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Abstract. Shared systems have contributed to the popularity of many technolo-
gies. However, these systems often confront a common challenge: to ensure that
resources are fairly divided without compromising utilization efficiency. In this
master’s thesis we look at this problem in two distinct systems—software mid-
dleboxes and datacenter task schedulers. We first present Sprayer, a system that
uses packet spraying to load balance packets to cores in software middleboxes.
Our design eliminates the imbalance problems of per-flow solutions and ad-
dresses the new challenges of handling shared flow states that come with packet
spraying. Then, we present Stateful Dominant Resource Fairness (SDRF), a
task scheduling policy for datacenters that looks at past allocations and en-
forces fairness in the long run. SDRF reduces users’ waiting time on average
and improves fairness by increasing the number of completed tasks for users
with lower demands, with small impact on high-demand users.

1. Motivation and Problem Statement
Over the last decades, shared systems have contributed to the popularity of many tech-
nologies. From Operating Systems to the Internet, they have all brought significant cost
savings by allowing the underlying infrastructure to be shared. A common challenge in
these systems is to ensure that resources are fairly divided without compromising utiliza-
tion efficiency. This tradeoff between efficiency and fairness presents itself in a variety
of ways and in different levels of system design. In this master’s thesis we present ideas
that improve both efficiency and fairness in two popular shared systems: software mid-
dleboxes and datacenter task schedulers. In the following subsections we describe the two
problems we tackle.

1.1. Inefficient Use of Multiple Cores in Software Middleboxes

Today middleboxes are a primary component of both enterprise and Internet provider net-
works [Sekar et al. 2012]. Middleboxes allow network operators to deploy a wide range
of network functions (NFs), such as Network Address Translators (NATs), firewalls, and
load balancers. Yet, the cost and lack of flexibility of purpose-built hardware middleboxes
are pushing operators to software running on commodity servers [Chiosi et al. 2012].
Moving to software, however, does not come for free. Software middleboxes have sig-
nificant overhead and often need to use multiple CPU cores [Sun et al. 2017]—or even
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multiple hosts [Kablan et al. 2017, Woo et al. 2018]—to achieve line rates. Moreover,
the rapid increase of network link capacities only exacerbates this need.

When using multiple cores, middleboxes must determine which core to direct
packets to. Today, this is done using Receive-Side Scaling (RSS). RSS is a feature of
multi-queue network interface controllers (NICs) that directs packets to different cores
using a hash of the five-tuple. Doing so, all packets from the same flow end up in the
same core. The reasons for coupling packets from the same flow are twofold. First, pro-
cessing same-flow packets sequentially avoids packet reordering. Second, having same-
flow packets processed in the same core simplifies flow state handling. RSS, however,
has significant shortcomings. It is inefficient, since it cannot use all the available cores
when the number of concurrent flows is small—which happens frequently in real work-
loads [Barreto 2018, §3.1]. Moreover, since RSS directs flows to cores using a hash of the
five-tuple, hash collisions cause asymmetry in flow distribution.1 This results in unfair-
ness even with a larger number of flows [Barreto 2018, §3.4]. In Section 2 we look at this
problem and make a case for a natural alternative: that middleboxes should direct packets
to cores at a finer granularity. We present a system that uses packet spraying to direct
packets to cores in software middleboxes and addresses the new challenges of handling
shared flow state that come with this new approach.

1.2. Long-Term Unfairness in Datacenter Task Schedulers
Modern datacenters are often shared by users with heterogeneous resource con-
straints [Reiss et al. 2012]. The amount of resources given to each user di-
rectly impacts the system performance from both fairness and efficiency stand-
points [Joe-Wong et al. 2013]. In single-resource systems, max-min fairness is the most
widely used and studied allocation policy. The main idea is to maximize the minimum
allocation a user receives. It was originally proposed to ensure a fair share of link capacity
for every flow in a network. Since then, max-min has been applied to a variety of individ-
ual resource types, including CPU, memory, and I/O [Ghodsi et al. 2011]. Nevertheless,
datacenters need to allocate multiple resource types at the same time (such as CPU and
memory) and max-min is unable to ensure fairness [Ghodsi et al. 2011].

In a datacenter environment, users often have heterogeneous demands and
dynamic workloads [Reiss et al. 2012]. Different mechanisms have been proposed
to address the multi-resource allocation, most notably, Dominant Resource Fairness
(DRF) [Ghodsi et al. 2011]. DRF generalizes max-min to the multi-resource setting,
by giving users an equal share of their mostly demanded resource—their dominant re-
source. Using this approach, DRF achieves several desirable properties. Despite the
extensive literature on fair allocation, most allocation policies focus only on instanta-
neous, or short term, fairness, ensuring that users receive an equal share of the resources
regardless of their past behaviors. DRF is no exception, it guarantees fairness only when
users’ demands remain constant. In practice, however, users’ workloads are quite dy-
namic [Reiss et al. 2012] and ignoring this fact leads to sub-optimal allocations and un-
fairness in the long run. In Section 3 we propose a mechanism that extends DRF to
consider past allocations. We show that this mechanism ensures fairness in the long run
and reduces user’s waiting time on average.

1Even when the number of cores is comparable to the number of flows, hash collisions happen with high
probability due to the birthday problem.
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Figure 1. Software middlebox: the
NIC can direct packets to cores
using either RSS or Flow Direc-
tor. Both send all packets from the
same flow to the same core.

NF State Scope Access Pattern
packet flow

NAT,
IPv4 to IPv6

Flow map Per-flow R RW
Pool of IPs/ports Global - RW

Firewall Connection context Per-flow R RW

Load
Balancer

Flow-server map Per-flow R RW
Pool of servers Global - RW

Statistics Global RW -
Traffic
Monitor

Connection context Per-flow - RW
Statistics Global RW -

Redundancy
Elimination Packet cache Global RW -

DPI Automata Per-flow RW -

Table 1. Example of state scope
and access pattern of some popu-
lar stateful NFs. Most NFs only up-
date flow state when connections
start or finish.

2. Sprayer
To solve the imbalance problems caused by hashing flows to cores in software middle-
boxes, we take inspiration from a similar problem in a different domain: datacenter net-
works. Traditionally, datacenter networks use Equal Cost Multi-Path (ECMP) to direct
packets to different paths. Like RSS, ECMP directs all packets from the same flow to the
same path and, as such, has similar shortcomings. This observation has led recent works
to consider load-balancing packets ignoring their flows. This approach, known as packet
spraying, introduces reordering but, because datacenter networks have paths with low and
very similar latencies, the amount of reordering is not enough to significantly harm TCP.
In the first part of the master’s thesis we propose Sprayer, a system that allows the devel-
opment of network functions using packet spraying. There are two main challenges in the
design of Sprayer: spraying packets using existing NICs and handling flow states.

2.1. Spraying Packets Using Existing NICs

At first glance, it may seem impossible to spray packets using existing commodity NICs,
since they do not offer this functionality (see Figure 1). We circumvent this limitation
using Flow Director, a functionality found in many commodity NICs designed to asso-
ciate specific sets of flows to cores. We use Flow Director in an unconventional manner:
instead of matching flows, we configure it such that packets are directed to cores us-
ing the checksum field of the TCP header. Since this field looks random, TCP packets
are uniformly distributed across cores, regardless of their flows. Non-TCP packets fail
to match any rules and fall back to traditional RSS. This avoids the potential problems
packet reordering causes to some UDP applications (e.g., VoIP).

2.2. Handling Flow States

When we send all the packets from the same TCP connection to the same core, we benefit
from having partitionable flow states, which ensures that each core only has to keep state
for its flows. Partitionable state is desirable, as it avoids the penalty of enforcing cache
coherence, as well as the use of synchronization primitives. When we use packet spraying,
packets from the same flow may go to different cores and this property no longer holds.
What we observe, however, is that we get similar benefits if we instead provide writing



partition. As long as we guarantee that each flow state can only be modified by a single
core, we avoid the use of locks and significantly reduce cache invalidations.

To ensure writing partition, we depart from the observation that most NFs only
change flow state when TCP connections start or finish. Table 1 shows the scope (per-
flow or global state) and access pattern (read or write at every packet or flow) for some
popular stateful NFs. To leverage this observation, Sprayer makes a distinction between
connection packets and regular packets. Connection packets are those that have potential
to modify TCP state (those flagged with SYN, FIN, or RST), while regular packets are
all the others. Sprayer ensures writing partition for flow states by making sure that all
connection packets from the same TCP connection are processed by the same core.2

2.3. Results

We implemented Sprayer on top of DPDK3 and conducted experiments to understand
how effective Sprayer is in comparison to RSS. Similarly to the datacenter observations,
we find that the low difference in delay between packets processed in different cores
is not enough to significantly impair TCP performance. Moreover, we observe that the
overall TCP throughput remains consistent for both low and high number of concurrent
flows. Therefore, for the typical number of concurrent flows found in real workloads,
Sprayer greatly improves TCP throughput, compared to RSS. Furthermore, we show that
Sprayer also improves fairness, even with a higher number of flows. For a more detailed
description of the results, refer to the master’s thesis [Barreto 2018, §3.4].

2.4. Related Work

There are multiple works that use packet spraying to improve both efficiency and fairness
in datacenter networks (e.g., [Handley et al. 2017]). Yet, Sprayer is the first to bring this
concept to software middleboxes. Although the basic idea is similar, the implications are
different. One of the challenges of using packet spraying in datacenters is to ensure that
it keeps working in the presence of asymmetries caused by link failures. In middleboxes,
this problem does not exist. Instead, flow state sharing is the main concern.

Many previous works have also investigated NF state so as to scale NFs to multiple
hosts (e.g., [Kablan et al. 2017, Woo et al. 2018]). Despite these solutions being orthog-
onal to our work, they have identified similar flow-state-access patterns as we did. More-
over, one of these solutions, StatelessNF [Kablan et al. 2017], moves all NF state (per-
flow and global) to a remote server, which is an elegant approach to simplifying scalability
and failure recovery. Although StatelessNF could potentially replace Sprayer’s flow state
abstractions, it requires non-commodity technology (InfiniBand). Moreover, accessing
remote states increases latency and requires extra CPU cycles [Woo et al. 2018].

Some works have tried to improve middlebox efficiency when packets go through
multiple NFs (NF chaining). Solutions such as NFP [Sun et al. 2017] exploit parallelism

2Note that the only NF on Table 1 that needs to update flow state for every packet is Deep Packet
Inspection (DPI), which means that Sprayer cannot be used to implement it. Also note that some NFs need
to update global state for every packet. This problem affects traditional flow-based approaches as well as
Sprayer. Fortunately, for some types of global states, such as statistics, looser consistency is often tolerable,
which helps to reduce its impact.

3Data Plane Development Kit: https://www.dpdk.org/.

https://www.dpdk.org/
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Figure 2. Share of dominant re-
source along time for two users
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Figure 3. Illustration of a live tree
with its data structures.

by processing the same packet in NFs located in different cores at the same time. These
solutions, however, are specific to NF chaining and can only work for some configura-
tions. Moreover, they require at least two inter-core transfers for every packet. Also
related to NF chaining, NFVnice [Kulkarni et al. 2017] tries to improve fairness among
NFs running on the same core, but makes no effort to improve fairness among flows.

3. Stateful Dominant Resource Fairness
In the second part of the master’s thesis we introduce Stateful Dominant Resource Fair-
ness (SDRF), an extension of the DRF mechanism that accounts for the past behavior of
users and improves fairness in the long run. The key idea is to make users with lower av-
erage usage have priority over users with higher average usage. When scheduling tasks,
SDRF ensures that users that only sporadically use the system have their tasks scheduled
faster than users with continuous high usage. The intuition for SDRF is that when users
use more resources than their rightful share of the system, they commit to use less in the
future if another user needs. SDRF tracks users’ commitments and ensures that whenever
system resources are insufficient, commitments are honored.

To illustrate the benefits of considering the past in an allocation, consider an ex-
ample with two users sharing a system. To simplify, assume both users have the same
dominant resource (e.g., CPU). User A is eager for resources and continuously submits
a huge amount of tasks. In contrast, user B only uses the system sporadically. If we use
DRF, whenever user B has a usage spike, both users get access to the same amount of
resources—even though user B does not use the system as much as user A (see top of
Figure 2). Alternatively, if we use SDRF, user A’s commitment ensures that user B has
access to a greater share of resources. Because of it, user B is able to complete her work-
load faster (see bottom of Figure 2). Also notice that, with SDRF, system’s resources go
back to user A sooner than if we were using DRF, which ends up causing very little im-
pact in user A’s workload. When we ensure long-term fairness, we are able to improve the
allocation for users with lower demand with little impact on users with higher demand.

DRF’s attractiveness stems from the properties it satisfies. We conduct a thorough
evaluation of SDRF and show that it retains the fundamental properties of DRF. SDRF is
strategyproof, as users cannot improve their allocation by lying to the mechanism. SDRF
provides sharing incentives, as no user is better off if resources are equally partitioned.
Moreover, SDRF is Pareto efficient, as no user can have her allocation improved without
decreasing another user’s allocation. The proof of all properties can be obtained in the



master’s thesis [Barreto 2018, §4.8].

3.1. Practical Considerations
Besides having desirable theoretical properties, a useful task scheduling policy must be
efficiently implementable. In peak hours a scheduler may need to make hundreds of
task placement decisions per second [Reiss et al. 2012]. While DRF can be efficiently
implemented using a priority queue that determines which user has the highest allocation
priority, when we consider the past, allocation priorities may change at any instant and the
implementation cannot benefit from a priority queue. We mitigate this problem—being
able to implement SDRF efficiently—introducing live tree, a data structure that keeps
elements with predictable time-varying priorities sorted.

The key idea of a live tree is to focus on position-change events, instead of ele-
ment priorities. When priorities follow a continuous function, elements change position
whenever their priorities intersect. A live tree always has a current time associated with it
and for this current time, it guarantees that elements are sorted. When the current time is
updated, instead of updating every element priority, we see if any position-change event
happened from the last update to the current time. Figure 3 depicts a live tree: it is com-
posed of two red-black trees and an array. One tree is the elements tree, since it keeps ele-
ments sorted by priority, while the other is the events tree, since it tracks position-change
events sorted by their time. The array is used for element lookup. In the master’s thesis
we describe live tree’s operations in detail and provide their worst-case time complexity.

3.2. Results
To understand how SDRF performs under real workloads and how it compares to DRF,
we implemented a discrete-event simulator and fed it with Google cluster traces.4 These
traces contain 30 million tasks (from either Google services or engineers) over a one-
month period. Our results show that SDRF reduces the average time users wait for their
tasks to be scheduled. Moreover, it increases the number of completed tasks for users
with lower demands, with negligible impact on high-demand users. We also use the sim-
ulations to evaluate the performance of live tree, concluding that SDRF can be efficiently
implemented in practice. For a more detailed description of the results, see the master’s
thesis [Barreto 2018, §4.5].

3.3. Related Work
Fair resource allocation is a prevalent research topic, both in the computer science and
economics fields. Nonetheless, focus is often given to the single resource setting. Gh-
odsi et al. [Ghodsi et al. 2011] are the first to investigate the multi-resource setting under
a shared computing perspective, proposing DRF. Joe-Wang et al. [Joe-Wong et al. 2013]
extend the notion of fairness introduced by DRF to develop a framework that captures the
fairness-efficiency tradeoff. Nevertheless, they assume a cooperative environment and
as such do not evaluate strategyproofness. Another extension of DRF is proposed by
Parkes et al. [Parkes et al. 2015] to account for users with different weights and zero de-
mands. Even though the aforementioned works consider the multi-resource setting, they
ignore the dynamic nature of users’ demands.

4The source code for the discrete-event simulator as well as SDRF and Live Tree are open source and
available at https://github.com/hugombarreto/sdrf.

https://github.com/hugombarreto/sdrf


Bonald and Roberts [Bonald and Roberts 2015] suggest Bottleneck Max Fair-
ness (BMF), which also does not enforce strategyproofness, but improves resource uti-
lization as compared to DRF. They consider dynamic demands in their analysis, ar-
guing that for highly dynamic environments, such as networks, it is hard for users
to manipulate the system. Even though the analysis of BMF considers dynamic de-
mands, the allocation itself considers only short term usage, ignoring fairness in the
long run. Kash et al. [Kash et al. 2014] investigate a dynamic setting where users ar-
rive and never leave, however, they also assume that demands remain constant. Fried-
man et al. [Friedman et al. 2017] evaluate the scenario where multiple users arrive and
leave the system. The focus, however, is on the fair division of resources as soon as the
user arrives, limiting the number of task disruptions. There are also works that adapt DRF
to packet processing [Ghodsi et al. 2012] and consider a recent past. Nevertheless, this is
done to prevent limitations that arise when scheduling packets—in which resources must
be shared in time—and not to ensure fairness and efficiency in the long run. Finally, others
have focused on improving efficiency in the long run but not fairness [Grandl et al. 2016].

4. Impact

As a result of this master’s thesis we have published 3 conference papers—including a
publication at ACM HotNets, the major venue for discussing innovative ideas in Com-
puter Networks—and presented a poster at USENIX NSDI. The list of works follows:

1. H. Sadok, M. E. M. Campista, L. H. M. K. Costa. “A Case for Spraying Packets in
Software Middleboxes.” In ACM HotNets, pp. 127–133, Nov. 2018. Qualis A1.

2. H. Sadok, M. E. M. Campista, L. H. M. K. Costa. “O Passado Também Importa:
Um Mecanismo de Alocação Justa de Múltiplos Tipos de Recursos ao Longo do
Tempo.” In SBRC, May 2018. Qualis B2.

3. H. Sadok, M. E. M. Campista, L. H. M. K. Costa. “Um Mecanismo para Compar-
tilhamento de Recursos em Nuvens Colaborativas Baseado na Credibilidade dos
Usuários.” In SBRC, pp. 458–471, May 2017. Qualis B2.

4. H. Sadok, M. E. M. Campista, L. H. M. K. Costa. “Per-Packet Load Balancing
for Multi-Core Middleboxes.” Poster in USENIX NSDI, Apr. 2018. Qualis A1.

Moreover, in the context of this master’s thesis, we also co-authored the following journal
paper:

5. R. S. Couto, H. Sadok, P. Cruz, F. F. Silva, T. Sciammarella, M. E. M. Campista,
L. H. M. K. Costa, P. B. Velloso, M. G. Rubinstein. “Building an IaaS Cloud with
Droplets: a Collaborative Experience with OpenStack.” In Journal of Network
and Computer Applications, vol. 117, pp. 59–71, Sep. 2018. Qualis A2 (Impact
Factor: 3.991).
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