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Abstract. The Simultaneous Localization and Mapping (SLAM) prob-
lem addresses the possibility of a robot to localize itself in an unknown
environment and simultaneously build a consistent map of this environ-
ment. Recently, cameras have been successfully used to get the environ-
ment’s features to perform SLAM, which is referred to as visual SLAM
(VSLAM). However, classical VSLAM algorithms can be easily induced
to fail when the robot motion or the environment is too challenging. Al-
though new approaches based on Deep Neural Networks (DNNs) have
achieved promising results in VSLAM, they still are unable to outper-
form traditional methods. To leverage the robustness of deep learning
to enhance traditional VSLAM systems, we propose to combine the po-
tential of deep learning-based feature descriptors with the traditional
geometry-based VSLAM, building a new VSLAM system called LIFT-
SLAM. Experiments conducted on KITTI and Euroc datasets show that
deep learning can be used to improve the performance of traditional
VSLAM systems, as the proposed approach was able to achieve results
comparable to the state-of-the-art while being robust to sensorial noise.
We enhance the proposed VSLAM pipeline by avoiding parameter tun-
ing for specific datasets with an adaptive approach while evaluating how
transfer learning can affect the quality of the features extracted.
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1 Introduction

The ability to know its localization in an environment is an essential task for
mobile robots, and it has been a subject of research in robotics for decades. To
correctly localize itself, the robot must know its pose (position and orientation)
in the environment. In the last decades, the advances in hardware technologies,
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such as embedded GPUs, allowed significant advances on mobile robots pose esti-
mation through camera-based methodologies of odometry and SLAM, which are
called Visual Odometry (VO) and Visual Simultaneous Localization and Map-
ping (VSLAM). Much work has been done to develop accurate and robust VO
and VSLAM systems. However, traditional approaches still depend on significant
engineering effort on a classic pipeline: Initialization, feature detection, feature
matching, outlier rejection, motion estimation, optimization, and relocalization.
Furthermore, the traditional approaches tend to fail in challenging environments
(inadequate illumination, featureless areas, etc.), when the camera is moving at
high speed or if the camera suffers some distortions (rolling shutter effect, unfa-
vorable exposure conditions, etc.). Moreover, if the camera is monocular, these
systems have scale uncertainty.

Recent applications of deep learning-based methods in VO and VSLAM have
achieved promising results, bringing robustness to the situations as mentioned
earlier. Many works have proposed using Deep Neural Networks (DNNs) to esti-
mate camera motion with an end-to-end system. These systems can replace the
entire traditional VO pipeline, which depends on significant engineering effort
to develop and tune [1–3]. However, these methods are not able to outperform
traditional methods yet. Thus, some new works propose to replace only some
modules of the VSLAM traditional pipeline with DNNs, creating hybrid meth-
ods [4–6]. This approach can leverage the robustness of deep learning to enhance
traditional VSLAM systems.

In this work, we propose to use the Learned Invariant Feature Transform
(LIFT) [7] to extract features from images and use these features in a traditional
VSLAM pipeline based on ORB-SLAM [8] for monocular camera applications.
Hence, we explore the potential of deep neural networks to improve the per-
formance of conventional VSLAM systems. Our main contributions are: (1) a
novel hybrid VSLAM algorithm based on the LIFT network, (2) an evaluation
of how transfer learning and fine-tuning can affect the quality of a Hybrid VS-
LAM system, (3) we extend the proposed system with an adaptive approach
that can enhance its performance while avoiding fine-tuning of parameters that
are usually dependable on the dataset, (4) we conduct experiments on public
KITTI [9] and Euroc [10] datasets and present a set of experiments to confirm
the robustness of algorithms based on learned features under camera distortions.

2 Related Work

Feature-based approaches. The Parallel Tracking and Mapping (PTAM) [11]
algorithm was proposed to solve MonoSLAM problems. To reduce computational
costs, the authors split tracking and mapping into two separate tasks, processed
in parallel. That way, the tracking estimates camera motion in real-time, and the
mapping estimates accurate 3D positions of feature points with a computational
cost [12]. It is the first real-time method that was able to incorporate BA. They
have also created an automatic initialization with a 5-point algorithm. The main
ideas of PTAM were used in ORB-SLAM [8], a feature-based monocular VSLAM
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system with three threads: Tracking, Local Mapping, and Loop Closing. It relies
on ORB features and uses a place recognition system based on Bag-of-Words
(BoW). The mapping step adopts graph representations, allowing the system
to perform local and global pose-graph optimization. Later, ORB-SLAM was
extended to stereo and RGB-D cameras [13].

End-to-end deep learning-based approaches. One of the first end-to-
end approaches is DeepVO [3]. In DeepVO, a Recurrent Neural Network (RNN)
estimates the camera pose from features learned by a Convolutional Neural Net-
work (CNN). The CNN architecture proposed is based on an architecture used
to compute optical flow from a sequence of images called Flownet [14]. Then
two stacked Long-Short Term Memory (LSTM) layers are applied to estimate
temporal changes from the features predicted by a CNN. Another end-to-end
approach, based on unsupervised learning called UnDeepVO, is presented in [1].
The network relies on stereo image pairs to recover the scale during training while
using consecutive monocular images for testing. Moreover, the loss function de-
fined for training the networks uses spatial and temporal dense information. The
system successfully estimates the pose of a monocular camera and the depth of
its view. In [2], an end-to-end system that uses a similar architecture to DeepVO
is proposed. However, instead of employing LSTMs, attention phase is included.

Hybrid approaches. Hybrid approaches replace some modules of the tra-
ditional VSLAM pipeline. In [6], the authors propose a monocular system called
Neural Bundler. It is an unsupervised DNN that estimates motion. Then, it
constructs a conventional pose graph, enabling an efficient loop closing proce-
dure based on the pose graph’s optimization. A recent hybrid approach called
SuperGlue [15] proposed a graph neural network with an attention mechanism
to perform the matching between two sets of local features. They use the DNN
between feature extraction and pose estimation, a learnable ”middle-end,” as
it lies between the front-end and back-end of a traditional VSLAM system.
Recently, some works proposed using learned features to replace local features
(ORB, SIFT, etc.) of VSLAM systems. In DF-SLAM [5], the TFeat network [16]
is used to create descriptors for features extracted from stereo images with the
FAST corner detector applied over ORB-SLAM2 ’s pipeline[13].

3 LIFT-SLAM

Our proposed method is a deep-learning feature-based monocular VSLAM sys-
tem called LIFT-SLAM. It reconstructs sparse maps that are graph-based and
keyframe-based, which allows us to perform bundle adjustment to optimize the
estimated poses of the camera. We use the DNN called LIFT to extract features
that are used in a pipeline based on ORB-SLAM [8]. The Learned Invariant
Feature Transform (LIFT) is a DNN proposed by Yi et al. [7] that implements
local feature detection, orientation estimation, and description in a supervised
end-to-end approach. The network architecture comprises three main modules
based on CNNs: Detector, Orientation Estimator, and Descriptor. The algorithm
works with patches of images. After giving a patch as input, the detector network
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provides a score map of this patch. A soft argmax operation [17] is performed
over this score map to return the potential feature point location. After this, it
performs a crop operation centered on the feature location, used as input to the
orientation estimator. The orientation estimator module predicts an orientation
to the patch. Thus, a rotation is applied in the patch according to the estimated
orientation. Lastly, the descriptor network computes a feature vector from the
rotated patch, that is the output.

Originally, LIFT was trained with photo-tourism image sets. They used a
Structure from Motion (SfM) algorithm called VisualSFM [18] to reconstruct
the scenes from the image sets with SIFT features. Photo-tourism data contains
different geometrical aspects when compared to a typical VO dataset. Usually,
in VO datasets, the images are sequential, captured with the same camera that
progressively changes its position and orientation. On the other hand, the photo-
tourism images capture views of the same scene from different perspectives. To
address this aspect, we perform a transfer learning in the LIFT network to
generate a version of the LIFT that is fine-tuned with VO datasets’ features.

3.1 LIFT-SLAM Pipeline

As aforementioned, our pipeline is based on ORB-SLAM’s pipeline [8]. Figure 1
shows an overview of our pipeline that is described next.

Tracking. In tracking, for each frame, we extract LIFT keypoints and de-
scriptors. We use these features in all feature matching operations needed in ini-
tialization, tracking, mapping, and place recognition. Then, as in ORB-SLAM,
the camera pose is predicted with a constant velocity model. Later, we optimize
the camera pose by searching for more map point correspondences in the current
frame by projecting the local map 3D points into the image. Lastly, the tracking
step decides if the current frame should be a keyframe.

Mapping. For each new keyframe, the mapping step is performed. First, it
inserts the keyframe into the covisibility graph as a new node, and its edges are
computed based on the shared map points with other keyframes. Furthermore,
new map points are created by triangulating LIFT features from keyframes con-
nected in the covisibility graph. A local bundle adjustment is responsible for
optimizing the covisibility graph. It is applied to all keyframes connected to the
current keyframe in the covisibility graph (including the current keyframe) and
all map points seen by those keyframes. Finally, in keyframes culling, we discard
keyframes that are redundant to improve the covisibility graph’s size.

Relocalization and loop closure. To perform place recognition, we have
created a visual vocabulary in an offline step with the DBoW2 library1 [19]. The
dictionary was created with LIFT descriptors of approximately 12,000 images
collected from outdoors and indoor sequences from the TUM-mono VO dataset
[20]. In this way, we can generate a vocabulary that provides good results in both
environments. The built vocabulary has six levels and 10 clusters per level. Thus
we get 106 visual words, as suggested in [21]. If the tracking is lost, we query the

1 https://github.com/dorian3d/DBoW2
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Bag of Words (BoW) of the current frame into the database to find keyframe
candidates for global relocalization. The loop closing task runs in a separate
thread. It gets the last keyframe processed by the local mapping and tries to de-
tect if it closes a loop. After converting the keyframes to BoW, a similarity score
between the current keyframe and its neighbors’ covisibility graph is computed.
The similarity between two BoW is given by the L2-score, as defined in [22].
The loop candidates are accepted if there are at least three candidates detected
in the same covisibility graph. After finding the loop candidates, it computes a
rigid-body transformation from the candidate keyframe to the loop keyframe.
This transformation, the similarity one, informs about the drift accumulated in
the trajectory, and it also works as a geometrical validation of the loop. If a
similarity transformation is successfully found, we proceed to correct the loop.

Fig. 1: An overview of LIFT-SLAM pipeline. Tracking and mapping are sequen-
tial tasks, relocalization is called when the camera pose tracking is lost, and loop
closing is a task running in parallel over the keyframes processed by mapping.

3.2 Versions of LIFT-SLAM

To explore the potential of our approach and to find changes that might lead
to an improvement in general results, we developed some different versions of
LIFT-SLAM. The next sections describe the decision process to create these
versions and how we developed them.

Fine-tuned LIFT-SLAM In this version of LIFT-SLAM, we use these fine-
tuned models to perform feature detection and description. To refine the LIFT
network, we had to collect the ground-truth data. As proposed in LIFT’s paper
[7], we generate the ground-truth with SIFT keypoints collected with VisualSFM
[18]. We created two sets of ground-truth data. The first one comprises images
from sequences 00, 06, 09, and 10 (8434 images) of the KITTI dataset, whereas
the second contains images from the sequences MH 04, V1 03, and V2 03 (6104
images) of the EuRoC dataset. After collecting the datasets, we train the network
in two versions, one for each dataset. We used the TensorFlow version of LIFT
provided by the authors in their github2.

2 https://github.com/cvlab-epfl/tf-lift
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Adaptive LIFT-SLAM A wrong data association in feature matching might
affect the quality of the motion estimation. Therefore, to select the best features,
a threshold is applied right after feature matching. In this way, the matches with
greater distance than this threshold are discarded. On the other hand, if the
threshold value is too small, we might reject good matches and loose track of
the camera pose in challenging environments. Usually, two thresholds are used to
mitigate this problem: the higher threshold (THHIGH) and the lower threshold
(THLOW ). We use THLOW when we need to be more restrictive about the
quality of the matches, as in relocalization or map point triangulation. However,
while performing our experiments, we found out that for different datasets the
best values for these thresholds changes. Therefore, traditional methods usually
fine-tune these thresholds every time there is a change in the dataset. This
is not desirable since, in real-world applications, it is not possible to deduce
these thresholds’ values. Hence, we propose an adaptive method that decides
the threshold values online.

To do so, after estimating the pose, we search map correspondences by pro-
jecting the map points from the last frame into the current frame. If the number
of outliers approaches the number of map points, the number of matches gets too
small and, consequently, the tracking is lost. We use this to create our adaptive
method. It changes the thresholds values based on the difference between the
number of map points and the number of outliers. Therefore, if this difference
decrease, we increase the thresholds values.

4 Experiments

4.1 Datasets

Two datasets were chosen to evaluate our algorithms: KITTI [9] and Euroc MAV
[10]. The KITTI dataset is a collection of images recorded from a moving car,
and Euroc MAV is a set of images collected by Micro Aerial Vehicles indoors.
Therefore, the datasets have different environments (e.g., outdoor/indoor, size,
illumination, dynamic/static, etc.), and camera motion (e.g., acceleration, ve-
locities, DoF, etc.), which allow us to evaluate the robustness of the algorithms
to different situations. Moreover, in LIFT-SLAM fine-tuned approaches, using
different datasets allowed us to validate the network’s improvement for VO prob-
lems in general, without a network bias for a dataset.

4.2 Trajectory Evaluation

We generate a quantitative and qualitative comparison between the estimated
trajectories and the ground-truth data for each sequence of the datasets. The
quantitative evaluation in KITTI sequences are based on Relative Pose Error
(RPE) of translation and rotation, as described in [23], and Absolute Trajectory
Error (ATE), detailed in [20]. Due to the stochastic nature of the algorithms,
all of the quantitative metrics are an average of 5 executions. The estimates on
Euroc sequences were evaluated only by ATE.
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ORB-SLAM’s results were computed by our executions since, in ORB-SLAM’s
paper, an evaluation with RPE is not presented and does not provide results in
the Euroc dataset. Furthermore, we present qualitative comparisons showing
a 2-D plot of the trajectories. Moreover, for LIFT-SLAM versions that are not
adaptive we set the matching thresholds values to THLOW = 1 and THHIGH = 2
for Euroc sequences and THLOW = 2 and THHIGH = 3 for KITTI sequences,
as these were the best thresholds we found during our experiments.

The quantitative comparison of all algorithms in the KITTI dataset (Table 1)
shows that, in general, LIFT-SLAM systems presented a better performance than
ORB-SLAM, especially in smaller sequences, such as 03 and 04. Furthermore, we
can notice that the proposed versions of LIFT-SLAM achieved a better perfor-
mance than LIFT-SLAM in most of the sequences. The algorithm performance
improved even when we used the Euroc dataset to fine-tune the LIFT network
confirming that the network learned important features from VO datasets.

Table 1: Quantitative comparison of ORB-SLAM and LIFT-SLAM versions in
the KITTI dataset. ”X” are sequences unavailable due to tracking failure, and
”-” sequences we did not execute the algorithm to avoid biased results.

Algorithm Metric 00 01 02 03 04 05 06 07 08 09 10

ATE (m) 11.54 X X 15.13 4.29 7.74 20.26 13.47 39.51 49.67 19.94
ORB-SLAM RPEtrans (%) 4.46 X X 9.75 3.71 3.35 8.11 7.43 12.16 26.51 8.65

RPErot (deg/m) 3.28 X X 2.78 2.15 3.57 2.88 3.58 3.05 11.13 3.62

ATE (m) 18.77 X X 1.10 0.40 8.09 18.47 4.03 80.97 59.88 31.84
LIFT-SLAM RPEtrans (%) 6.71 X X 0.87 2.10 4.46 7.76 2.51 27.63 20.65 10.08

RPErot (deg/m) 2.20 X X 0.34 0.65 2.58 2.49 3.60 2.10 2.12 2.25

ATE (m) - X 29.83 1.91 0.36 12.47 - 2.54 188.51 - -
LIFT-SLAM fine-tuned with KITTI RPEtrans (%) - X 8.80 1.32 2.16 5.02 - 1.80 48.90 - -

RPErot (deg/m) - X 2.11 0.34 0.52 2.43 - 2.67 2.11 - -

ATE (m) 9.84 X 34.23 0.97 0.42 11.50 16.58 3.98 82.61 54.91 30.34
LIFT-SLAM fine-tuned with Euroc RPEtrans (%) 3.49 X 9.84 0.86 2.22 5.35 7.05 2.60 28.99 19.16 9.81

RPErot (deg/m) 2.63 X 2.10 0.46 0.50 1.91 2.36 3.64 1.95 2.08 2.20

ATE (m) 13.70 X 40.33 0.84 0.47 10.85 17.83 4.09 81.69 57.74 10.51
Adaptive LIFT-SLAM RPEtrans (%) 2.64 X 11.54 0.78 2.22 5.49 7.50 2.67 28.49 19.28 4.96

RPErot (deg/m) 4.95 X 2.22 0.38 0.60 2.97 2.42 3.42 2.05 2.17 1.57

ATE (m) - X 48.09 1.91 0.42 10.35 - 4.10 185.15 - -
Adaptive LIFT-SLAM fine-tuned with KITTI RPEtrans (%) - X 9.57 1.29 2.11 4.64 - 2.64 47.20 - -

RPErot (deg/m) - X 2.43 0.34 0.57 2.93 - 3.51 2.00 - -

ATE (m) 8.06 X 40.04 2.23 0.51 13.55 30.38 3.63 184.43 59.62 29.87
Adaptive LIFT-SLAM fine-tuned with Euroc RPEtrans (%) 3.18 X 8.73 1.46 2.22 6.09 12.24 2.42 47.10 19.91 9.72

RPErot (deg/m) 2.99 X 2.49 0.34 0.48 3.11 2.91 4.02 2.02 2.14 2.24

Figure 2(a-d) shows the qualitative comparison between the algorithms in
the KITTI dataset (only some sequences are presented here due to paper length
restrictions). In sequence 00 (Fig. 2a) most of the algorithms could not track the
entire trajectory, except for Adaptive LIFT-SLAM fine-tuned with Euroc and
ORB-SLAM. Figure 2b shows the difference in performance in smaller sequences
between ORB-SLAM and all LIFT-SLAM versions. Moreover, in sequences 05
and 07 ORB-SLAM could not detect loop-closure, thus, its trajectories has an
accumulated drift as shown in Figures 2c and 2d.

Table 2 shows the quantitative comparison between the algorithms in Euroc
dataset. We can notice that ORB-SLAM has the smallest average in 3 sequences.
Moreover, the proposed versions of LIFT-SLAM performed better than original
LIFT-SLAM in all sequences. The algorithm’s performance improved even when
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we used the KITTI dataset to fine-tune the LIFT network. Therefore we con-
firmed that this network version also learned essential features from the dataset.
Figure 2(e-f) shows the qualitative comparison between the algorithms in Eu-
roc dataset. LIFT-SLAM and most of its versions could not track some of the
sequences completely, except for Adaptive LIFT-SLAM fine-tuned with Euroc.
Moreover, it is possible to notice that ORB-SLAM loses track multiple times in
sequence V1 01. Therefore, considering the quantitative and qualitative results
of all versions of LIFT-SLAM, Adaptive LIFT-SLAM fine-tuned with Euroc
sequences is the one with better overall results.

(a) KITTI 00 (b) KITTI 03

(c) KITTI 05 (d) KITTI 07

(e) Euroc MH 01 (f) Euroc V1 01

Fig. 2: Qualitative results in KITTI (a-d) and Euroc (e-f) dataset.
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Table 2: ATE (m) comparison between ORB-SLAM and LIFT-SLAM variations
in the Euroc dataset. ”X” are sequences unavailable due to tracking failure, and
”-” sequences we did not execute the algorithm to avoid biased results.

Algorithm MH 01 MH 02 MH 03 MH 04 V1 01 V1 03

ORB-SLAM 0.048 0.037 0.040 0.432 0.100 0.370
LIFT-SLAM 0.062 0.227 0.144 1.859 X X

LIFT-SLAM fine-tuned with KITTI 0.115 0.042 0.055 0.117 0.117 X
LIFT-SLAM fine-tuned with Euroc 0.117 0.062 0.053 - 0.150 -

Adaptive LIFT-SLAM 0.046 0.034 X X 0.101 X
Adaptive LIFT-SLAM fine-tuned with KITTI 0.455 X 0.116 X 0.194 X
Adaptive LIFT-SLAM fine-tuned with Euroc 0.044 0.053 0.049 - 0.157 -

4.3 Robustness tests

To test our system’s robustness to camera sensor noise, we created different
image distortion in some KITTI and Euroc sequences, simulating camera ill
exposure conditions. We did not train our networks for dealing with these dis-
tortions. These scenarios were emulated with the application of gamma power
transformation and quantile-based truncation, as proposed in [24]. As Adaptive
LIFT-SLAM fine-tuned with Euroc sequences obtained the best overall results,
we tested it under the described scenarios and compared its performance with
ORB-SLAM under the same scenarios. The quantitative results of the tests are
shown in table 3. ORB-SLAM could not track the camera’s pose with some dis-
tortion in sequences KITTI 03, while LIFT-SLAM failed in some cases for Euroc
MH 02. However, we can notice that in most of the sequences, LIFT-SLAM im-
proved its performance when we applied the distortions. This occurs because the
distortions remove some outliers from the images, which allows the algorithms
to select better keypoints. Moreover, the learned features are more robust to ill
exposure as the datasets used to fine-tune the network naturally contain varying
illumination. Figure 3 shows the comparison of the trajectories obtained with
each distortion in KITTI and Euroc. In sequence KITTI 03, LIFT-SLAM’s tra-
jectories were not much affected by distortions (Figure 3b). Furthermore, the
trajectories of both algorithms were more affected in KITTI 07 (Figures 3c and
3d), where ORB-SLAM could not track a considerable part of the trajectory. In
MH 02, the trajectories of both algorithms were less affected, but they lost track
of the pose and relocalized in some sequence parts.

4.4 Comparison with literature

The results obtained have shown that LIFT is capable of improving a typical
VSLAM algorithm. Moreover, transfer learning proved to be crucial in our sys-
tem since it improved our algorithms in different VSLAM problems. The main
drawback in our system is that the good performance in large environments de-
pends on loop closure detection to correct drift accumulation. To compare our
results with those available in the literature, we chose Adaptive LIFT-SLAM
fine-tuned with Euroc sequences. Table 4 summarizes this comparison in the
KITTI dataset. We chose different monocular VO and VSLAM algorithms to
compare with LIFT-SLAM: traditional methods, hybrid methods, and end-to-
end methods.
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Table 3: Robustness tests results. Adaptive LIFT-SLAM fine-tuned with Euroc
sequences is employed.”X” are sequences unavailable due to tracking failure and
”-” are the sequences we did not execute the algorithms.

Sequence Distortion ORB-SLAM LIFT-SLAM

RPEtrans (%) RPErot (deg/m) ATE (m) RPEtrans (%) RPErot (deg/m) ATE (m)

no distortion 9.75 2.78 15.13 1.46 0.34 2.23
γ = 0.25 7.68 1.95 11.72 1.02 0.40 1.23
γ = 0.5 8.25 2.24 11.38 1.28 0.36 1.74

KITTI 03 γ = 2 X X X 1.07 0.51 1.47
γ = 4 X X X 2.82 0.70 5.23

Truncation in Q1 8.34 1.41 13.63 1.36 0.45 2.07
Truncation in Q3 9.78 2.23 15.66 1.10 0.46 1.27

no distortion 7.43 3.58 13.47 2.42 4.02 3.63
γ = 0.25 7.61 2.42 12.54 2.09 3.17 3.30
γ = 0.5 6.37 2.02 9.58 1.99 3.88 2.86

KITTI 07 γ = 2 5.89 2.11 9.36 3.43 4.32 5.91
γ = 4 6.61 7.06 7.84 8.03 7.40 16.13

Truncation in Q1 8.50 2.47 10.69 2.45 4.10 3.58
Truncation in Q3 7.01 2.40 7.08 2.69 3.77 4.49

no distortion - - 0.037 - - 0.053
γ = 0.25 - - 0.055 - - 0.035
γ = 0.5 - - 0.040 - - 0.039

Euroc MH 02 γ = 2 - - 0.061 - - 0.037
γ = 4 - - 0.010 - - 0.194

Truncation in Q1 - - 0.039 - - 0.043
Truncation in Q3 - - 0.043 - - X

Table 4: Comparison of LIFT-SLAM with results from monocular VO/VSLAM
algorithms available in the literature. We fill with ”X” results that are unavail-
able due to tracking failure and with ”-” results not reported by the authors.

Algorithm Type Metric 00 01 02 03 04 05 06 07 08 09 10

ATE (m) 8.06 X 40.04 2.23 0.51 13.55 30.38 3.63 184.43 59.62 29.87
LIFT-SLAM Hybrid RPEtrans (%) 3.18 X 8.73 1.46 2.22 6.09 12.24 2.42 47.10 19.91 9.72

RPErot (deg/m) 2.99 X 2.49 0.34 0.48 3.11 2.91 4.02 2.02 2.14 2.24

ATE (m) 11.54 X X 15.13 4.29 7.74 20.26 13.47 39.51 49.67 19.94
ORB-SLAM Traditional RPEtrans (%) 4.46 X X 9.75 3.71 3.35 8.11 7.43 12.16 26.51 8.65

RPErot (deg/m) 3.28 X X 2.78 2.15 3.57 2.88 3.58 3.05 11.13 3.62

ATE (m) 5.33 X 21.28 1.51 1.62 4.85 12.34 2.26 46.68 6.62 8.80
DeepVO[3] End-to-end RPEtrans (%) - - - 8.49 7.19 2.62 5.42 3.91 - - 8.11

RPErot (deg/m) - - - 6.89 6.97 3.61 5.82 4.60 - - 8.83

ATE (m) - - - - - - - - - - -
NeuralBundler [6] Hybrid RPEtrans (%) 3.24 - 4.85 - - 1.83 2.74 3.53 - 6.23 -

RPErot (deg/m) 1.35 - 1.60 - - 0.7 2.6 2.02 - 2.11 -

5 Conclusion

In this work, we successfully apply a deep neural network in the front-end of a
traditional visual SLAM algorithm. This approach showed that it is possible to
improve VSLAM algorithms’ performance with learned feature extraction and
description. We also showed that transfer learning could be used to fine-tune
these networks with VO/VSLAM datasets to improve the performance of the
entire system on cross-datasets. Moreover, we successfully created a method to
adapt the matching thresholds while executing the VO pipeline, depending on
the number of outliers. This method allowed us to eliminate the fixed values
of the matching thresholds without requiring dataset fine-tuning. All of these
methods allowed us to evaluate five variations of LIFT-SLAM: LIFT-SLAM
fine-tuned with KITTI sequences, LIFT-SLAM fine-tuned with Euroc sequences,
Adaptive LIFT-SLAM, Adaptive LIFT-SLAM fine-tuned with KITTI sequences
and Adaptive LIFT-SLAM fine-tuned with Euroc sequences. The proposed hy-
brid system can operate in different environments (indoors and outdoors) and
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(a) ORB-SLAM in KITTI 03 (b) LIFT-SLAM in KITTI 03

(c) ORB-SLAM in KITTI 07 (d) LIFT-SLAM in KITTI 07

(e) ORB-SLAM in Euroc MH 02 (f) LIFT-SLAM in Euroc MH 02

Fig. 3: Qualitative results of the robustness tests.

improve its results with an artificial distortion applied to the images (gamma
power transformation and quantile-based truncation). This showed us that a se-
lection of the learned features could improve the performance of the algorithm.
Therefore, in future work, we plan to add an attention-based mechanism to select
the best features for VSLAM.
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