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Abstract. The late detection of security threats causes a significant increase in the
risk of irreparable damages, disabling any defense attempt. As a consequence, fast
real-time threat detection is mandatory for security guarantees. In addition, Network
Function Virtualization (NFV) provides new opportunities for efficient and low-cost
security solutions. We propose a fast and efficient threat detection system based on
stream processing and machine learning algorithms. The main contributions of this
work are i) a novel monitoring threat detection system based on stream processing;
ii) two datasets, first a dataset of synthetic security data containing both legitimate
and malicious traffic, and the second, a week of real traffic of a telecommunications
operator in Rio de Janeiro, Brazil; iii) a data pre-processing algorithm, a normalizing
algorithm and an algorithm for fast feature selection based on the correlation between
variables; iv) a virtualized network function in an open-source platform for providing
a real-time threat detection service; v) near-optimal placement of sensors through a
proposed heuristic for strategically positioning sensors in the network infrastructure,
with a minimum number of sensors; and, finally, vi) a greedy algorithm that allocates
on demand a sequence of virtual network functions.

1. Introduction

Traffic monitoring is critical to maintaining the stability, reliability, and security of com-
puter networks [Hu et al. 2015]. Network monitoring extends from a simple collection of statis-
tics to a complex analysis of upper-layer traffic for tuning network performance and debugging
protocols. Current network monitoring tools, such as NetFlow, SNMP, Bro, or Snort, do not
meet the current speed and management needs of large network domains. In addition, many
of these tools generate a huge number of files that require processing of other types of tools
to extract knowledge from the collected data. Thus, current security systems such as Security
Information and Event Management (SIEM) do not perform satisfactorily since, while 82%
of security threats occur in minutes, an intrusion can take up to 8 months to be detected. It
is essential that the detection time is the least possible so that the intrusion prevention can be
effective [Wu et al. 2014].

Security attacks have been improving and simple analysis and filtering of packets by the
IP header and TCP port are no longer effective. The attacking traffic tries to hide itself from
the security tools by forging the source IP and dynamically changing the port. In this con-
text, a promising alternative for classifying traffics and detecting threats is the use of Machine
Learning (ML) techniques. These techniques are suitable for large masses of data because, with
more samples to train the classifier, the methods tend to be more accurate [Mayhew et al. 2015].
However, with large amounts of data, machine learning methods have high latency due to the
consumption of computing time. This high latency is a disadvantage for machine learning meth-
ods that must analyze data and detect threats as quickly as possible. In this context, real-time
stream processing allows the immediate analysis of different types of data and consequently
benefits traffic monitoring for security threat detection. Open source distributed processing



platforms have recently been proposed to process large masses of data in low latency flows. To
do so, these platforms are the basis for developing custom applications for each case.

This work proposes A sCAlable TRAffic Classifier and Analyzer (CATRACA) tool.
CATRACA uses Network Function Virtualization (NFV) technology and its infrastructure to
combine virtualization, cloud computing, and distributed stream processing to monitor network
traffic and detect threats. The goal is to provide an accurate, scalable and real-time threat
detection tool capable of meeting peaks of use, providing a high Quality of Service. Traffic
monitoring and threat detection as a virtualized network function have two main advantages: the
ability to self-adapt to different traffic volumes and the flexibility of installation and migration of
sensors in the network to reduce the latency in monitoring [Andreoni Lopez et al. 2016]. Thus,
the tool analyzes big data, the Machine Learning techniques classify the traffic into normal or
threat, and, finally, the knowledge extracted from flows is presented in a user interface. !

2. Objectives and Contributions

The goal of this work is to present the research and the obtained results achieved during
the thesis process. The research topics assessed are Stream Processing, Real-Time Threat De-
tection System, Dataset and Feature Selection, Virtual Network Function, and Virtual Network
Function Chaining.

Stream Processing. We analyze and compare two native distributed real-
time and stream-processing systems, Apache Storm [Toshniwal et al. 2014] and Apache
Flink [Carbone et al. 2015], and one micro-batch system, the Apache Spark Stream-
ing [Franklin 2013]. The architecture of each analyzed system is discussed in depth and a
conceptual comparison is presented showing the differences between these open-source plat-
forms. Furthermore, we evaluate the data processing performance and the behavior of systems
when a worker node fails.

Dataset and Data Preprocessing. We created two datasets, first a synthetic security
dataset to perform traffic classification and the second one is a real traffic from a network op-
erator in Rio de Janeiro, Brazil. Furthermore, we present a fast preprocessing method for net-
work traffic classification based on feature correlation and feature normalization. Our proposed
method couples a normalization and a feature selection algorithms. We evaluate the proposed
algorithms against three different datasets for eight different machine learning classification
algorithms. Our proposed normalization algorithm reduces the classification error rate when
compared with traditional methods. Our Feature Selection algorithm chooses an optimized sub-
set of features improving accuracy by more than 11% within a 100-fold reduction in processing
time when compared to traditional feature selection and feature reduction algorithms.

Real-Time Threat Detection System. We propose and implement an accurate real-time
threat detection system, the CATRACA? tool [Andreoni Lopez et al. 2017b]. The integrated
system allows big data analytic in a stream processing manner. The proposed system uses
machine learning for both attack classification and threat detection. Moreover, the system has
a friendly graphical interface that provides a real-time visualization of the parameters and the
attacks that occur in the network.

Virtual Network Function. We evaluate CATRACA as a Virtual Network Function
(VNF) in the Open Source Platform for Network Functions Virtualization (OPNFV) that pro-

'The tool, as well as its documentation and complementary information can be accessed at
http://gta.ufrj.br/catraca
2documentation available at http://catraca.gta.ufrj.br/ Accessed February 2019.



vides an accurate real-time threat detection service. The service provided is able to scale the
number of processing cores by adding virtual machines to the processing cluster that executes
the detection in a parallel-distributed way, processing up to 15 Million samples per minute. Be-
sides, the Network Virtualization Platform enables the easy deployment of traffic capture sensor
elements that can be placed and moved to several points in the network, offering customization
and adaptability to network monitoring. The results show the potential for scalability, as we
increase the number of processing cores in the distributed cluster. Another important feature of
our proposal is the migration of processing machines. The experiments show that our system
can migrate the processing elements without stopping the threat detection. The live migration
enables the organization of the physical machines in the processing cluster, which results in
several advantages, such as shutting down machines for maintenance or for reduction of energy
consumption or allocating resources in a smart way to meet the demand.

Virtual Network Function Chaining. We propose a scheme for placing and chain-
ing Virtual Network Functions over a network according to four different heuristics. The first
heuristic places the VNF nodes into physical nodes that introduce the minimum delay between
the traffic source and destination. The second heuristic searches for the best placement of VNF
nodes considering the nodes that have the biggest amount of available resources and, thus,
places the VNF over the most available node. This approach increases the number of accepted
requests of VNFs in a network. The third heuristic places the VNF nodes according to the
betweenness-centrality of the topology nodes. In the betweenness-centrality approach, the re-
quests are primarily responded by allocating the most central nodes on the topology, which
reduces the introduced delay. However, as the resources of the most central nodes are used,
the following requests are allocated into peripheral network nodes, introducing a greater delay
on the VNF chaining. The fourth heuristic weights the available resources and the introduced
delay for each physical node. Then, it allocates the VNFs on the nodes that present the greatest
probability of supplying enough resources and the lowest delay. We deploy a greedy algorithm
for all four approaches and we simulate the allocation of VNFs over a real network topology.

3. Related Work

There are some proposals that use the Storm stream processing tool to perform real-
time anomaly detection. Du et al. use the Flume and Storm tool to traffic monitoring to detect
anomalies. The proposal is to make the detection through the k-NN algorithm [Du et al. 2014].
The article presents some performance results, but it lacks evaluation of the accuracy of de-
tection and the tool does not receive data from multiple sources. The work of Zhao et al.
uses the Kafka and Storm, as well as the previous work, for the detection of network anoma-
lies [Zhao et al. 2015], characterizing flows in the NetFlow format. He et al. propose a combi-
nation of the distributed processing platforms Hadoop and Storm, in real time, for the detection
of anomalies. In this proposal, a variant of the k-NN algorithm is used as the anomaly detec-
tion algorithm [He et al. 2015]. The results show a good performance in real time, however
without using any process of reaction and prevention of the threats. Mylavarapu et al propose
to use Storm as a flow processing platform in the [Mylavarapu et al. 2015] intrusion detec-
tion. The Stream4Flow proposal uses Apache Spark with the ElasticStack stack to do network
monitoring [Jirsik et al. 2017]. The prototype serves as a visualization of network parameters.
Stream4Flow, however, has no intelligence to perform anomaly detection. Dos Santos et al.
Use a combination of Snort IDS and OpenFlow to create Of-IDPS.

The OpenSOC project: The Open Security Operations Center [Santos 2015] is a collab-
orative development project that integrates several open source software aimed at an extensible
and scalable security analysis tool. Thus, OpenSOC is an analytical security framework for



monitoring large masses of data using distributed stream processing. OpenSOC was discontin-
ued and gave rise to the Apache Metron project [Apache Software Foundation 2017] which is
an evolution of OpenSOC and proposes a new architecture that aims to facilitate the addition of
new data sources, and better exploit the parallelism of the Storm tool.

The proposed CATRACA tool, like Metron, was also inspired by OpenSOC and aims to
monitor large volumes of data using flow processing. The CATRACA tool is implemented as a
virtualized network role (VNF) in the Open Platform for Network Function Virtualization (OP-
NFV) environment. CATRACA focuses on real-time packet capture, feature selection, machine
learning, and has a mechanism of action for immediate blocking of malicious flows. Thus, the
CATRACA tool acts as a virtualized network intrusion detection and prevention function that re-
ports flow summaries and can be linked to other network virtualized functions [Sanz et al. 2017]
as defined in the network function chain patterns (Service Function Chaining - SFC) and net-
work service headers (Network Service Header - NSH).

4. Obtained Results
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Figure 1: Throughput results of the platforms in terms of number of messages pro-
cessed per minute in function of the task parallelism.

We evaluate the performance of stream processing platforms in terms of analyzed mes-
sages and node failure. The full content of the GTA/UFRJ dataset is injected into the system
and then it is replicated as many times as necessary to create a large volume of data. The ex-
periment calculates the rate of consumption and messages analyzed by each platform. Also,
the parallelism parameter was varied, which represents the total number of cores available for
the cluster to process samples in parallel. Figure 1a shows the results of the experiment where
Apache Storm has the highest throughput. For a single core, unparalleled, Storm already shows
better performance with a flow rate at least 50% higher when compared to Flink and Spark
streaming. Flink has a linear growth, but with values always inferior to those of Apache Storm.
The processing rate of Apache Spark streaming, when compared to Storm and Flink, is much
lower and this is due to the use of a microbatch. Each microbatch is pooled prior to processing,
generating a delay in each processed sample. Apache Storm behavior is linear up to four-core
parallelism. Then, the processing rate grows until the parallelism of six, in which the system sat-
urates. This behavior was also observed in Apache Spark streaming with the same parallelism
of six cores. We also analyze the behavior of the platforms during a node failure. Figure 1b
shows the comparison of lost messages, where Spark had no loss during the fault. The measure
shows the percentage of lost messages by systems, calculated by the difference of messages sent
by Apache Kafka and messages analyzed by the systems. Thus, Apache Flink has a smaller loss
of messages during a fault with about a 12.8% compared to 22.2% in Storm.



We create two datasets to evaluate CATRACA system. Figure 2b show the relation of
classes used in the artificial UFRJ/GTA dataset. The Normal class is around 70% of the dataset
with 106.955 samples. The Denial of Service (DoS) class is 10% of the total dataset with
16.741 samples, and, finally, Probe class represents almost the 20% of the dataset with 30.491
samples. In the Network Operator (NetOp) dataset packets are first anonymized, then PPPoE
encapsulation is removed. An Intrusion Detection System (IDS) is used to classify alerts, in
parallel, packets are abstracted in 43 flow features. Finally, an application is used to match
traffic flows with IDS alerts, generating a flow with 44 features corresponding to 1 if alert and 0
to normal traffic. On the other hand, Figure 2a shows the number of threats and normal flow in
each day of the dataset in 2017. We can see that almost all days contains around 30% of alerts.
Only day 17/2 contains a smaller number of alerts. The maximum alerts number was during the
Saturday 25/2 with 1.8 Million alerts.
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(a) NetOp Dataset alerts distribution. (b) GTA/UFRJ classes distribution.

Figure 2: a) Number of Alerts and Normal Traffic flows in Network Operator dataset. b)
Classes Distribution in the Dataset. The main class is the Normal with almost 70%
of the dataset, DoS is around 10% and Probe correspond to 20% of the Dataset.

A pre-processing algorithm is proposed to accelerate the training and classification time
used in algorithms. Figure 3 shows a comparison of processing time of all implemented feature
selection and dimensionality reduction methods. Our proposal is compared with a dimensional-
ity reduction method, the Principal Component Analysis (PCA), a filter feature selection method
Relief, a wrapper method, Sequential Feature Selection (SFS) and an embedded method Sup-
port Vector Machine Recursive Feature Elimination (SVM-RFE). All measures are in relative
value. We can see that SFS show the worst performance. The SFS algorithm performs multiple
iteration in order to minimize the mean square error (MSE). Consequently, all these iterations
increase the processing time. Our proposal shows the best processing time together with PCA,
because both implementations perform a matrix multiplication.

Figure 4a shows the training and classification times with no feature selection, while
Figure 4b shows the training and classification times for the dataset with 90% of feature re-
duction. All the classifiers reduced their times. K-NN training time is reduced by 71%, while
classification time is reduced by 84%. For Neural Networks reduced the training time by 25%
and classification time is reduced in 0.02 seconds. Random Forest reduced their training time
by 38% while their classification time remains the same. SVM with RBF kernel training time
is reduced by 78% and training time is reduced by 54%. SVM with linear kernel received the
biggest improvement. Training time was reduced by 88% while classification time was reduced
by 81%. Gaussian Naive Bayes reduced their training time in 80% while classification time was
reduced in 76%. Stochastic Gradient Descendant also shows a reduction of 61% in training and
66% for classification time. Finally, Decision Tree reduced training time by 79% and classifi-
cation time got faster, being reduced by 28%. Thus, a feature reduction of 90% impacts directly
in the training and classification time of the machine learning classifiers. Therefore, our Feature
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Figure 3: Performance of features selection algorithms. Performance of features selec-
tion algorithms according to processing time. The proposal and the PCA show
the best processing time.
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Figure 4: Our proposed feature selection method when applied to different classification
algorithms. a) No feature selection applied. b) 90% Features Reduction. Results
show training and classification time in NetOp Dataset.

Selection method improves training and classification times in all classifiers.

An infrastructure provider can allocate different Virtual Network Functions (VNFs) to
supply a new service. The deployment and reconfiguration of several VNFs is known as Vir-
tual Function Chaining. A request is a sorted list of VNFs that describe the order in which
traffic has to be processed. Therefore, the allocation of the request on the network needs to
consider the order of the VNFs as well as the source and the destination of the traffic handled
by the set of VNFs in the request. We also study when allocating a VNF over a physical node,
the physical node has to provide enough resources to answer the needs of all hosted VNFs.
Our proposed scheme is composed of two main phases. First, we estimate the resources avail-
able on the physical nodes and the resources requested by the VNFs. The second phase is to
run a greedy algorithm that takes as input the VNF requests as they arrive, and then it places
each VNF on a physical node that has enough resources. Our greedy algorithm considers four
different heuristics to place the VNFs on the network. CPU, memory, and network resources
on physical and virtual nodes must be considered for VNF allocation. In order to summarize
all resources into one single variable, we consider the Volume metric introduced by Wood et
al. [Wood et al. 2009]. Thus, for each VNF the volume metric is the ratio of the resources
on physical node that the VNF is requesting. The VNF volume ranges from 0 to 1, where 1
means that a VNF is requesting an entirely available physical node to be installed.

On the second phase, a greedy algorithm adopts one of the four heuristics, minimum
latency, chooses the node that introduces a minimum delay to the path, in comparison to the
previous selected nodes to host the other VNFs, or the source of the traffic; maximum usage
of resources, selects the node with the biggest amount of available resources to host a VNF,



without considering the routing constrains between the already placed VNFs; most central
nodes, designate to place the VNF into the most central node, i.e. the node that presents the
greatest betweenness-centrality value, and has enough resources to host the VNF; weighted
latency and resource, in which the probability of choosing each a node for hosting a VNF is
weighted based on the latency that it introduces to the path and the available resources that it

has. The weight of the node ¢ is given by w; = (1 - — _l:fVi(lat_)> X (maz Qe;i(rec_)), where lat;
J J J J

stand for the latency introduced by node i, rec; is the available resources in node 7, and /V is the

set of all nodes in the network. The greedy algorithm searches for hosting VNFs on the nodes

that have the biggest w; value first.
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Figure 5: a) The minimum latency heuristic introduces the lower average delay on the
packet-processing path. The maximum resource usage heuristic is the one that
presents the greatest dispersion into the latency distribution thanks to ignoring
the latency concerns when placing the VNFs. b) The Maximum Resource heuristic
presents the most distributed remaining resources.

As shown in Figure 5a, the minimum latency heuristics introduces the lowest average
delay on the packet-processing path. The maximum resource usage heuristic is the one that
presents the greatest dispersion into the latency distribution thanks of ignoring the latency con-
cerns when placing the VNFs. This result shows that the Latency heuristic reduces 52% of the
average delay when compared with the betweeness-centrality heuristic. Moreover, the latency
heuristic also achieves the greatest number of accepted VNF requests, which have the mini-
mum latency, even when compared with maximum resource allocation that achieves to allocate
more requests than all others. Figure 5b shows the remaining resources after all VNF alloca-
tion. Although the maximum resource heuristic instantiates more VNFs, it presents the biggest
amount of idle resources. Nevertheless, it is also the most distributed idle resource pattern,
which implies a load distribution between all physical nodes.

5. Final Considerations

The proposals discussed in this thesis have a contribution in the area of net-
work security.  The work proposed the CATRACA [Andreoni Lopez et al. 2017b]°, a
virtual network function for threat detection. =~ CATRACA combines machine learn-
ing, stream processing and network function virtualization. Two datasets were cre-
ated [Andreoni Lopez et al. 2017c]* to evaluate the threat detection, and an algorithm for pre-
processing stream data [Andreoni Lopez et al. 2018b]. We finally evaluated the performance of
CATRACA [Andreoni Lopez et al. 2018a] as a virtual network function and propose an algo-
rithm for virtual function chaining [Andreoni Lopez et al. 2017a].

3Best demo in Saldo de Ferramentas do SBSeg’17.
“Best paper award CSNet’17.
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