
ns3-oran-customizable-db: Uma Ferramenta para Construção
de Base de Dados Personalizável para Simulações Open RAN

Felipe G. Táparo1, Igor M. Moraes2 e Miguel E. M. Campista1

1Grupo de Teleinformática e Automação
Universidade Federal do Rio de Janeiro (UFRJ)

2Laboratório Mı́diaCom
Universidade Federal Fluminense (UFF)

{felipe.taparo,miguel}@gta.ufrj.br, igor@ic.uff.br

Abstract. An essential part of developing applications for the control and di-
agnosis of a Radio Access Network (RAN) is simulation. It is crucial to evalu-
ate proposed solutions in a simulated scenario that closely resembles reality to
avoid potential failures in implementation. The objective of this work is to add
functionalities to the ”ns3-oran”extension of the ”ns-3”network simulator. The
implemented functionalities give users the freedom to use the extension without
restrictions on what data can be sent to the Near-RT RIC. The ability to collect,
store, and analyze various types of data is fundamental in the development and
implementation of machine learning-based solutions. Thus, the developed tools
enable the creation of simulation scenarios capable of training reinforcement
learning models, using performance metrics that were previously impossible to
manipulate within the simulator.

Resumo. Uma parte essencial no desenvolvimento de aplicações para o con-
trole e diagnóstico de uma Rede de Acesso via Rádio (Radio Access Network
– RAN) é a simulação. É imprescindı́vel a avaliação das soluções propos-
tas em um cenário simulado próximo à realidade a fim de evitar possı́veis fa-
lhas na implementação. O objetivo deste trabalho é adicionar funcionalida-
des à extensão “ns3-oran” do simulador de redes “ns-3”. As funcionalida-
des implementadas dão ao usuário a liberdade para utilizar a extensão sem
restrições de quais dados podem ser enviados ao Near-RT RIC. A capacidade
de coleta, armazenamento e análise de diversos tipos de dados é fundamental
no desenvolvimento e implementação de soluções baseadas em aprendizado de
máquina. Assim, as ferramentas desenvolvidas permitem a criação de cenários
de simulações capazes de treinar modelos por aprendizado por reforço, utili-
zando métricas de desempenho que antes eram impossı́veis de serem manipula-
das pelo simulador.

1. Introdução

A O-RAN é uma arquitetura de rede de acesso via rádio aberta (Open Radio Ac-
cess Network - Open RAN), padronizada pela O-RAN Alliance [O-RAN Alliance 2025],

Este trabalho foi realizado com recursos do CNPq, CAPES, FAPERJ, FAPESP (2023/00811-0 e
2023/00673-7) e Fundação de Desenvolvimento da Pesquisa - Fundep - Rota 2030.

que define interfaces abertas e, consequentemente, é interoperável e agnóstica a fabri-
cantes de hardware e software. Uma das principais inovações da arquitetura O-RAN é a
introdução de dois controladores inteligentes para o gerenciamento da RAN. O contro-
lador inteligente em não tempo-real (Non Real-Time RAN Intelligent Controller – Non-
RT RIC) e o controlador inteligente em quase tempo-real (Near Real-Time RAN Intelli-
gent Controller – Near-RT RIC), que são capazes de tomar ações de controle a partir de
aplicações de lógica personalizada, chamadas de rApps e xApps. O Non-RT RIC atua em
laços de controle acima de 1 s e hospeda rApps. Já o Near-RT RIC atua em laços de con-
trole entre 10 ms e 1 s e hospeda xApps [Polese et al. 2023]. A arquitetura O-RAN prevê
a implementação das rApps e xApps de uma maneira modular, podendo ser implemen-
tadas por terceiros a partir de imagens em contêineres, com a caracterı́stica open source.
Essas aplicações são utilizadas para controle e diagnóstico da rede. Como exemplo de
aplicações que podem ser implementadas em xApps, tem-se o gerenciamento de hando-
ver e de beamforming. A arquitetura O-RAN prevê também a utilização de aplicações de
aprendizado de máquina, implementadas como rApps e xApps nos controladores inteli-
gentes para o controle e gerenciamento da RAN.

O processo de avaliação das rApps e xApps é uma etapa essencial no desenvol-
vimento dessas aplicações. Tal processo pode exigir que as rApps e xApps sejam simu-
ladas em cenários que possam garantir o correto funcionamento na prática. Ademais,
aplicações de aprendizado de máquina precisam de um ambiente de testes e, no caso das
aplicações que usam o aprendizado por reforço, um ambiente de testes e de treino. Para
isso, as simulações proveem um cenário controlado e personalizável, sendo adequado
para os testes e o treinamento de aplicações de aprendizado de máquina. Há um pro-
blema, porém, no contexto O-RAN para a realização de simulações devido à escassez
de simuladores e às limitações dos existentes, como é o caso do ns-3 [ns-3 2025] e da
sua extensão ns3-oran [ns3-oran 2025]. O sistema de relatórios e de banco de dados im-
plementados no ns3-oran são restritivos com relação à adição e à recuperação de dados,
sendo limitados aos relatórios de (i) localização, (ii) perda de pacotes e (iii) informações
de registro de equipamentos de usuários (User Equipment – UE) em evolved Node B –
eNBs, implementados por padrão. Dessa forma, todos os métodos para armazenamento
dos relatórios e recuperação de informações são especı́ficos aos já implementados, não
sendo genéricos o suficiente para serem usados para novos modelos de relatórios. Essa
limitação impede a criação de cenários gerais de simulação e de aplicações, como, por
exemplo, rApps ou xApps baseados em aprendizado de máquina, que dependem de ou-
tros tipos de informações além dos três tipos previstos pelo simulador.

Este trabalho propõe uma ferramenta para simulação de rede O-RAN baseada na
adição de novas funções ao ns3-oran. A ideia base é possibilitar o uso de relatórios de
desempenho personalizados. Para isso, a ferramenta proposta adiciona novas funções
e estende funções já existentes que visam permitir maior diversidade de tipos de dados
na utilização do sistema de banco de dados e de relatórios. Todas as modificações são
retrocompatı́veis com o ns-o-ran padrão, de modo que os scripts de simulação criados
utilizando a versão original são compatı́veis com a ferramenta de simulação implemen-
tada. A fim de demonstrar o funcionamento e a utilidade da ferramenta implementada,
dois exemplos de uso são disponibilizados, um evidenciando a utilização de relatórios
contendo métricas arbitrárias, e o outro mostrando como as ferramentas implementadas
podem ser utilizadas no treinamento de um xApp com aprendizado por reforço.

Este trabalho está organizado da seguinte forma: a Seção 2 explica funcionamento
do ns-3 e do ns3-oran. A Seção 3 introduz a arquitetura da ferramenta proposta, enquanto
a Seção 4 apresenta os casos de uso e respectivos resultados. Por fim, a Seção 5 con-
clui este trabalho e esboça possı́veis trabalhos futuros. Todo o código desenvolvido está
disponı́vel em https://github.com/felip-T/ns3-oran. Uma documentação
Doxygen em HTML com descrições estruturadas de classes e métodos, e uma
documentação Sphinx com detalhes sobre a implementação da ferramenta e sobre o fun-
cionamento dos exemplos estão disponı́veis em https://github.com/felip-T/
ns3-oran/tree/master/doc. Os exemplos de caso de uso citados neste traba-
lho estão disponı́veis em https://github.com/felip-T/ns3-oran/tree/
master/examples/examples-adaptative. No repositório também está dis-
ponı́vel um Dockerfile que instala o ns-3, a ferramenta e todas as dependências necessárias
para a execução dos exemplos.

2. O Simulador ns-3 e a sua extensão ns3-oran

O ns-3 [ns-3 2025] é um simulador de eventos discretos para comunicações em
redes. As simulações no ns-3 são realizadas por meio de scripts em C++, sendo que a
compilação é uma das tarefas do próprio simulador. O ns-3 é um simulador de código
aberto e extensı́vel, com diversas extensões disponı́veis que adicionam funcionalidades
ao simulador. O ns3-oran [ns3-oran 2025] é uma extensão do ns-3 desenvolvida pelo
órgão americano NIST (National Institute of Standards and Technology), que imple-
menta funcionalidades da arquitetura O-RAN no ns-3 relacionadas ao Near-RT RIC. A
implementação do Near-RT RIC do ns3-oran é capaz de trocar informações com os equi-
pamentos de usuário através da interface E2. Vale mencionar que tanto os equipamentos
de usuário quanto a interface E2 são também simulados, sendo esta última responsável por
interconectar os nós E2 ao Near-RT RIC. O nome de nó E2 é dado a qualquer equipamento
conectado à RAN por meio de uma interface E2. A partir da interface E2, o Near-RT RIC
recebe relatórios de desempenho dos nós E2 conectados e pode enviar ações de controle
aos nós conectados com base na análise dos relatórios recebidos.

O ns3-oran permite a criação de um Near-RT RIC simulado, que se conecta a
outros componentes da mesma simulação a partir de uma implementação da interface
E2. O ns3-oran implementa também um sistema de relatórios e banco de dados a fim de
receber e armazenar relatórios de desempenho dos nós simulados, além de um sistema
para implementação de xApps, chamados de logic modules pelo simulador.

3. A Ferramenta Proposta

A ferramenta proposta cria dois novos componentes principais, o
OranAdaptativeSqlite e o OranReportSqlite. Juntos, esses dois com-
ponentes permitem a criação de relatórios personalizados e a recuperação de informações
do banco de dados pelo Near-RT RIC. Vale ressaltar que diversos outros componentes do
simulador precisam ser alterados para a adição desse novo sistema de banco de dados,
dentre eles, os principais foram a interface E2 e a classe base para banco de dados.

O OranAdaptativeSqlite é o novo componente de banco de dados imple-
mentado. Esse componente consiste em um banco de dados SQLite que é capaz de gerar
tabelas com base em relatórios recebidos em tempo de simulação. Originalmente, todas

as tabelas são criadas no inı́cio da simulação e correspondem apenas às informações pre-
vistas nos relatórios implementados por padrão no ns3-oran. Com os novos componentes,
além das tabelas de relatórios padrão criadas no inı́cio da simulação, o banco de dados
também é capaz de criar novas tabelas automaticamente, durante a simulação, com base
em metadados provindos de relatórios personalizados. A Figura 1 exibe o diagrama UML
da classe OranAdaptativeSqlite.

A classe OranAdaptativeSqlite adiciona métodos para a recuperação de
informações no banco de dados. Os métodos iniciados por “+” na Figura 1 são públicos e
implementam interfaces para o acesso ao banco de dados. O método GetLastReport,
recebe uma string contendo o nome da tabela ou uma string e um número, contendo
o nome da tabela e o ID de um nó. O primeiro método retorna um mapa contendo as
informações do último relatório inserido na tabela buscada, na qual as chaves correspon-
dem às colunas da tabela SQLite e os valores correspondem às informações contidas nas
colunas. Já o segundo método, diferente do primeiro, retorna as últimas informações
enviadas por um determinado nó. O método GetSecondLastReport é similar ao
anterior, recebendo o nome de uma tabela e um ID de um nó. Essa função é útil para
comparar variações entre dois relatórios de um mesmo tipo enviados pelo mesmo nó. Por
fim, a função GetCustomQuery recebe uma query de busca arbitrária SQLite e retorna
as informações obtidas pela consulta.

Os métodos iniciados por um “#” na Figura 1 são protected e são relacionados
ao gerenciamento interno no banco de dados. O método ParseReportTableInfo é
utilizado na criação de novas tabelas no banco de dados, esse método é chamado quando
um relatório personalizado nunca antes recebido chega ao Near-RT RIC, e é responsável
por processar as informações sobre o tipo de tabela a ser criado para o novo relatório e
gerar a query para sua criação. O método CreateReportTable envia a query gerada
pelo método ParseReportTableInfo para o banco de dados, criando a tabela rela-
cionada ao novo relatório personalizado. O método ParseReport é chamado sempre
que um relatório chega ao Near-RT RIC e é responsável por processar o conteúdo de
um relatório e estruturá-lo de forma a adicionar as informações no banco de dados. O
método CreateReportSaveQuery utiliza o método ParseReport para a criação
da string de query para a adição de informações em uma tabela na chegada de um re-
latório. Por fim, o método CreateReportSave envia a query criada pelo método
CreateReportSaveQuery para o banco de dados e confere se as informações foram
adicionadas com sucesso.

O componente OranReportSqlite é implementado como uma classe virtual,
com o objetivo de ser expandida pelo usuário para a criação de relatórios personalizados.
O usuário deve, então, sobrecarregar os métodos GetTableName, GetTableInfo
e ToString para a criação de relatórios personalizados. O método GetTableName
deve ser sobrecarregado de forma que retorne uma string contendo o nome da tabela a ser
utilizada pelo OranAdaptativeSqlite para armazenar os dados vindos desse re-
latório. O método GetTableInfo deve retornar um vetor de tuplas contendo, primeiro,
o nome das colunas da tabela onde os dados serão armazenados e, segundo, o tipo do
dado a ser armazenado (CHAR, INT, BOOL, ...). Por fim, o método ToString deve re-
tornar as informações a serem armazenadas pelo relatório de forma estruturada. Maiores
informações sobre a implementação e utilização desses métodos podem ser encontradas

Figura 1. O diagrama UML da classe OranAdaptativeSqlite implementada.

Figura 2. O diagrama UML da classe OranReportSqlite implementada.

na documentação fornecida com a ferramenta. A Figura 2 exibe o diagrama UML da
classe OranReportSqlite.

A Figura 3 ilustra as diferenças entre o sistema implementado nesta versão e o
original. No original, as tabelas padrão são criadas para cada relatório implementado,
não sendo possı́vel adicionar novas informações ou receber relatórios personalizados. A
versão proposta permite a criação de relatórios personalizados, além da criação de tabelas
novas à medida que relatórios de novos tipos são recebidos pelo Near-RT RIC. Na Fi-
gura 3, as tabelas criadas dinamicamente, bem como os relatórios personalizados, estão
indicados em verde.

4. Casos de Uso

Para ilustrar a utilização das funcionalidades implementadas, foram criados
dois casos de uso: o simple-db-example e o rl-handover-example. O
simple-db-example é um caso de uso simples que ilustra a utilização do novo sis-
tema de banco de dados e criação de relatórios personalizados. Esse caso de uso também
demonstra o funcionamento de relatórios padrão juntamente com relatórios personaliza-
dos simultaneamente. O rl-handover-example é um caso de uso mais complexo
que ilustra como a ferramenta pode ser utilizada para coletar informações para o treina-
mento de uma aplicação de aprendizado por reforço para o gerenciamento de handover.

Figura 3. Near-RT RIC modificado. Em verde, os relatórios personalizados e as
tabelas geradas dinamicamente.

4.1. Caso de Uso 1: Utilização de Relatórios Personalizados

Este caso de uso ilustra a criação de um relatório personalizado que reporta o
endereço IPv4 de um UE periodicamente. O intuito é evidenciar a criação de relatórios e a
implementação do novo sistema de banco de dados personalizado no script de simulação.
O exemplo também mostra o funcionamento de relatórios personalizados juntamente com
relatórios padrão do ns3-oran.

A Figura 4 ilustra o cenário implementado, no qual um equipamento de usuário
conectado a um eNB envia periodicamente ao Near-RT RIC relatórios padrão, contendo
sua localização, e personalizado, contendo seu endereço IPv4. No momento que o Near-

Figura 4. Cenário simulado em simple-db-example.

RT RIC recebe o relatório personalizado, uma nova tabela é gerada em seu banco de dados
com base nos metadados contidos no relatório. A Lista 1 mostra a saı́da da execução do
exemplo, imprimindo na tela as queries realizadas pelo Near-RT RIC ao banco de dados
e o tempo de simulação. Na lista, é possı́vel ver o momento em que a tabela do relatório
personalizado é criada no bando de dados.

Lista 1. Exemplo de logs no banco de dados.
1 Query OK(1 0 1) : ”INSERT INTO node (n o d e t y p e) VALUES (?) ; ” (1)
1 Query OK(1 0 1) : ”INSERT INTO n o d e r e g i s t r a t i o n (nodeid , r e g i s t e r e d , s i m u l a t i o n t i m e)

VALUES (? , ? , ?) ; ” (5 , 1 , 1000000000)
1 Query OK(1 0 1) : ”INSERT OR REPLACE INTO l t e u e (nodeid , i m s i) VALUES (? , ?) ; ” (0 , 1)
2 Query OK(1 0 1) : ”SELECT r e g i s t e r e d FROM n o d e r e g i s t r a t i o n WHERE no de id = ? ORDER BY

s i m u l a t i o n t i m e DESC, e n t r y i d DESC LIMIT 1 ; ” (5)
2 Query OK(1 0 1) : ”INSERT INTO n o d e l o c a t i o n (nodeid , x , y , z , s i m u l a t i o n t i m e) VALUES (? ,

? , ? , ? , ?) ; ” (5 , 15 , 0 , 1 . 5 , 2000000000)
2 Query OK(1 0 1) : ”CREATE TABLE IF NOT EXISTS UeIpv4 (e n t r y i d INTEGER PRIMARY KEY

AUTOINCREMENT NOT NULL, n od e i d INTEGER NOT NULL, t ime INTEGER NOT NULL, ipv4
TEXT NOT NULL, FOREIGN KEY(no de i d) REFERENCES node (no de id)) ; ”

2 Query OK(1 0 1) : ”INSERT INTO UeIpv4 (nodeid , t ime , i pv4) VALUES (5 , 2000000000 ,
” 7 . 0 . 0 . 2 ”) ; ”

3 Query OK(1 0 1) : ”SELECT r e g i s t e r e d FROM n o d e r e g i s t r a t i o n WHERE no de id = ? ORDER BY
s i m u l a t i o n t i m e DESC, e n t r y i d DESC LIMIT 1 ; ” (5)

3 Query OK(1 0 1) : ”INSERT INTO n o d e l o c a t i o n (nodeid , x , y , z , s i m u l a t i o n t i m e) VALUES (? ,
? , ? , ? , ?) ; ” (5 , 20 , 0 , 1 . 5 , 3000000000)

3 Query OK(1 0 1) : ”INSERT INTO UeIpv4 (nodeid , t ime , i pv4) VALUES (5 , 3000000000 ,
” 7 . 0 . 0 . 2 ”) ; ”

4 Query OK(1 0 1) : ”SELECT r e g i s t e r e d FROM n o d e r e g i s t r a t i o n WHERE no de id = ? ORDER BY
s i m u l a t i o n t i m e DESC, e n t r y i d DESC LIMIT 1 ; ” (5)

4 Query OK(1 0 1) : ”INSERT INTO n o d e l o c a t i o n (nodeid , x , y , z , s i m u l a t i o n t i m e) VALUES (? ,
? , ? , ? , ?) ; ” (5 , 25 , 0 , 1 . 5 , 4000000000)

4 Query OK(1 0 1) : ”INSERT INTO UeIpv4 (nodeid , t ime , i pv4) VALUES (5 , 4000000000 ,
” 7 . 0 . 0 . 2 ”) ; ”

4.2. Caso de Uso 2: Handover com Aprendizado por Reforço
Este caso de uso ilustra como a ferramenta pode ser utilizada no treinamento de

um modelo para aprendizado por reforço. O exemplo simula um cenário simplificado, o
cenário possui dois eNBs inicializados em posições fixas, nas extremidades do cenário, e
um UE inicializado em uma posição aleatória em uma área entre os dois eNBs. Os eNBs
e o UE são inicializados em posições colineares, o UE então se move em direção ao eNB
mais distante. Durante a simulação o UE envia relatórios ao Near-RT RIC de taxa de perda
de pacotes, localização atual e relação sinal-ruido através do eNB conectado. Sempre que
o Near-RT RIC recebe um relatório de taxa de perda de pacotes que indique mais de 10%
de perda, uma observação é enviada a um modelo sendo treinado com aprendizado por
reforço, utilizando o algoritmo proximal policy optimization – PPO, em um programa em
Python. O programa em Python retorna um comando de ação, indicando se um hando-
ver deve ser realizado e em qual eNB o UE deve se conectar. O cenário de simulação é
repetido diversas vezes durante o treinamento do modelo, podendo ser interrompido pelo
usuário. Quando o modelo chega a um desempenho satisfatório, é possı́vel interromper
o treinamento e utilizar o modelo apenas para inferência no gerenciamento de handover.
Esse exemplo utiliza a extensão ns3-ai [Yin et al. 2020] para a comunicação entre o mo-
delo sendo treinado em Python e o ns-3. A Figura 5 mostra a evolução do modelo com o
tempo. Na figura, cada ponto corresponde à recompensa média recebida pelo modelo em
um episódio no cenário de treino. A recompensa foi definida como 1− p, onde p é a taxa
de perda de pacotes do UE simulado.

Figura 5. Evolução do treinamento do modelo de aprendizado por reforço para
handover no cenário de exemplo.

Maiores informações sobre o exemplo, bem como uma ilustração do cenário de
simulação podem ser encontradas na documentação disponibilizada com a ferramenta.

5. Conclusão e Trabalhos Futuros
A ferramenta desenvolvida impulsiona o desenvolvimento de aplicações basea-

das em dados para o controle e diagnóstico da rede de acesso. Com as adições feitas, é
possı́vel utilizar o simulador como cenário para treinamento de aplicações de aprendizado
de máquina e, em especial, para o treinamento de aplicações de aprendizado por reforço.
Os componentes de banco de dados implementados dão liberdade ao usuário para co-
letar, armazenar e recuperar métricas arbitrárias. Isso permite a criação de cenários de
simulação mais complexos e realistas, sendo útil em especial no treinamento de modelos
a partir de cenários de simulação do ns-3. Uma versão desta ferramenta com suporte à
integração com a extensão 5G-LENA [Patriciello et al. 2019] está sendo desenvolvida, e
pode ser encontrada como um branch no GitHub da ferramenta.

Referências
ns-3 (2025). https://www.nsnam.org/. https://www.nsnam.org/. [Ac-

cessed 14-02-2025].

ns3-oran (2025). https://github.com/usnistgov/ns3-oran. [Accessed 14-
02-2025].

O-RAN Alliance (2025). https://www.o-ran.org/. [Accessed 14-02-2025].

Patriciello, N., Lagen, S., Bojovic, B., and Giupponi, L. (2019). An e2e simulator for 5g
nr networks. Simulation Modelling Practice and Theory, 96:101933.

Polese, M., Bonati, L., D’Oro, S., Basagni, S., and Melodia, T. (2023). Understanding O-
RAN: Architecture, Interfaces, Algorithms, Security, and Research Challenges. IEEE
Communications Surveys & Tutorials.

Yin, H., Liu, P., Liu, K., Cao, L., Zhang, L., Gao, Y., and Hei, X. (2020). Ns3-ai: Fostering
artificial intelligence algorithms for networking research. In Proceedings of the 2020
Workshop on Ns-3, WNS3 2020, page 57–64, New York, NY, USA. Association for
Computing Machinery.

