
Sensor de Software Robusto para Identificar Pessoas em uma
Cena de Vı́deo

Arthur Hernandez Perez1, Karran Cardoso de Araújo Lemos1,
Evandro Luiz Cardoso Macedo1, Alexandre Sztajnberg1,2

1Departamento de Sistemas e Computação, Laboratório de Ciência da Computação, (LCC)
Instituto de Matemática e Estatı́stica (IME)

2Pós-Graduação em Engenharia Eletrônica (PEL)
Pós-Graduação em Ciências Computacionais e Modelagem Matemática (CompMat)

Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro – RJ – Brasil

arthurhernandezp@gmail.com, karran.lemos@gmail.com

evandro.macedo@ime.uerj.br, alexszt@ime.uerj.br

Abstract. The development of smart cities and the Internet of Things paradigm
allows the creation of more efficient, sustainable and safe cities. Among the
innovations, smart cameras stand out for identifying objects and people, ena-
bling continuous monitoring and real-time data collection for different environ-
ments. This article presents a smart software sensor for counting people in
video scenes, developed for Computer Sciences Lab. and integrated with the
LCC-IoT application. It allows monitoring and generating alarms in specific
situations, such as the presence of people outside of permitted hours, while pre-
serving users’ privacy. The sensor was implemented to maintain continuous and
concurrent operation across multiple cameras, controlling data acquisition and
consistent generation of telemetry through semaphores, in addition to recording
errors, making it robust. The solution uses the OpenCV and YOLO for image
processing, MQTT and HTTP application protocols for sending telemetry.

Resumo. O desenvolvimento de cidades inteligentes e o paradigma de Internet
das Coisas permite a criação de cidades mais eficientes, sustentáveis e seguras.
Entre as inovações, destacam-se câmeras inteligentes com a identificação de
objetos e pessoas, viabilizando monitoramento contı́nuo e coleta de dados em
tempo real para diversos ambientes. Este artigo apresenta um sensor inteligente
de software para contagem de pessoas em cenas de vı́deo, desenvolvido para o
Lab. de Ciência da Computação e integrado à aplicação LCC-IoT . O sensor
permite monitorar e gerar alarmes em situações especı́ficas, como a presença
de pessoas fora do horário permitido, enquanto preserva a privacidade dos
usuários. O sensor foi implementado para manter operação contı́nua e concor-
rente em múltiplas câmeras, controlando a aquisição de dados e a geração con-
sistente de telemetria por meio de semáforos, além de registrar erros, tornando
o mesmo robusto. A solução utiliza o OpenCV e YOLO para processamento de
imagens, os protocolos de aplicação MQTT e HTTP para o envio de telemetria.

1. Introdução

O desenvolvimento de cidades inteligentes vem sendo alavancado ao longo dos
anos especialmente por conta da influência do paradigma de Internet das Coisas, tornando
as cidades mais eficientes, sustentáveis e seguras [Ahmed et al. 2016, Motta et al. 2024].
Em particular, sistemas de câmeras inteligentes instrumentalizados com capacidade de
identificação de objetos e pessoas têm se difundido a fim de melhorar a segurança de
ambientes de maneira geral. Tais sistemas habilitam a criação de ambientes inteligentes
com monitoramento contı́nuo e em tempo real dos mais diversos cenários, sejam eles
empresariais, fábricas, residências, salas de aula, entre outros. Isso permite, por exemplo,
o acompanhamento de atividades residenciais (especialmente de pessoas idosas ou com
doenças crônicas), o funcionamento de esteiras de produção, a captura de ocorrências,
entre outros, além de permitir uma coleta massiva de dados sobre os ambientes.

Este trabalho tem como motivação a criação de um sensor inteligente de software
capaz de contar pessoas em uma cena de vı́deo. Este sensor foi desenvolvido para atender
às necessidades de monitoramento contı́nuo do Lab. de Ciência da Computação através
da integração do sensor com a aplicação LCC-IoT [LCC, UERJ 2025]. O LCC-IoT é uma
aplicação para ambientes inteligentes que emprega dispositivos, protocolos de aplicação
e uma plataforma integrada de aplicações para IoT. O ambiente do LCC contempla duas
salas de aula e um laboratório de pesquisa. Uma das caracterı́sticas do LCC-IoT é com-
binar a informação do número de pessoas presentes nas salas, aumentadas com outras
informações de ambiente, habilitando a geração de alarmes e rotinas de atuação conforme
necessário. Casos como, por exemplo, pessoas na sala após as 23:00, ou nenhuma pessoa
na sala com iluminação ligada e temperatura abaixo de 25◦C (no Rio de Janeiro), po-
dem gerar alarmes, os quais disparariam notificações para os usuários dos sistema para
atuarem na situação apresentada.

Diversos refinamentos foram feitos nos componentes do sensor inteligente a fim de
aumentar a acurácia e diminuir o número de casos de falsos positivos. O sensor foi estru-
turado na forma de um serviço Linux que automatiza a inicialização do sensor e controla
a sua operação de maneira contı́nua. O serviço permite também a execução concorrente
de várias instâncias do sensor para serem aplicadas em diferentes câmeras. Também foi
desenvolvido um sistema de registro de erros que captura e armazena informações sobre
falhas durante a detecção de pessoas e possı́veis problemas no envio de dados. Além
disso, foi necessário o emprego de semáforos para garantir exclusão mútua durante o pro-
cessamento das imagens, evitando o envio de telemetrias com valores inconsistentes, dada
a complexidade das bibliotecas utilizadas. Estes refinamentos tornam o sensor de software
robusto como ferramenta que pode operar continuamente. O sensor desenvolvido está em
operação, incorporado ao LCC-IoT e utiliza diversas tecnologias, tais como, o protocolo
MQTT, HTTP e YOLO [Redmon and Farhadi 2018]. Ressalta-se que a solução preserva
a privacidade das pessoas, tendo em vista que não emprega reconhecimento facial nem
considera a identidade delas durante o processo de análise das imagens.

O restante do artigo está estruturado da seguinte forma. Na Seção 2 apresentamos
trabalhos relacionados e produtos com funcionalidade semelhante. Em seguida, apresen-
tamos brevemente as tecnologias utilizadas na Seção 3. A Seção 4 apresenta a estrutura
geral do sensor e detalhes de implementação são tratados na Seção 5. A Seção 6 apresenta
o caso de uso do sensor na aplicação LCC-IoT e em seguida a Seção 7 conclui o trabalho.

2. Trabalhos Relacionados

O módulo de detecção de pessoas das câmeras IP Eocortex [Eocortex 2022] é
utilizado para detectar e contar pessoas em um estabelecimento, assim como detectar
pessoas saindo e entrando em suas premissas. Outra aplicação com funções similares
é a solução de contagem de pessoas da Camlytics [Camlytics 2022] que, assim como o
Eocortex, busca auxiliar na detecção e contagem de pessoas. Ambos oferecem aplicações
de configuração de detecção e a exibição de dados, mas apenas oferecem a possibilidade
de exportar estes dados no formato CSV ou enviar por e-mail. Diferente dos trabalhos,
nossa solução permite o acompanhamento contı́nuo do ambiente monitorado, com os
dados de telemetria podendo ser consumidos por protocolos de aplicação.

O sistema proposto em [Chen et al. 2011] utiliza subtração de fundo para detectar
pessoas utilizando os pontos de diferença entre os quadros. Ele também rastreia a posição
dos indivı́duos para lidar com casos em que diferentes pessoas em movimento cobrem as
outras no campo de visão da câmera, assumindo que, se duas pessoas convergirem em
um só objeto, esse objeto provavelmente representa as duas pessoas. O trabalho emprega
algumas técnicas que também foram utilizadas no nosso sensor, como a subtração de
fundo, porém, a proposta não considera aspectos de escalabilidade no envio de telemetria.

O sistema proposto em [Yang et al. 2003] detecta silhuetas utilizando subtração
de fundo em imagens obtidas de diversas câmeras posicionadas em diferentes pontos
de vista em uma sala e utiliza um algoritmo para projetar essas silhuetas em um plano
bidimensional, que consegue ter uma boa precisão e um crescimento linear de gasto de
processamento. Sua precisão depende diretamente do número de câmeras usadas para
filmar um mesmo ambiente de diferentes ângulos. No sensor proposto optamos por não
usar a técnicas de subtração de fundo para detectar pessoas, mas adotamos a técnica como
auxiliar para detectar movimento entre duas imagens consecutivas.

3. Tecnologias Utilizadas

O sensor desenvolvido integra algumas bibliotecas e mecanismos para adquirir e
tratar as imagens das câmeras, detectar o número de pessoas, compor a mensagem de
telemetria e enviar esta como suporte de um protocolo de aplicação.

Utilizamos a biblioteca OpenCV1 [Bradski 2000], que oferece várias ferramentas
e soluções para tratamento de imagem. No OpenCV foram utilizados:

• Módulo Deep Neural Network (DNN). O módulo DNN do OpenCV contém as
funções necessárias para carregar o sistema de detecção de pessoas YOLO [Red-
mon and Farhadi 2018], escrito com o framework Darknet [Redmon 2016], usado
para detectar pessoas em vı́deos no projeto.

• Algoritmo de subtração de fundo MOG2. Esta técnica é usada na
implementação do detector de movimento que, por utilizar menos processamento
que o sistema de detecção de pessoas por redes neurais, auxilia na maior eficiência
da aplicação ao ser usado para limitar o uso do detector mais computacionalmente
complexo enquanto a cena não mudar, como no caso de uma sala vazia ou de uma
sala onde todos os indivı́duos estão sentados sem mudar de posição.

1OpenCV 4.4.0.42

• Non-Maximum Suppression (NMS). É um algoritmo usado para combinar di-
versas caixas bem próximas em uma só. O detector encontra diferentes possı́veis
“caixas” que representam uma pessoa, que são então unidas em uma só que repre-
senta, com certa precisão, a pessoa real [Mueller 2021].

• Utilitários. A biblioteca OpenCV também é usada para acessar fluxos de vı́deo
(webcam, arquivo de vı́deo e fluxos RTSP), para gerar a janela de visualização de
detecção quando o módulo de depuração é habilitado (Figura 1).

Figura 1. Modo depuração com as caixinhas em tempo real

Também usamos no nosso sensor os sistema de detecção You Only Look Once
YOLO2 [Redmon and Farhadi 2018]. O YOLO é um sistema de detecção de objetos em
imagens implementado usando o framework de aprendizado profundo Darknet, uma ar-
quitetura de rede neural convolucional. Seus criadores disponibilizam pesos pré-treinados
com um bom grau de precisão para detecção de pessoas. Adicionalmente, o OpenCV
possui um método de leitura de modelos criados com o Darknet, então o YOLO pode ser
usado sem configurações adicionais.

Como protocolo de comunicação, o Paho MQTT2 [Eclipse Paho 2018] é utili-
zado. A biblioteca Paho MQTT para Python é uma implementação de código aberto do
protocolo MQTT, utilizado para envio de telemetrias. Além destes módulos, empregamos
também bibliotecas SciPy2 e Numpy2 para alguns cálculos nas rotinas do sensor. Utiliza-
mos também a biblioteca logging para implementar o registro de eventos e requests para
enviar mensagens de telemetria, alternativamente, por HTTP.

4. Estrutura do Sensor
A Figura 2 apresenta a estrutura geral do serviço Linux onde os módulos do sensor

estão encapsulados.

2YOLO 3; Paho MQTT 1.6.1; Scipy 1.4.1; Numpy 1.18.5; Python 3.5.10

Figura 2. Estrutura do sensor

O sensor é construı́do em Python2, integrando bibliotecas, serviços, sistema de log
e aspectos de concorrência tratados com mecanismo de semáforos do Linux. A página
https://www.lcc.ime.uerj.br/sensor-pessoas contém o link para o código do sensor, onde
também está disponı́vel a documentação. Um vı́deo com uma demonstração do sensor em
operação no caso de uso relatado na Seção 6 também está disponı́vel nesta página.

O módulo Entrada de Vı́deo é responsável por buscar e amostrar imagens a par-
tir de fluxos de vı́deo obtidos de alguma fonte, seja uma webcam, arquivo de vı́deo ou
acessando um fluxo com o protocolo RTSP em uma URL. A seleção da entrada é para-
metrizada. O módulo Detecção de Pessoas e geração de telemetria, núcleo do sensor, é
composto por submódulos importantes:

• Detector de movimento: Este módulo executa em uma thread separada. Perio-
dicamente lê um quadro de vı́deo do módulo de entrada e calcula se houve movi-
mento ou não no vı́deo e guarda essa informação em uma propriedade da classe.O
processamento gasto pela rotina de detecção de pessoas é significativo e justifica
o uso do módulo caso GPUs ou o suporte à GPUs não estejam disponı́veis. As-
sim, implementou-se um detector de movimentos, utilizando o MOG2 (Seção 3),
para que o detector de pessoas só fosse acionado quando houvesse movimento no
vı́deo. De forma resumida, são geradas máscaras de primeiro plano do último qua-
dro e verifica-se a quantidade de pixels detectados como parte do primeiro plano.
Se a porcentagem passar de um certo valor, é considerado que houve movimento.

• Detector de Pessoas (DP): Caso tenha sido detectado movimento, ou tenha pas-
sado um perı́odo de tempo sem movimento, o módulo DP aciona o OpenCV com
o YOLO para detectar indivı́duos e gerar retângulos em volta deles, incluindo um
parâmetro de precisão que é a probabilidade da detecção não ser um falso positivo.

• Fusão das Caixas: A lista de retângulos e parâmetros de precisão resultante do
módulo DP é filtrado utilizando o NMS, que avalia os retângulos com interseção
que representam a mesma pessoa e os funde, gerando a contagem final do número
de pessoas. A Figura 3 ilustra este procedimento.

Os dados coletados e calculados são adicionados a um histórico, finalizando o
perı́odo de coleta e tratamento. Tal histórico é consumido pelo modo de Geração de
Telemetria, ilustrado no Código 1.

Figura 3. Fusão de caixas na imagem utilizando o NMS

1 def finaliza_periodo(self):
2 if self.tempo_decorrido != 0:
3 media = self.soma_ponderada/self.tempo_decorrido
4 fps = self.total_frames / self.tempo_decorrido
5 else:
6 media = 0.0
7 fps = 0.0
8 final_max = max(self.max_atual, 0)
9 final_min = 0 if self.min_atual == float('inf') else self.min_atual

10 novo_item_historico = PessoasHistorico.ItemHistorico(media, final_min, final_max,
self.tempo_decorrido, self.tempo_inicial, datetime.now(), self.total_frames,
fps)

↪→
↪→

11 self.historico.append(novo_item_historico)
12 self._inicia_novo_periodo()
13 return novo_item_historico

Código 1: Construção do registro e inserção no histórico.

O módulo Geração de telemetria prepara uma estrutura JSON com as
informações do registro no histórico, como no exemplo do Código 2. Este módulo permite
adaptar o conteúdo da telemetria também para um padrão XML especı́fico ou introduzir
os elementos das informações obtidas na estrutura obtida no histórico em um texto para
ser enviado por e-mail ou SMS. A telemetria gerada é também armazenada como um
registro em um histórico, que é consumido pela módulo de Envio de Telemetria.

1 {"MediaPessoas": "6.30", "MaximoPessoas": 10, "MinimoPessoas": 2, "TempoTotal": "8.98",
"HorarioAnalise": "2025-02-13 18:00:11.730018"}↪→

Código 2: JSON com telemetria.

O módulo Envio de Telemetria possui uma thread que periodicamente verifica
se existem registros de telemetria pendentes para envio e procede o envio. O endereço
de destino é parametrizado ao se inicializar o serviço. Primeiro uma tentativa de envio é
realizada por MQTT, com QoS 0 e porta padrão MQTT. Se o envio não for bem sucedido
alternativamente o protocolo HTTP é utilizado com método POST e cabeçalho “Content-
Type”: “application/json”. Observa-se que as configurações dos protocolos MQTT e
HTTP estão vinculadas à plataforma ThingsBoard que utilizamos no LCC-IoT , onde

estamos testando o sensor. Mas, também seria possı́vel utilizar outras configurações e até
outros protocolos de aplicação.

O módulo Sistema de Log registra as capturas de erros e falhas de transmissão,
fornecendo um acompanhamento detalhado e rápido do sistema em operação. Esses re-
gistros são úteis para diagnosticar problemas, rastrear o histórico de atividades e analisar
o desempenho do sistema.

5. Detalhes de Implementação
Por limitações de espaço, não abordamos todos os detalhes de implementação,

mas alguns pontos valem destaque. A integração de diversos elementos, bibliotecas,
chamadas a serviços distribuı́dos e a possibilidade de execução concorrente para várias
câmeras podem levar à condição de falha, por mais elaborada que seja a estratégia de
tratamento de exceções. Assim, implementamos um whatchdog simples para monitorar a
operação e possı́veis falhas, providenciando a reinicialização automática do serviço.

Na mesma linha, adicionamos um mecanismo de controle de concorrência e
temporização. Um semáforo de lock em arquivo, assegurando a exclusão mútua de partes
crı́ticas de execução do código, principalmente a busca pelas imagens obtidas remota-
mente nas câmeras e as rotinas de detecção, permitindo o processamento com recurso de
CPU livre. Com isso conseguimos obter escalabilidade para criar instâncias do sensor
para várias câmeras. Para limitar o tempo de cada instância do sensor os módulos são
protegidos por temporizadores que interrompem o processamento e limpam os históricos.
Observa-se que cada instância do sensor também recebe o parâmetro do perı́odo de amos-
tragem que deve ser utilizado.

6. Caso de Uso
A integração do sensor com a aplicação LCC-IoT é direta. A plataforma Things-

Board recebe mensagens de telemetria em JSON através de protocolos como HTTP,
MQTT ou SMNP. Atualmente utilizamos o MQTT e o HTTP como alternativa.

O script que inicializa os processos do sensor passa como parâmetro a URL do
fluxo RTSP da câmera, a identificação do dispositivo na plataforma e o endereço do broker
MQTT. Para cada câmera um processo é criado, juntamente com os logs e semáforo para
evitar o envio de telemetrias inconsistentes (conforme Código 3).

1 LOG_PATH="detector-de-pessoas-por-video-2.0/detector/var/log"
2 LOCK_MUTEX_PATH="detector-de-pessoas-por-video-2.0/detector/src/lock_mutex.py"
3 SCRIPT_PATH="detector-de-pessoas-por-video-2.0/detector/run/lcc.py"
4 TB_URL="thingsboard.lcc.ime.uerj.br"

5 python3 $LOCK_MUTEX_PATH python3 $SCRIPT_PATH --camera 1 --mostrar-video
--mostrar-caixas --from $RTPC_CAM_1 --to $TB_URL --token-mqtt $CAMERA_1_ID &↪→

Código 3: Script de inicialização simplificado.

No LCC-IoT , configuramos as 8 instâncias do sensor com um perı́odo para coleta
de imagens e envio de telemetria de 2 minutos. Este perı́odo é satisfatório para a aplicação
dado que não se esperam movimentos repentinos de entrada e saı́da de pessoas nas salas.

As câmeras do modelo TecVoz estão ligadas a um DVR através de conexões es-
pecı́ficas por cabos coaxiais e são acessadas pelo serviço do sensor através do protocolo
RTSP. A Figura 4 ilustra um dos dashboards da aplicação que apresenta a contagem atual
de pessoas em cada câmera.

Figura 4. Dashboard do LCC-IoT com a contagem das 8 câmeras

Os processos das 8 instâncias do sensor executam em uma máquina virtual com
sistema operacional Linux CentOS 7.9.2009 (Core), com 8 GB RAM e 12 CPUs virtuais,
com 1 core por socket. A máquina hospedeira possui 71.9 GB RAM e 12 CPUs Intel Xeon
ES-2603 v4 @ 1.70GHz. Quando o processo de cada câmera executa são consumidos,
em média, 23% de CPU e 160 MB RAM da máquina virtual. O mecanismo adotado para
controle de concorrência não permite que o consumo de recursos aumente muito além
disso.

7. Conclusão
Este trabalho apresentou um sensor de software capaz de contar pessoas em uma

cena de vı́deo, para atender às demandas da aplicação LCC-IoT do Laboratório de Ciência
da Computação (LCC) do IME/UERJ. O software desenvolvido foi registrado no INPI,
com nome de Sensor de Número de Pessoas na Cena sob número BR512024004010-2
e utiliza o sistema YOLO que possibilita uma detecção rápida e precisa de pessoas nas
imagens capturadas. A coleta e envio periódico de dados de telemetria para a aplicação
permite a geração de alarmes e tomada de decisões no ambiente monitorado.

O sensor é adaptável a diferentes cenários e necessidades de monitoramento,
considerando ainda a integração das diferentes partes da solução via protocolo MQTT
e HTTP. Em relação à reutilização de recursos, a implementação do sensor segue as
boas práticas de Engenharia de Software. Em particular, adotamos uma classe auxiliar
para o envio dos dados coletados para o broker MQTT, permitindo a padronização e
reutilização de recursos em outros projetos do laboratório que utilizam o mesmo proto-
colo de comunicação.

Como trabalhos futuros, pretende-se explorar soluções para melhorar a escalabi-
lidade do sensor a fim de lidar com um número maior de câmeras e ambientes, atuando
nas limitações de recursos e de infraestrutura. Outro ponto a ser explorado é em relação
ao consumo elevado de processamento, dado que o sistema ainda exige uma quantidade
significativa de recursos de CPU, tendo em vista a necessidade de execução de diversos
processos por cada câmera, o que pode levar a problemas de desempenho e atrasos no
processamento de imagens, especialmente em sistemas com recursos limitados.

Agradecimentos. Agradecemos aos programas ProDocência e ProCiência da UERJ. O
presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior – Brasil (CAPES) – Código de Financiamento 001.

Referências
Ahmed, E. et al. (2016). Internet-of-things-based smart environments: state of the art,

taxonomy, and open research challenges. IEEE Wireless Comm., 23(5):10–16.

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

Camlytics (2022). People counting solution. Web. https://camlytics.com/
solutions/people-counting [Access: 07/2022].

Chen, C.-C., Lin, H.-H., and Chen, O. T.-C. (2011). Tracking and counting people in
visual surveillance systems. In 2011 IEEE ICASSP, pages 1425–1428.

Eclipse Paho (2018). Eclipse paho javascript client. Web page. https://www.
eclipse.org/paho/clients/js/.

Eocortex (2022). People counting. Web. https://eocortex.com/products/
video-management-software-vms/people-counting.

LCC, UERJ (2025). Sensor de pessoas em uma cena. Web.
https://www.lcc.ime.uerj.br/sensor-pessoas/.

Motta, R. C., Batista, T. V., and Delicato, F. C. (2024). The Intersection of the Internet of
Things and Smart Cities: A Tertiary Study. JISA, 15(1):325–341.

Mueller, V. (2021). Non-maximum suppression. https://towardsdatascience.
com/non-maxima-suppression-139f7e00f0b5.

Redmon, J. (2013–2016). Darknet: Open Source Neural Networks in C. http://
pjreddie.com/darknet/.

Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental improvement. CoRR, arXiv,
http://arxiv.org/abs/1804.02767.

Yang, Gonzalez-Banos, and Guibas (2003). Counting people in crowds with a real-time
network of simple image sensors. In 9th IEEE ICCV, pages 122–129 vol.1.

