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Abstract. In robotics, the ultimate goal of reinforcement learning is to
endow robots with the ability to learn, improve, adapt, and reproduce
tasks with dynamically changing constraints based on exploration and
autonomous learning. Reinforcement Learning (RL) aims at addressing
this problem by enabling a robot to learn behaviors through trial-and-
error. With RL, a Neural Network can be trained as a function approx-
imator to directly map states to actuator commands making any prede-
fined control structure not-needed for training. However, the knowledge
required to converge these methods is usually built from scratch. Learn-
ing may take a long time, not to mention that RL algorithms need a
stated reward function. Sometimes, it is not trivial to define one. Of-
ten it is easier for a teacher, human or intelligent agent, do demonstrate
the desired behavior or how to accomplish a given task. Humans and
other animals have a natural ability to learn skills from observation, of-
ten from merely seeing these skills’ effects: without direct knowledge of
the underlying actions. The same principle exists in Imitation Learning,
a practical approach for autonomous systems to acquire control policies
when an explicit reward function is unavailable, using supervision pro-
vided as demonstrations from an expert, typically a human operator. In
this scenario, this work’s primary objective is to design an agent that
can successfully imitate a prior acquired control policy using Imitation
Learning. The chosen algorithm is GAIL since we consider that it is
the proper algorithm to tackle this problem by utilizing expert (state,
action) trajectories. As reference expert trajectories, we implement state-
of-the-art on and off-policy methods PPO and SAC. Results show that
the learned policies for all three methods can solve the task of low-level
control of a quadrotor and that all can account for generalization on the
original tasks.
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1 Introduction

While Robotics has shaped the way that the world manufactures its goods nowa-
days, it was mainly due to Optimum Control, with restricting tolerances and,
predominantly, careful tuning of an expert. Although robotic applications in
industry are suitable for high-volume production of a few different items (like
automobiles), it cannot change rapidly for newer tasks, especially by a group of
non-roboticists and a massive part of the universe of tasks that could be handled
by robots is neglected due to a restrictive starting costs.

If quicker modeling is wanted, it would be more beneficial to learn control
policies. Model-free RL [1] is an area of research that tries to achieve such results
by learning from experience. RL aims to solve the same problem as optimal
control. Still, since the state transitions dynamics is not available to the agent,
the consequences of its actions have to be learned by itself while interacting with
the environment, by trial-and-error. More recently, RL methods were coupled to
Neural Networks forming the Deep Reinforcement Learning (DRL) reserach field.

Although recent advances in DRL have shown tremendous and promissory
results, one of the most significant caveats of this solution is that the nature of
the learning by gradient descent requires a considerable training time and a lot
of interactions (they are the equivalent to samples in supervised learning). If we
are accepting that the main driver for utilizing model-free algorithms is that we
need solutions in a shorter deploy time, and with a lower influence of experts,
it is seriously problematic to need large datasets for each task that the robot
will learn how to perform. One way to mitigate these drawbacks is learning by
demonstration, where a robot agent learns the optimal policy by observing an
expert agent (that is expected to have the near-optimal policy). We will address
this learning as Imitation Learning (IL).

Learning behaviors by IL, especially considering that we can learn from hu-
mans and/or other robots, is one of the most promissory new fields in robotics.
This approach can significantly decrease the training time and, hopefully, in the
future, have robots that can learn daily tasks just by watching them being per-
formed on the Internet. Although nowadays robots apply a feature extraction
process to guide policy search while learning with the master’ demonstration, in
the future, an end-to-end approach based on vision is expected to prevail.

In this work, we aim at studying how Imitation Learning can help Reinforce-
ment Learning to address the problem of learning to perform tasks in the aerial
robotics context. By doing this, we aim at contributing to the state-of-the-art
in the search for intelligent agents that can quickly grasp new behaviors and
infer what they could (and what they need to) learn by absorbing other agents’
knowledge. The chosen algorithm is Generative Adversarial Imitation Learning
(GAIL) since we consider that it is the proper algorithm to tackle this problem
by utilizing expert (state, action) trajectories.

Although the research focus is related to IL, having a trained optimal policy
π∗ that will work as a reference for the imitated behavior is mandatory. To
tackle this necessity, we chose two state-of-art algorithms, one on-policy - the
PPO (Proximal Policy Optimization) [2] - and the other off-policy - SAC (Soft
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Actor-Critic)[3], [4] - to perform the tasks and then to use the rollouts of the
expert trajectories as the imitation process input.

As contributions of this work, we can cite: i) an open-source version of GAIL
applied to robotics agents in more complex scenarios than those available in
the literature; II) the first use of SAC to learn a low-level control policy for
Quadrotors; iii) a framework to use the Drone agent developed by [5][6] with the
plugin PyRep [7], that is a Python wrapper for the API of the new Coppelia
Simulator [8].

2 Related Work

The literature for research in UAVs is vast. However, we are mainly interested in
its intersection with Reinforcement Learning and Imitation Learning applied to
UAVs. Generally, DRL is applied in UAVs in high-level control, like in Navigation
[9][10][11], Autonomous Landing [12][13][14][15] and Target Tracking [16]. For
low-level control, however, few works have been proposed. Zhang, et. al [17]
designed a low-level control using MPC with guided-policy-search. The MPC
control, mapping raw sensor data to rotor velocities, is used only in the training
phase (since it is computationally expensive). Then, they employed a supervised
approach to learning the final policy.

In [18], Koch et. al propose an open-source high-fidelity simulation environ-
ment, GymFC. They compared a PID controller to three model-free DRL ap-
proaches PPO, TRPO, and DDPG in an attitude control task (focusing only on
the propellers’ thrust and the agent’s angular velocities). Xu et al. [19] used DRL
(PPO) to perform model-free learning to automatically change from fixed-wing
to multicopter setup and vice-versa and model-agnostic use of the controller,
employing it on different drone configurations.

Hwangbo et al. [20] proposed one of the first low-level controllers with DRL.
They used DRL to control a UAV, but also a PD controller to help the training
phase. They employed a model-free deterministic policy gradient approach. This
approach leads to very sample inefficient methods that could not be trained in
more complex simulators with better dynamic models. Our work builds upon
the research made by Lopes et al. [6], where a first stochastic low-level controller
based on DRL (PPO) was proposed. The authors trained a Parrot simulated
robot in Coppelia for a similar task as in [20].

3 Material and Methods
To fulfill our goals, we first learn optimal policies with an on-policy formulation
(PPO) and off-policy (SAC), saving its trajectories as tuples of (state, action)
for each episode. Then, we use GAIL to train a control policy with the expert
trajectories. Finally, we observe whether the result is similar to the traditional
RL methods since IL alleviates the strenuous task of reward-shaping (finding
the best reward-function that best performs under the desired situation).

3.1 Problem Formulation

We want to train a policy control, using DRL and IL to a go-to-target task.
Figure 1 shows our target scene with an immobile target in the center (position
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[x, y, z]). At each training start, the drone is dropped in the air in different po-
sitions and orientations. The quadrotor target following task can be naturally
formulated as a sequential decision-making problem under the RL framework.
At each particular timestep, the agent receives an observation st from the envi-
ronment (the onboard sensors or, in our case, the state information given by the
simulator), and acts according to a policy π(s) and then observes a reward rt

The agent’s goal is to learn an optimal policy π∗ that maximizes the expected
sum of discounted rewards Rt, and we use both SAC and PPO for this purpose
evaluating many different formulations of the MDP. Later, we use the best policy
learned by PPO and imitate it using GAIL.

Fig. 1: Possible initial positions for the drone that cover all quadrants of the
relative agent-to-target position vector.

Reward Function As reward shaping is a significant element to define the
quality of the policy learned by an agent, we have tested more than 20 different
reward-functions. For the purpose of this work, we will use the reward function
defined next. We consider success in our task by getting close to the target
(distance reward) as well as robustness and stability (zeroing the angular velocity
when the UAV is at the target location).

The proposed reward function is defined by: rt(s) = ralive− 1.25εt(s), where
εt is the position error between the target position and the quadrotor’s position
at timestep t. ralive is a constant (alive bonus) used to assure the quadrotor earns
a reward for flying inside a limited region (radius of 3.2 meters from target) and
that rt is always positive. In this reward-function, ralive = 4.0.

Initializations We have tested three different initialization methods, two of
them are the same as proposed in [5]. The target is initialized in a fixed position,
located at the point ξtarget = (x = 0.0, y = 0.0, z = 1.7) [m] for all initialization
setups and it stands still for the whole duration of the simulation training phase.

I1: Initialization - Already on the goal. This initialization follows the
simpler setup, leaving the drone in the same position as the target: [x, y, z] =
[0, 0, 1.7] and [φ, θ, ψ] = [0, 0, 0].

I2: Initialization - Gaussian. In this initialization method the quadro-
tor starts in: [x, y, z] = [N (0, 0.3),N (0, 0.3), 1.7 + N (0, 0.3)] and [φ, θ, ψ] =
[N (0, 0.6),N (0, 0.6),N (0, 0.6)].

I3: Initialization - Discretized Uniform. While testing and training sev-
eral experiments with the initialization I2: Gaussian, we have noticed that not
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all episodes were coming to an end (time ≥ time horizon), causing a higher
variance in our Average Rewards for each batch size. We then performed many
episodes with a trained deterministic policy and come to the conclusion that
episodes that were starting with higher rotation angles, on average, were more
likely to fail. So, we hypothesized that this was due to the long tails in a gaus-
sian distribution. Hence, causing the drone to spend the majority of the training
starting in easier setups. The initialization I3 is a uniform distribution where
we can parametrize the bound limit of the array and how many (chunk num)
chunks this array is divided in:
– [x, y] were draw from the uniform discrete distribution
U(−1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5)

– [z] from U(1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2., 2.1, 2.2)
– [φ, θ, ψ] from U(−44.69,−36.1,−26.93,−17.76,−9.17, 0.0, 9.17, 17.76, 26.93,

36.1, 44.69)

States The state representation in our MDP is defined as St = {x, y, z, φ, θ, ψ,R11,
R12, R13, R21, R22, R23, R31, R32, R33, ẋ, ẏ, ż, φ̇, θ̇, ψ̇, a1t−1, a2t−1, a3t−1, a4t−1},
where (x, y, z) are the relative position from the drone to the target, (φ, θ, ψ)
are the relative orientations, (ẋ, ẏ, ż) and (φ̇, θ̇, ψ̇) are the linear and angular
velocities, (R11, R12, R13, R21, R22, R23, R31, R32, R33) are the rotation matrices
and ant−1 are the actions taken in the last time step for all motors n.

Actions The action space for the problem is, for all experiments, defined by A =
{a1, a2, a3, a4} where each represents the value sent to each propeller (0-100%).

3.2 Simulation Framework

Our setup consists of robotics simulator Coppelia Simulator, a plugin called
PyRep, and an environment Environment that access the full simulator API
with through Pyrep and resembles the common RL interface from OpenAI Gym.
The Environment corresponds to the MDP (state, action, reward) and general
parameters modeled for each experiment. Our robot/agent is a simulated version
of the AR Parrot drone.

4 Experiments

To evaluate the quality of policies learned by on-policy and off-policy methods,
we followed distinct environment initialization (as described in Section 3.1) and
compared the resulting episodes played with our deterministic PPO and SAC
π∗. We then trained GAIL to learn to imitate the best expert policy generated
by PPO, evaluating its resulting system in trajectories not presented during
learning. Finally, we evaluate SAC, PPO, and GAIL robustness. Due to paper
length restrictions, we will show GAIL results directly compared to PPO learned
expert policies. SAC results will be presented when we compare all algorithms.

4.1 GAIL on On-Policy expert trajectories

After training PPO with distinct initialization methods, we perform imitation
learning on top of the PPO optimal policy. For the first experiment (Figure 2),
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where PPO was trained with initialization I1, we achieved results very similar
to the ones achieved by the original policy. Indeed, when comparing PPO and
GAIL policies, we can see almost no difference in the resulting behavior.

We also trained GAIL to mimic a PPO expert policy trained with initializa-
tion I2. As we can see in Figure 3, GAIL demonstrated very similar behavior
to the expert policy, especially related to steady-state. For all six variables (po-
sition and angle) that we look at GAIL, it presents a step-response with more
overshoot at the beginning of the episode (Figure 3). While learning from expert
trajectories sampled from different initial pose configurations, it can be hard to
properly evaluate what, in a complex dynamics setup like a quadrotor falling
from different relative positions and orientations, the ideal response should look
like. The mimicked policy shows a smaller steady-state error in x but overall
depicts very similar results. This can show that, maybe the original policy has
a difficult time optimizing to survive the initial conditions and fine-tune the
steadiness with zero vibration. We point to the reader that more research is
needed in this regard, including trying curriculum learning first to learn how to
fly without falling and get closer to the target and then fine-tune to erase the
steady-error and vibration.

Fig. 2: Distances for PPO and GAIL trained upon PPO with initialization I1.
Left - PPO positions x, y, and z. Right - GAIL positions x, y, and z. All in (m).
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Fig. 3: Distances for PPO and GAIL trained upon PPO with initialization I2.
Left - PPO positions x, y, and z. Right - GAIL positions x, y, and z. All in (m).

4.2 GAIL’s control performance on different trajectories

Imitation Learning usually has a well-know effect, especially in behavior cloning.
Almost any attempt to imitate the expert’s trajectories would generate a policy
that cannot be abstract to unseen tasks. However, to show that the learned
policy was able to generalize to more complex behavior, we run them to follow
a moving target describing three distinct paths.

Line. For this experiment, we run the same GAIL policy depicted in Figure
2 to follow a moving target with two different speeds in a rectilinear path. The
result is presented in Figure 4. We can see an overshoot in the beginning and
after a steady control of the quadrotor for the low-velocity task. For the higher
velocity task, the trajectory is not very rectilinear, showing that maybe the
policy trained with IL may have a harder time abstracting to the unseen task of
a fast mobile goal. This line trajectory evidences what we have discussed earlier
regarding problems at the beginning of the episodes. This was a PPO problem
amplified in GAIL mainly because the GAIL policy was trained with expert
trajectories from PPO. Although the target only moves in x, the agent has a
significant movement in y at the start of the episode. The graph in Figure 4 b)
shows that we have a more substantial latency in our trajectory since the agent
never recovers the time lost with the clumsy start.
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Square. For this experiment, we run the same GAIL policy depicted in Fig-
ure 2 to follow a moving target with two different speeds in a square path. With
the trajectory performed by the slow target, the agent has a slow beginning with
its step-response and than achieves a right trajectory, but present a delayed ma-
neuver every corner of the square. The target is not an object that the simulator
calculates its dynamics, so it does not have any problems with a sharp 90 degrees
curve, but the UAV with the GAIL-trained policy has difficulties doing so. In
Figure 5 b) and c), we can observe that the agent has a problematic start that
creates a gap between the agent and the target, and this gap increases in each
time the target gets close to the corner of the square. Figure 5 d), on z-position,
depicts the problem that the GAIL policy has it this trajectory since the curve
performed by the agent is not parallel with the transversal plane (xoy-plane with
equation z=1.7). This problem is increased with the fast-moving target making
the trajectory hardly resemble the one of a square.

Fig. 4: GAIL trained with PPO. (a) GAIL trained upon PPO 3D position for
the Line trajectory (b) Position x (c) Position y (d) Position z.

Sinusoidal. For this experiment, we run the same GAIL policy depicted in
Figure 2 to follow a moving target with two different speeds in a Sinusoidal
path. The Sinusoidal trajectory brings more light into the policy’s problems
using GAIL (Figure 6). The slow-target path following starts once again with
overshoot and then follows along a good sinusoidal trajectory, with a steady-
error. It is clear that when the agent is dropped-off at the start of the training,
its policy quickly acts to survive, but then it does follow the target without
compensating the beginning. The reason may be that the expert trajectories
were drawn from a policy that emphasizes stability and low angular velocities.
In the fast-target trajectory, the drone shows that it does not have a proper
stable path in higher velocities since it travels in the transversal (this time the
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Fig. 5: GAIL trained upon PPO. (a) GAIL trained upon PPO 3D position for
the Square trajectory (b) Position x (c) Position y (d) Position z.

zox-plane) plane of the trajectory in our case, the y-axis in Figure 6. Figure 6 c),
of y-position, shows again the problem that GAIL has at the start of the episode,
which causes a significant movement in y, something that was not supposed to
happen. The graph in Figures 6 b) and d) show a good sinusoidal trajectory, with
expected differences in the peaks and valleys caused by the agent. The learned
trajectory is delayed in these positions due to the problems at the start of the
episode.

Fig. 6: GAIL trained upon PPO. (a) GAIL trained upon PPO 3D position for
the Sinusoidal trajectory (b) Position x (c) Position y (d) Position z.
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4.3 Algorithm Comparison

For summary purposes, we show the comparison for the three best policies
learned by SAC, PPO, and GAIL in the trajectories not previously seen in train-
ing. For the Line trajectory, in Figure 7, it gets more apparent what we once said
about the overshoot of the start in GAIL and PPO, something that is less preva-
lent with our SAC policy. The training with SAC did not use normalization at
all. Still, PPO and GAIL used a running normalizer, something common in Pol-
icy Gradient formulations, which could influence the initialization of on-policy
algorithms. It is important to remark that GAIL, for this task, performed better
than the PPO expert used as a reference. We can also notice that, although PPO
and GAIL move significantly in the y-direction at the beginning of the episode,
PPO is more efficient in correcting its trajectory. For the Square trajectory, al-
though SAC’s path is more stable and parallel to the ground plane (while still
with the steady-state error on the z-direction), the paths of PPO and GAIL are
closer to the Ground Truth. At the beginning of the task, the overshoot, familiar
to PPO and GAIL, did not occur in this trajectory. For the Sinusoidal task, the
start made the trajectory even dephased with the ground truth, which does not
occur with SAC. However, we can see that, although SAC performs better here,
GAIL mimics the behavior of PPO even for unseen trajectories.

Fig. 7: Drone 3D position comparison between algorithms in the Line, Square
and Sinusoidal trajectories.

4.4 Robustness of the trained deterministic policies

One common problem in DRL resources is the lack of robustness of the trained
policies and brittleness of the algorithms in the training phase. To evaluate our
trained policies’ robustness, we perform 216 episodes with the most extreme
values in the initialization setup Discretized Uniform (section 3.1) I3. The total
of possible timesteps is 216 ∗ 250 = 54000, but the failed episodes are halt
before completing 250 timesteps. The limit starting positions are: [x, y] from
the uniform discrete distribution U([-1.5, 1.5]), [z] from U([1.2, 2.2]), [φ, θ, ψ]
from U([-44.69, 44.69]). Table 1 presents the results from this experiment. PPO
achieved a good result, with 850.72 mean and 904.16 median. It is important to
notice that the failed episodes are lower than the median value. As episodes start
in different positions, high variance in the rewards does not necessarily mean low
policy quality. We can see that GAIL did not present a good result in terms of
robustness, with only 54% of successful runs. As we saw in the Results (Figures
4.1 and 4.2) discussion, the overshoot of GAIL at the start of each episode was
probably because the algorithm did not quite precisely learn an optimal policy
for the harsh initial phases of our training task. SAC achieved a perfect score in
this experiment, completing 100% of the episodes attempted. Figure 8 shows an
example of SAC performing over harsh untrained initial conditions.
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Table 1: Results for testing robustness.
Algorithm Mean Median % Successful runs

PPO 850.72 904.16 93.98

SAC 886.13 886.81 100.0

GAIL 476.34 810.42 54.16

Fig. 8: Recovery trajectory after initialization with [x, y, z] = [0, 0, 6] and
[φ, θ, ψ] = [0, 90◦, 0] using SAC π∗s. The green sphere is the reference target.

5 Conclusion

In this work, we extensively approached the literature of DRL, Imitation Learn-
ing, and DRL applied to UAV control. We trained quasi-optimum policies with
PPO and SAC for the go-to-target task for a UAV low-level control. Then, we
used GAIL to learn by imitating a policy based on the expert trajectories of our
PPO best policy. We also evaluated the policies in a similar task for which the
policies were not trained (moving targets). We assessed, discussed, and evalu-
ated all of our results. We demonstrated that it is possible to train an efficient
low-level controller for quadrotor flight using both DRL and Imitation Learning.
For that purpose, we first trained a reference policy using PPO, a state-of-art
model-free algorithm that is on-policy. Although it was not straight forward and
we had to use our modifications in existing open-source frameworks, we have val-
idated the hypothesis in [5] that a PPO could be used for training a quadrotor
controller. We also show that we can use SAC, state-of-art model-free off-policy
algorithm, to train a low-level controller for quadrotor flight. As far as we are
concerned, this is the first work to do so. SAC was also a better choice for a
control agent than PPO, achieving better results in terms of control stability
and robustness than PPO. Finally, we also showed that one could use GAIL
to train an optimal policy almost as good as the original expert policy without
the need for reward shaping. We have seen that the resulting agent mimics the
expert policy with all its generalization capabilities. We evaluated the impact of
using distinct state representations, reward functions, and training initialization
procedures in the learned policy during the work, both in reward optimization
and control policy quality. We also have created a wrapper for the environment
proposed in [5] using the PyRep framework and performed several tests to assert
that the two ends are similar using a 10−5 tolerance.
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