Asperathos: Running QoS-Aware Sensitive
Batch Applications with Intel SGX

Lilia Sampaio, Clenimar Souza, Gabriel Vinha, Andrey Brito

'Laboratério de Sistemas Distribuidos
Universidade Federal de Campina Grande (UFCG)
Campina Grande — PB — Brazil

{liliars, clenimar, gabrielvinha, andrey}@lsd.ufcg.edu.br

Abstract. The massive amount of information being generated nowadays results
in the need for efficient data processing frameworks. For sensitive information,
concerns also emerge regarding data integrity and confidentiality. To address
such concerns, we present Asperathos, a configurable framework to automate
the execution of batch applications in cloud environments while complying with
QoS goals and processing potentially sensitive data. Our demonstration lever-
ages tools such as Kubernetes and Intel SGX in a smart grid scenario, comput-
ing the power consumption from a dataset containing detailed measurements
of users. We illustrate Asperathos features through the integration with both a
command line and a web-based interface.

1. Introduction

The processing of large amounts of sensitive data, generated by millions of people, such
as their locations, personal communications, and even power consumption, raises growing
concern not only on the efficient processing all this data, but also on the confidentiality and
integrity of these data. Many companies use the insights given by these computations to
improve their services and generate a variety of user recommendations. As an example,
the processing of data from distribution sensors and power meters from end users can

enable optimization on the distribution system or early detection of power quality issues'.

Although such applications are very useful, the data confidentiality required on its
processing and storage infrastructure should be carefully considered. Another common
demand on these types of applications is the need for agile data processing that meets pre-
defined Quality of Service (QoS) agreements. In this context, QoS is defined as a measure
to guarantee a certain level of performance to a data flow. Moreover, QoS is especially im-
portant for real-time streaming applications and in systems that need to optimize resource
usage and, thus, cannot be safe by overprovisioning.

Nevertheless, controlling data processing applications may be far from trivial as
each application may require different types of resources or have different goals. As an
example, controlling one application may require monitoring the usage of infrastructure
resources such as CPU and memory. In contrast, the control of other applications may

'SecureCloud documents. https://www.securecloudproject.eu/wp-content/uploads/D5.4.pdf (Last ac-
cessed: 14 mar. 2019)

require the monitoring of metrics of the application itself, as the time it takes to process a
request.

In this paper we introduce Asperathos, an open-source tool for running QoS-aware
applications. Asperathos provides a configurable framework to automate the execution
of big data applications in cloud environments while complying with QoS goals. In As-
perathos, QoS is supported through customized actuators that regulate applications in exe-
cution time. Besides that, in contrast to other orchestration tools, such as Kubernetes? and
OpenStack Heat®, Asperathos also consider specific application metrics. Finally, because
its flexibility, Asperathos is easily integrated with other technologies and tools, enabling
the execution of sensitive applications that make use of trusted execution environments to
guarantee data integrity and confidentiality, such as Intel SGX*.

Intel SGX is a relatively new hardware technology, available in processors since
2015 [McKeen et al. 2013, Barbosa et al. 2016] and provides guarantees regarding data
integrity and confidentiality by processing them inside protected memory areas named en-
claves. Some capabilities of Intel SGX make it suitable to support applications that deal
with sensitive data in the cloud, for instance, being able to encrypt and integrity check
data before storing it in main memory, and the possibility of attesting running software
before granting it access to the data [Costan and Devadas 2016]. In our demonstration,
we use SCONE, a Secure Container Environment that uses SGX to protect containerized
processes while simplifying the porting of applications [Arnautov et al. 2016]. SCONE
provides support both encrypted memory and the secure delivery of secrets only to appli-
cations that have proved to be running, and not tampered with, inside enclaves.

The rest of the paper is organized as follows. Section 2 describes our Asperathos
framework, its features and existing plugins. Section 3 presents a relevant use case to
motivate and demonstrate the usage of this tool when considering smart metering data
analysis. Section 4 details the demonstration to be presented and pointers to documenta-
tion and code resources. Lastly, Section 6 includes some final considerations.

2. Asperathos

Time-critical applications rely on the premise that the processing of an input must end
before a predefined time. Some concerns about these types of applications appear for ex-
ample when combining applications with different timeliness constraints and/or different
priorities. Therefore, allocating resources wisely enables more efficiency, be it on energy
or costs. Specially with recurrent and resource demanding application or when the tech-
nique is applied by the cloud provider itself, the over usage of such resources may have a
considerable financial impact for their users [Li et al. 2011].

In order to offer a solution for this issue, we developed Asperathos, a configurable
framework to automate the execution of big data applications in cloud environments while
supporting QoS goals. Asperathos is composed of a set of components that communicate
through REST APIs and can be configured to actuate in a cloud environment and control
their resources. To support different cloud infrastructures and application management
tools, Asperathos uses a plugin approach, as will be detailed next.

2Kubernetes. https://www.kubernetes.io (Last accessed: 12 mar. 2019)
3OpenStack. https://www.openstack.org/ (Last accessed: 12 mar. 2019)
“Intel SGX. https://software.intel.com/sgx (Last accessed: 25 mar. 2019)

2

Monitor

nnnnnn

Manager

Figure 1. Asperathos component architecture.

2.1. Architecture

A diagram of the Asperathos architecture and how its components communicate is pre-
sented on Figure 1. The Manager is responsible to initiate new submissions and provide
the necessary environment for an application to run. In our context, submissions are com-
posed by the application itself and its respective execution parameters. In addition to that,
the Manager is also responsible for starting the other components of the system.

The next component is the Monitor, which is responsible for collecting metrics
from the environment by monitoring the units running the applications. Those metrics
can then be used by the Controller, the component responsible to take actions on the
environment based on the collected data and the QoS goals defined by the users. In this
context, the metrics are pulled from some metric storage and are used, for instance, to
decide whether to increase resource usage in order to finish a task on time or, alternatively,
to decrease resource usage and save resources.

Lastly, the Visualizer component provides a visualization platform where the user
can keep track of the application progress. The Visualizer service consumes the metrics
collected by the Monitor and display graphics of these data in a dashboard. One visual-
ization plugin will be detailed in Section 2.3 (Figure 2).

2.2. Existing plugins

Asperathos follows a plugin-based architecture. Plugins implement all available features,
and allow the user to easily extend the framework functionality by creating new ones.
Plugins currently available include OpenStack, which runs generic applications (defined
in virtual machine images) in an OpenStack infrastructure; Spark, Spark Mesos, and
Spark Sahara, which enable Apache Spark® data processing tasks to be run in different
infrastructures (the basic Spark plugin considers a standalone cluster, Spark Mesos con-
siders a cluster over Apache Mesos®, and Spark Sahara considers a cluster provisioned
through OpenStack Sahara’); the Chronos plugin runs periodic tasks with a strict time

>Spark Home Page: https://spark.apache.org/ (Last accessed: 14 mar. 2019)
®Mesos Home Page: http://mesos.apache.org (Last accessed: 14 mar. 2019)
7Sahara Documentation: https://docs.openstack.org/sahara/latest/ (Last accessed: 14 mar. 2019)

frame of execution; and the KubeJobs plugin runs containerized data processing appli-
cations in Kubernetes clusters. All the plugins aforementioned act on the infrastructure,
increasing or decreasing the resources allocated to any given submission (be it containers,
VMs, CPU and IOPS capacity, and so on) in order to adjust the application and meet QoS
constraints. For this demonstration, we will focus on the KubeJobs plugin, as Kubernetes
is currently the most popular tool for application orchestration, providing an application-
centered, declarative API, and a rich ecosystem of tools and extensions.

2.3. Additional features

Besides the features already presented, Asperathos is also capable of using different clus-
ters to execute tasks and register new ones to the platform. Clusters are selected as part
of a new submission providing user control over this decision. Asperathos can manage
credentials and keys to access such infrastructure.

Figure 2 depicts an example of execution that can be visualized using the As-
perathos visualizer tool. The graphics show a KubeJobs plugin execution, the first one
depicting the task progress relative to the time passed, the second showing the scaling of
the replicas when necessary, and the last graph is the application error, which is the ratio
of the task progress and the time spent. For this visualization, Grafana® was used, together
with an Influx Database’ as the metric source.

job vs time progress

0
~ 10 \ A "\I_ &l

0o - 0
11:45 11:50 11:55 12:00 12:05 1210 11:45 11:50 11:55 12:00 12:05 1210 11:45 11:50 12:05 12:10

11:55 12:00
X = ol lelis application-progress.error
= time-progress Jjob-progress . Job-paralielism

Figure 2. Task execution in the Grafana dashboard provided by Asperathos.

3. Use case: smart metering data analysis

Consider that the electricity supply network of an entire city is monitored with a rich
network of sensors and smart meters, which collect measurements with high granularity.
These smart meters and sensors continuously collect and send data to the cloud. Job
routines process these data to detect anomalies, such as failures, frauds and quality issues,
and also to simulate how the system responds to unusual scenarios (e.g., rapid demand
escalations or failure of major components).

Such routines also need to consider data integrity and meet time constraints, as
they are executed periodically. Asperathos acts to ensure those constraints are respected
by allocating more resources to tasks that are behind the schedule or by freeing up re-
sources if the tasks are ahead of their time, potentially reducing costs.

As Asperathos components expose REST APIs to submit and manage workloads
and infrastructure, it is possible to build more components on top of the framework to bet-

8Grafana Home Page: https://grafana.com/ (Acesso em: 14 mar. 2019)
°Influx Data Home Page: https://www.influxdata.com/ (Acesso em: 14 mar. 2019)

4

ter suit the user needs, Subsections 3.2 and 3.3 present real world use cases to help illus-
trate such usages. For the examples here we are using the KubeJobs plugin, and assum-
ing the Manager is running locally on the user’s machine (http://0.0.0.0:1500),
but potentially controlling a remote cluster (e.g., in a public cloud).

3.1. Implementation

The data analysis routine taken as an example consists of a Python program that down-
loads encrypted files from an object storage in the cloud. Each file contains smart meter
data from a specific customer and is processed to calculate the average consumption and
quality metrics, publishing the encrypted results back to the object storage. Encrypting
the input and output files ensures that customer data is still protected even if the files
leak (due to misconfiguration of the storage systems or due to invasions), as long as the
encryption key is kept secret.

The Python routine relies on the SCONE framework to provide confidentiality and
integrity guarantees. Confidentiality is ensured by running the entire application inside of
Intel SGX enclaves, while integrity is provided by SCONE’s remote attestation scheme.
Attesting an enclave means that the application currently running was not modified from
what the developer intended to run. Once attested, the application is able to securely get
secrets (i.e. the encryption key) from a trusted secret management service.

Asperathos allows such routine to run in a distributed fashion, processing up to
hundreds of customer records simultaneously, while supporting secure execution tech-
nologies (e.g. Intel SGX). Asperathos also controls resource allocation based on user-
defined deadlines (QoS), and provides failure-recovery mechanisms, guaranteeing that
each task is processed at least once.

3.2. Running from command line

The simplest way to submit workloads to Asperathos is by sending an HTTP request to its
main entry point, the Asperathos Manager. The request body must contain a JSON docu-
ment with all relevant parameters to the workload submission. Please refer to Asperathos
Quick Start Guide'® for more information.

$ curl —H ”Content—Type: application/json” —data @submission.json \
http://0.0.0.0:1500/ submissions

Asperathos returns the submission ID (e.g. k j-d59c£24), which can be used to
retrieve more information about the workload, such as its status and the address for the
visualization platform (as shown in Figure 2):

$ curl http://0.0.0.0:1500/submissions/kj—d59cf24
{"kj—d59cf24”: {”visualizer_url”:”http//10.5.0.77:32044”, ”status”: ”

ongoing”, ...}}

The routine starts only after its code is attested. If any unintended or malicious
change was made to the code, the routine will not start. After processing a customer

10 Asperathos user guide. https://github.com/ufcg-lsd/asperathos/wiki/User-Guide (Last accessed: 14
mar. 2019)

record file, the routine publishes the results back to the object storage. In this particular
example, OpenStack Swift is our object storage of choice, but other services (e.g. S3 or
Google Cloud Storage) can be used as well. Results are also encrypted when posted to
the object storage. After downloading the output files from the object storage to a trusted
computer, the user can then decrypt the items and see the actual results:

$./decrypt —key $KEY —file OUTPUT_consumer_data_13 >
decrypted_output

$ cat decrypted_output

298

3.3. Running from web-based user interface

It is possible to build tools around Asperathos to extend its functionalities or to provide
a better user experience. In this example we showcase a simple web-based user interface
(UI) intended to run locally on the user’s trusted machine. The UI simplifies the submis-
sion process by letting the workload parameters be defined in a user-friendly way. It is
also possible to define resource allocation limits and QoS constraints, such as a comple-
tion deadline (Figure 3).

RUN p

Figure 3. Submission form. The user can define QoS constraints for the submission (e.g. Expected Time),
as well as other parameters for the execution (minimum and maximum amount of resources).

The user is able to choose the Kubernetes cluster where the workload must run,
or to easily add new clusters, regardless of the provider on which it runs. This example
requires that the clusters have Intel SGX support, as the workloads run inside of enclaves.
The Ul is also responsible for encrypting the input items (Figure 4), pushing them to an
object storage of choice, triggering Asperathos and monitoring the submission progress
and its visualization.

Active Power Analysis

Cluster

kBs-ubuntu-sgx- https:/10.5.0.119:6443

Drag & Drop your files o Browse

Figure 4. Submission form. The user is able to select input files from their local storage. The UI will
encrypt and push them to the object storage.

After the Python routine is attested, which means its exactly the same code (in-
cluding external libraries) as the developer intended to run, the secret management service
sends the encryption key to the enclaves, and the customer records downloaded from the
object storage can be securely decrypted and processed. When outside of the user’s trusted
machine, all the sensitive data is either encrypted or inside Intel SGX enclaves, ensuring
that it is protected even in compromised infrastructures.

After the submission completes, the Ul downloads the encrypted results from the
object storage and decrypts them locally in the user’s trusted machine (Figure 5). If the
attestation process fails, indicating there was some unintended change to the code, the
submission will show an Attestation Error status.

3 Job 9041 - Outputs

Status: completed

ITEM-consumer _data 1341911584 V

ITEM-consumer_data_1478030745 NP

Figure 5. After the submission completes, the Ul downloads the encrypted results and decrypts them
locally.

4. Demonstration

Asperathos is released as an open source project that can be downloaded from Github!!.
For a quick start on Asperathos, documentation is available on the wiki page'. In addi-
tion to that, there is a video'® presenting a motivation for Asperathos and two videos!#!>
showcasing the installation process and some of its features by navigating through our
portal.

The use cases described in Section 3 allow for two different scenarios to be demon-
strated. First a quick setup of the Asperathos components is demonstrated, followed by
a simple application submission. For this scenario we assume the user have a configured
Kubernetes cluster ready for use, with the proper Intel SGX software installed. All the
steps for this scenario are command line based, using Asperathos REST API.

The second demonstration will present a use case that integrates Asperathos to
a web-based user interface. Thus, we will demonstrate functionalities such as cluster
creation, application submission, task progress, download of results, and an example of a
Grafana visualization. Besides that, we are going to show an example of a possible attack,
where an operator manages to replace the application code. The attack case will result in
an error and the modified application will not produce results, since the SGX attestation
process fails. This demonstrates the security aspect of this paper.

T Asperathos repository. https://github.com/ufcg-lsd/asperathos (Last accessed: 14 mar. 2019)
12Guide. https://github.com/ufcg-lsd/asperathos/wiki/Quick-Start (Last accessed: 14 mar. 2019)
3What is Asperathos. https://youtu.be/UURyL_g9LT8 (Last accessed: 14 mar. 2019)

14 Asperathos installation. https://youtu.be/bMI02YJ5uH8 (Last accessed: 14 mar. 2019)
15 Asperathos portal. https://youtu.be/s8_hRV4SpCU (Last accessed: 14 mar. 2019)

7

5. Related Work

Other systems have been built to provide QoS for time critical applications.
[Evans et al. 2015] provides a system that achieves QoS requirements for workflow sys-
tems, however it is limited to these kind of applications and cannot be orchestrated with
other cloud providers and technologies. As for security, [Schuster et al. 2015] considers
using Hadoop in an SGX environment. In order to enable SGX processing of Hadoop
applications, the application is split between a not trusted part and a trusted portion. As
our model is simpler, the Asperathos framework can be configured to run in a variety of
programming models and analytic infrastructures.

6. Conclusions

This work presents Asperathos, a framework for running QoS-aware sensitive batch ap-
plications on cloud environments, enabling customized plugins and actuators that adjust
applications in runtime. We also demonstrate that such concepts can be applied in the ex-
ecution of sensitive applications that need guarantees of data integrity and confidentiality,
which in our case is obtained by using the Intel SGX technology together with Asperathos.
The framework is demonstrated with a use case that considers smart grid analysis being
securely processed by Asperathos and shows protection against attacks that tamper with
the application code to leak sensitive information.

References

Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind, J., Muthuku-
maran, D., O’Keeffe, D., Stillwell, M. L., Goltzsche, D., Eyers, D., Kapitza, R., Piet-
zuch, P., and Fetzer, C. (2016). SCONE: Secure linux containers with intel SGX. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
16), pages 689-703. USENIX Association.

Barbosa, M., Portela, B., Scerri, G., and Warinschi, B. (2016). Foundations of hardware-
based attested computation and application to sgx. In 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 245-260. IEEE.

Costan, V. and Devadas, S. (2016). Intel sgx explained. Cryptology ePrint Archive,
Report 2016/086. http://eprint.iacr.org/2016/086.

Evans, K., Jones, A., Preece, A., Quevedo, F., Rogers, D., Spasi¢, 1., Taylor, L.,
Stankovski, V., Taherizadeh, S., Trnkoczy, J., Suciu, G., Suciu, V., Martin, P., Wang,
J., and Zhao, Z. (2015). Dynamically reconfigurable workflows for time-critical appli-
cations. In Proceedings of the 10th Workshop on Workflows in Support of Large-Scale
Science, WORKS ’15.

Li, H., Liu, J., and Tang, G. (2011). A pricing algorithm for cloud computing resources.
In 2011 International Conference on Network Computing and Information Security,
pages 69-73.

McKeen, F., Alexandrovich, 1., Berenzon, A., Rozas, C. V., Shafi, H., Shanbhogue, V.,
and Savagaonkar, U. R. (2013). Innovative instructions and software model for isolated
execution. In HASP@ ISCA, page 10.

Schuster, F., Costa, M., Fournet, C., Gkantsidis, C., Peinado, M., Mainar-Ruiz, G., and
Russinovich, M. (2015). Vc3: Trustworthy data analytics in the cloud using sgx. In
2015 IEEE Symposium on Security and Privacy, pages 38-54.

8

