be made to the algorithm itself when switching
between these environments, making the knowledge obtained in a simulation environment
easily transferable to another or to the real world. Having a common interface also enables
the creation of tooling that improves the experience of creating distributed algorithms.

The framework enables you to create artifacts called protocols which using Python
to implement the logic that powers individual nodes. These Python protocols can be used
in a simple Python simulation environment, which we call prototype-mode. Users can
also run them in integrated-mode, which will integrate with OMNeT++ 2, an event-based
network simulator, to simulate realistic network interactions. In the future, users will
be able to integrate it with SITL through the use of MAVSIMNET 3 which provides a
realistic mobility models representing several vehicle types. Finally, these protocols can
be used to control real-world vehicles in what we call experiment-mode, although this last
execution mode has not been implemented yet.

This is a continuation of GrADyS-SIM [Lamenza et al. 2022] with which it shares
its main objectives. The creation of this new simulation framework based on GrADyS-
SIM was motivated by our experience in previous works, feedback from both within the
team and from external users, and the realization that our current framework at the time
made translating our simulated implementations to real-life for experiments very hard.

This paper is organized as follows. In section 2 we will discuss the concepts that
guided the framework’s implementation. In section 3 the framework’s components will
be presented on a lower level. In section 4 a demonstration of the usage of GrADyS-SIM
NextGen is presented as empirical evidence that the proposed development approach has
tangible benefits for algorithm development.

GrADyS-SIM NextGen is completely free and open-source, and the location of the
source code and documentation will be detailed in the Architecture section. An extended
version of this paper is available in [de Souza Lamenza et al. 2024].

2. Motivation

The GrADyS-SIM simulator was used in several projects internal to the GrADyS team
and by some external users. A common pain point observed by both of these groups
was the difficulty of setting up and using OMNeT++ and its component library INET 4.
OMNeT++ is absolutely essential to the project for its network simulation capabilities but
using it comes with a couple of downsides. It is a very large piece of software, it is slow

2https://omnetpp.org/
3https://github.com/Thlamz/MAVSIMNET
4https://inet.omnetpp.org/

Figure 1. Framework’s architecture

even on modern machines, build times and even simple tasks like checking a function’s
usages in code take a while, making development inconvenient. Its complex structure and
ample set of features means that it has a steep learning curve and many possible points of
failure. These failures are not always easy to debug. A significant portion of the simulator
user’s effort is non-productive.

OMNeT++ will no longer be a requirement to run this new version of the simula-
tion framework. Instead, it would be an optional dependency if the user desired a realistic
network simulation. In order to enable this, a new and simpler environment needed to
be created. Also necessary, is a way to enable seamless integration between this new
environment and the existing OMNeT++ one.

GrADyS-SIM uses C++ as its implementation language. Our project’s real world
test bed uses Python to implement node behavior. This means that anything developed
inside the simulation would then need to be translated into Python, potentially introducing
errors and requiring more development time. This led to the choice of Python as the
language in which protocol logic would be written in.

The protocol interface was created to serve as an environment-agnostic interface
to implement algorithms. Code that uses it should be able to run in any environment
supported by the framework, be it simulated or real. It establishes a well-defined set
of rules a protocol should follow in order to be compliant with the interface and enjoy
the benefits of being decoupled from their environment. The main benefit is reducing or
even removing the effort required to adapt them to new environments. This reduces the
overhead required when moving tests between simulated environments and the real world.

Having a generalized API that protocols adhere also enables the creation of a
toolset dedicated to aiding the creation of new protocols. Repetitive boilerplate work
is required when creating new protocols and has to be re-implemented every time a new
protocol needs to use it. Without a standard interface, protocol code is not easily reusable.

The last of the requirements to be fulfilled is introducing a new environment to
serve as an entry point to the framework, replacing OMNeT++. This environment con-
sists of a Python event-based simulator created specifically for the simulation framework.
Protocols running in this mode are said to be running in prototype-mode. It is trivial to
install, light on dependencies and works on Python version 3.8 or higher. Where it loses
on is realism and richness of features, but the framework as a whole does not lose those
qualities, as they can still run their protocols on OMNeT++ without any code changes.

3. Architecture
GrADyS-SIM NextGen is a simulation framework with several components. All com-
ponents are publicly available and open-source. The framework is distributed in three
GitHub repositories, gradys-sim-nextgen 5 contains the python components of the frame-
work including the protocol library and the python simulator, gradys-sim-visualization 6

hosts the visualization website for python simulations and gradys-simulations 7 hosts the
OMNeT++ components of the framework. The documentation for each of these compo-
nents is also hosted in their own repositories.

There are three main ways of running simulations in the framework, which the
user chooses based on his requirements:

1. The first one is running your simulations in the python simulator. Using this
scheme, you will have access to all protocol features while running in a simplified
environment with low implementation overhead and fast execution times.

2. When looking for more serious results using the same code base, one can try
integrating with OMNeT++ and running the code built on the protocol library in
the OMNeT++ simulated environment.

3. Lastly, building simulations completely in OMNeT++ is still supported, you will
be creating all your code in C++ and won’t be able to use it elsewhere. Using this
option you can also integrate with Ardupilot SITL Simulator for a better mobility
model, in the future this will also be available in option 2.

In the rest of this section, we will talk about each of the individual components
seen in figure 1, detailing their purpose in the framework and how they are distributed.

3.1. Protocol library
To allow distributed algorithm logic to run in supported environments, be it sim-

ulated or real, a common and general interface needed to be established defining how
information from the environment would be available to the protocol and how it interacts
with it. Code showcasing the protocol library can be seen in listing 1.

Protocols are implemented in an event-oriented way. The events available to the
protocol were chosen carefully as to give them the necessary information to implement
their behavior, but not couple them to a specific environment. It is also essential that the
protocol can act upon the environment. These actions are performed with the provider
interface, named this way because it provides the protocol with the means to act in its
environment.

Since we want to build an environment agnostic piece of code, we cannot deal
with details like the physical means of locomotion of the node or the hardware that makes
it capable of communication. For this reason, a generic set of messages were created to
hide these details from the protocol through a layer of abstraction. Commands are sent
by the protocol through the provider interface. The actual implementation of the provider
interface is environment-dependent, it is injected into the protocols at run-time and the
protocol does not rely on its design, only that it follows the specification defined in the
interface.

5https://github.com/Project-GrADyS/gradys-sim-nextgen
6https://github.com/Project-GrADyS/gradys-sim-nextgen-visualization
7https://github.com/Project-GrADyS/gradys-simulations

Listing 1. A protocol that periodically broadcasts ping

imports omitted
class PingProtocol(IProtocol):

sent: int = 0
received: int = 0
def initialize(self):

self.provider.schedule_timer("", self.provider.current_time() +
random.random() + 2)

Using a plugin to move randomly inside the environment
self.movement = RandomMobilityPlugin(self)
self.movement.initiate_random_trip()

def handle_timer(self, timer):
Broadcasting ping when timer fires
command = BroadcastMessageCommand("ping")
self.provider.send_communication_command(command)
Keeping track of messages sent
self.sent += 1
Rescheduling the timer. We will keep pinging periodically
self.provider.schedule_timer("", self.provider.current_time()+2)

def handle_packet(self, message: str):
Keel track of pings received
if message == "ping":

self.received += 1

Unused methods from the protocol interface omitted

Figure 2. Diagram showcasing how protocols work

Another feature available in the protocol library is a set of tools named plugins.
They come with varying objectives, but mainly focused on making implementing new
protocols easier. They range from abstracting common behaviors in distributed algorithms
from facilitating the implementation of movement patterns. These tools are only exposed
to the protocol interface, and thus protocols that use them are still completely compatible
with it.

In the figure 2, the protocol interface and provider methods are shown to be sepa-
rated from the environment by the encapsulator, containing glue-code. The environment
is represented in high abstraction by three components, mobility, communication, and
system. Mobility is an abstraction for whatever empowers nodes with mobility, be that
hardware or simulated code. Likewise, Communication represents what gives the node
the power to communicate. Lastly, System represents a component that provides com-
putation context and tasks, this could be the operating system in a real scenario or the
simulator itself in a simulated scenario.

Everything described in this section is available in the gradys-sim-nextgen reposi-
tory and can be installed directly from PyPI, Python’s package repository under the name
gradysim.

3.2. Python simulator

This component fits in to the framework as a first step for protocol development. The
simpler simulator also serves as a great entry-point for new users who can learn how
to create and implement distributed algorithms. The Python simulator is also part of
the gradysim Python package, and its source code is available in the gradys-sim-nexgen
repository.

Although simple in terms of functionality, it is still capable of emulating a lot
of circumstances a real node will be exposed to. It simulates communication, allowing
users to specify communication range and introducing common network failures such as
network delay or dropped messages. It also simulates mobility, which is essential since
this entire framework has been created to allow for the simulation of networks populated
by mobile nodes.

3.3. Web visualization

This component integrates with the python simulator to provide a visual representation
of a running simulation. Nodes are displayed as spheres positioned in a 3D visual en-
vironment, where the ground is marked as a black mesh. Information about the running
simulation like the simulation time and the value of some variables marked for tracking
inside protocols can be seen in the user interface. Users can also color specific nodes to
distinguish them from the rest, this is very important to visually interpret some simula-
tions. The component is available as a website 8.

3.4. OMNeT++

The next big component is the OMNeT++ simulator. This whole component was al-
ready available in the previous version of the simulation framework. It has been modified

8https://project-gradys.github.io/gradys-sim-nextgen-visualization/

slightly to account for interacting with the encapsulator module. The previous version of
the simulator was already built on the idea of a central protocol module implementing the
node’s behavior, so adapting was easy. To bridge the communication gap between Python
and OMNeT++, a proxy protocol sits in the C++ code redirecting all calls to Python.
It acts as a middleman, ensuring that commands and information flow between the two
environments.

Users can select the Python implemented protocol they want through OMNeT++’s
configuration system. In execution time, this protocol will be imported and wrapped with
an encapsulator. All interactions with python are managed through pybind11 9.

4. Demonstration
A demonstration will be presented showcasing GrADyS-SIM NextGen as a tool for creat-
ing simulated environments and easily translating code between them. The demonstration
presents a hypothetical scenario which is solved by a distributed algorithm implemented
as a protocol in the framework. This protocol will then be tested and iterated as more
realistic conditions are added. It is not meant as a revolutionary solution to a real world
problem, but as a toy problem where the development of the algorithm itself is more
important than the solution it proposes. The scenario will be better explained below.

The problem is a data-collection scenario set in some remote location deprived of
any network infrastructure. A set of stationary sensors has been distributed in arbitrary
known locations in the location of interest. These sensors collect data from their envi-
ronment. They have limited communication range. The remote nature of the location
and lack of infrastructure makes remote collection impossible, and the frequency with
which data is generated makes manual collection impractical. Some quad-copter UAVs
are available. These vehicles are capable of communication with the sensors and each
other, and of autonomous flight. A ground station (GS) has been set up with short-range
communication equipment capable of talking to the UAVs.

As for the solution, the UAVs will be employed in collecting data from the sensors
and bringing it to the GS. They will fly above the sensors, communicating with them
to retrieve the data collected and then return to the GS, delivering the data. The real
challenge in this scenario is coordinating UAV movement efficiently to maximize their
usefulness. This coordination will happen through a communication-based protocol.

5. Conclusion
The creation and demonstration of the GrADyS-SIM NextGen framework aims to address
key challenges in the development and testing of distributed algorithms for autonomous
vehicles in dynamic, networked environments. It streamlines the intricate processes of
creating and evaluating distributed algorithms by offering an environment-agnostic inter-
face for protocol implementation and support for multiple execution environments.

The framework’s architecture, as illustrated in Figure 1, is designed with a focus
on modularity and flexibility. The protocol module establishes a standardized interface for
protocol implementation, ensuring that the same code can run seamlessly across different
simulated environments.

9https://github.com/pybind/pybind11

The introduction of prototype-mode provides users with a lightweight and accessi-
ble simulation environment. With a simplified setup and a focus on rapid prototyping. The
integrated-mode leverages the power of OMNeT++, a widely used event-based network
simulator, to provide a more detailed and accurate representation of network behaviors.
The seamless transition between prototype-mode and integrated-mode ensures that the de-
veloped protocols in the initial stages of development can very easily be used in a realistic
network simulation.

The experiments presented in section 4 will show the tangible benefits of the pro-
posed approach.

The next natural step in the development of the framework is supporting real-
world scenarios. The foundational for this to be possible has already been laid. All that is
left is selecting a hardware test bed and implementing the first integration between it and
the framework. This would close the development cycle from inception, to prototyping,
to validation and finally to experimentation and deployment.

Acknowledgments
This study was financed in part by AFOSR grant FA9550-23-1-0136.

References
Baidya, S., Shaikh, Z., and Levorato, M. (2018). Flynetsim: An open source synchronized uav network

simulator based on ns-3 and ardupilot. In Proceedings of the 21st ACM International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems, pages 37–45. ACM.

de Souza Lamenza, T., Kamysek, J., de Souza, B. J. O., and Endler, M. (2024). Developing algorithms for
the internet of flying things through environments with varying degrees of realism.

Fabra, F., Zamora, W., Reyes, P., Sanguesa, J. A., Calafate, C. T., Cano, J.-C., and Manzoni, P. (2020).
Muscop: Mission-based uav swarm coordination protocol. IEEE Access, 8:72498–72511.

Guillen-Perez, A. and Cano, M.-D. (2018). Flying ad hoc networks: A new domain for network communi-
cations. Sensors, 18(10).

Kang, S., Aldwairi, M., and Kim, K.-I. (2016). A survey on network simulators in three-dimensional
wireless ad hoc and sensor networks. International Journal of Distributed Sensor Networks,
12(9):1550147716664740.

Lamenza, T., Paulon, M., Perricone, B., Olivieri, B., and Endler, M. (2022). Gradys-sim – a omnet++/inet
simulation framework for internet of flying things.

Olivieri De Souza, B. J. O., Lamenza, T., Paulon, M., Rodrigues, V. B., Carneiro, V. G. A., and Endler,
M. (2023). Collecting sensor data from wsns on the ground by uavs: Assessing mismatches from real-
world experiments and their corresponding simulations. In 2023 IEEE Symposium on Computers and
Communications (ISCC), pages 284–290.

Phadke, A., Medrano, F. A., Sekharan, C. N., and Chu, T. (2023). Designing uav swarm experiments: A
simulator selection and experiment design process. Sensors, 23(17).

Sánchez-Garcı́a, J., Garcı́a-Campos, J., Arzamendia Lopez, M., Gutiérrez, D., Toral, S., and Gregor, D.
(2018). A survey on unmanned aerial and aquatic vehicle multi-hop networks: Wireless communica-
tions, evaluation tools and applications. Computer Communications, 119.

