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Abstract. This work addresses the problem of mapping terrain features
based on inertial and LiDAR measurements to estimate the navigation
cost for an autonomous ground robot. Unlike most indoor applications,
where surfaces are usually human-made, flat, and structured, external
environments may be unpredictable regarding the types and conditions
of the travel surfaces, such as traction characteristics and inclination. At-
taining full autonomy in outdoor environments requires a mobile ground
robot to perform the fundamental localization and mapping tasks in un-
familiar environments, but with the added challenge of unknown terrain
conditions. A fuller representation of the environment is fundamental to
increase confidence and to reduce navigation costs. To this end, we pro-
pose a methodology composed of five main steps: 7) speed-invariant iner-
tial transformation; i) roughness level classification; i47) navigation cost
estimation; 7v) sensor fusion through Deep Learning; and v) estimation
of navigation costs for untraveled regions. To validate the methodology,
we carried out experiments using ground robots in different outdoor en-
vironments with different terrain characteristics. Results show that the
terrain maps thus obtained are a faithful representation of outdoor en-
vironments allowing for accurate and reliable path planning.

PhD Thesis to be considered in CTDR. Conclusion: 26/08/2020. Full
text, associated publications, and videos of the results are available at:
http://wuw.dcc.ufmg.br/~felipegomes/doutorado.

1 Introduction

Autonomous navigation for ground robots in unstructured outdoor environments
has been the focus of numerous research efforts in Field Robotics in the past few
years [6]. Challenges range from localization and mapping to navigation with
obstacle avoidance of both static and dynamic objects. External natural environ-
ments are especially challenging for ground robots as they exhibit heterogeneous
roughness surfaces, including vegetation, pebbles, sand, mud, snow, ice patches,
and water puddles. Such surfaces may also be irregular and present different
slopes, which significantly increase the difficulty for ground robots to perform
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their tasks successfully [5]. A promising route towards solving this challenge is
to augment the robot’s maps with rich, informative data streams, which would
allow the robot to estimate the navigation cost (difficulty) of traversing different
areas more accurately.

Typical approaches used to obtain Navigation Cost Maps such as [9] map an
outdoor environment with estimates of navigation costs for various robot poses.
However, most of the works in state-of-the-art literature focus on the response
of a single sensor, which potentially constrains the ability to generate accurate
navigation costs [6, 5, 4].

In this work, we propose a learning-based multi-sensor approach for gen-
erating an outdoor terrain cost map, based on the fusion of inertial measure-
ments and LiDAR data. Our approach provides the potential to improve the
autonomous navigation of ground robots in an external unstructured environ-
ment, as illustrated in Fig. 1. By combining information provided by different
sensory modalities, we can assign navigation costs across a global map. The
generated cost maps are combined with traditional path planning approaches
to generate optimal paths across the map, optimizing aspects such as traveled
distance, time, or energy expenditure.

Higher Navigation Cost

Fig. 1: Three-dimensional outdoor map with associated terrain navigation cost.
This is an excerpt of a larger result presented in the experiments section.

1.1 Contributions

This work’s main contribution is the multimodal representation of unknown ter-
rain. The representation mentioned above is based on the prediction of inertial
measurements from LiDAR data regarding speed-invariant inertial signals. Our
methodology trains a Convolutional Neural Network (CNN) on recorded LiDAR
and IMU data, and learns to predict navigation costs for previously-unseen ter-
rain patches. Additionally, we have contributions in:

— Inertial speed-invariant transformation: We propose an inertial data
transformation method to reduce the impact of speed variation during iner-
tial data acquisition, resulting in a speed-invariant terrain signature;

— Roughness level classification: A roughness level classification is pre-
sented to associate an irregularity level to a travelled patch on unknown and
unstructured terrains, from inertial data defined in frequency domain;

— Navigation cost representation: A high level terrain representation is
proposed to combine the main features in outdoor environments, such as
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roughness and slope, through a regression model, defining the level of diffi-
culty to navigate on a region;

— Outdoor terrain mapping: We propose a 3D navigation cost mapping
approach to represent outdoor environments, regarding inertial data and
geometric data, presenting a reliable and effective terrain representation to
improve the autonomous navigation of ground robots.

The contributions of this work are published in the main conferences in the
area [8][7]. Furthermore, some contributions are under review on an international
journal.

2 Methodology

This section presents our multi-sensor terrain mapping method, whose overview
is illustrated in Fig. 2. For better understanding, we divided our approach into
the following three main stages, which will be further detailed in the next sub-
sections: 7) Three-dimensional mapping and localization; i4) Navigation cost es-
timation using inertial data; and i) Map augmentation through deep learning.
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Fig. 2: Overview of the proposed outdoor terrain mapping, composed of the steps:
i) Synchronisation of inertial and geometric data; ii) Speed-Invariant Transfor-
mation; 4i7) Roughness Level Classification; iv) Navigation Cost Estimation; v)
Multiple Sensor Fusion; and vi) Navigation Cost Mapping.

2.1 Three-Dimensional Mapping and Localization

The technique we use to create the three-dimensional map is called C-SLAM,
firstly presented in [1]. A more recent version using a 3D Velodyne PUCK Li-
DAR instead of the 2D Hokuyo LiDAR was presented in [11]. The C-SLAM
builds accurate 3D maps from a sequence of point cloud measurements, acquired
during the robot motion. A 6Degrees of Freedom (DOF) Inertial Measurement
Unit (IMU) sensor is used to align the point clouds with the trajectory, and a
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3D spinning LiDAR sensor, mounted on the ground vehicle, acquires the point
clouds. Additionally, from C-SLAM, a precise approach is proposed to estimate
the robot localization, combined with wheel odometry, called C-LOC (please
refer to [11] for further details).

2.2 Navigation Cost Estimation using Inertial Data

Inertial data provides an effective and straightforward way to quantify the diffi-
culty to traverse an unknown and unstructured outdoor environment [6]. How-
ever, inertial data are highly affected by variation in the robot’s velocity profile.
Therefore, before dealing with roughness and slope estimations, it is necessary
to address the speed variation issue. Then, the roughness level classification is
performed, and finally, the cost function will combine the mentioned features
into a single measurement, which is called navigation cost.

Inertial speed-invariant transformation The proper use of inertial infor-
mation to represent terrain irregularities should take speed into account. For a
given surface, lower speeds lead to lower inertial magnitudes, while higher speeds
lead to higher magnitudes [8]. To mitigate this problem, we propose to use the
Inertial Speed-Invariant Transformation (ISIT) function.

We propose two ISIT, regarding the inertial data: 4) linear acceleration along
the Z-axis; and i) angular velocity along the Y-axis. Both functions share the
same model, presented in equation 1. However, the first function addresses the
transformation of the linear acceleration in Z-axis, while the second function
addresses the transformation of angular velocity in Y-axis. The equation:

gf:‘P<ffaVCan>:-’Z-fxn(’/w’/g)a (1)

defines a function that receives as input the inertial data I 7, the current robot’s
speed v, and the goal speed v,. Additionally, the function learns a transforma-

tion factor n(v,v,), that maps I > acquired at different speeds, into inertial

measurements at constant speed S ¢ To estimate the transformation factor, a
multiple quadratic regression (n(v.,v,)) is applied, which is defined as:

y® = b5+ b5.x5 + b3.as + b.as® + bay® + bl + e, (2)
where y® are the predicted transformation factors, x® are the components of

model matrix, and b° are the regression parameters to speed-invariant transfor-
mation problem. € is the regression model error.

Roughness level classification One of the most important features to repre-
sent an outdoor environment is the terrain roughness, commonly obtained from
inertial sensors. In this work, an IMU is used to acquire linear accelerations and
angular velocities.

In order to process the data from the inertial sensor, we apply a Fast Fourier
Transform (FFT) to convert the raw speed-invariant inertial data (8 ), from
time domain to frequency domain depicting 1024 frequencies [12]. For every
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inertial data (linear acceleration along the Z-axis and angular velocity about
the Y-axis), we observe that not all 1024 frequencies are discriminant enough
for a good roughness representation [2]. Based on several samples, we noticed
that considering the first 300 frequencies for every inertial data would suffice.
With individual features for linear acceleration along Z-axis and angular velocity
about Y-axis, both representations are concatenated, resulting in a roughness
descriptor.

From the roughness descriptors and the respective known roughness levels,
we trained a supervised classification model. With the classification model (C),
it is possible to classify the roughness levels (By), given speed-invariant inertial
data (gf), during the robot motion. The By value is rescaled to the range [0...1],
where 1 is the maximum roughness level.

Navigation cost estimation In this work, we propose a navigation cost func-
tion 9(-), which considers three input data: i) roughness level (By); i) roll
orientation (Z £); and 44i) pitch orientation (ff) [7]. The roughness level is de-
fined in the previous Subsection. Roll and pitch orientations inform how inclined
the robot is, in X and Y axes. Both roughness and slope of the terrain can make
moving impractical on outdoor terrain. In this work, we consider the level of
roughness and the level of attitude equally weighted.

To achieve the expected navigation cost, estimated by (-), we first apply
an attitude function (J(-)) that combines roll and pitch orientations, to obtain
an overall representation of the terrain slope. The attitude cost, estimated by
J(+), is scaled within the range [0...1], with 1 being the maximum attitude cost.
The attitude cost and roughness level are applied to the navigation cost function
¥(+), providing a high-level representation of navigability. The navigation cost
(Cy), estimated by 1(-), is scaled to [0...1] range, where 1 is the maximum cost.

Functions ¥(-) and 1 (-) are based on application of a 3rd degree polynomial
regression, chosen because it is the lowest polynomial degree that sufficiently fits
the predefined Lookup Table (LUT) with the expected values. The 3rd degree
polynomial regression model presents the following structure:

y© = b+ b.x5 + b5.25 + bS.af.af + b5.af? + bEas® + biaftas+  (3)
?wﬁmf + bg.x§3 + bg.x§3,

where y© are the predicted transformation factors, x¢ are the components of
model matrix, and b° are the regression parameters to the navigation cost esti-
mation problem. ¢ is the regression model error.

2.3 Map Augmentation through Deep Learning

Here we address the creation of a learning-augmented navigation cost map for
an outdoor environment. Our predictive model learns the relation between nav-
igation costs, computed from inertial data, and point clouds, extracted from
geometric data. A global continuous three-dimensional map is created to rep-
resent the navigation costs, corresponding to the level of difficulty to navigate
throughout a terrain.
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Synchronisation of Inertial and Geometric Data We propose an approach
to synchronize data provided by different types of sensors. The IMU collects
inertial data (i;) from the robot’s current location, whereas the laser collects
geometric data (p};) from regions visited by the robot, regarding the known three-
dimensional map. Then, to compute the navigation cost for a position (z,y), it
is necessary to find the inertial and geometric measurements that correspond to
the same respective coordinate (g3).

From each visited coordinate (g}), we extract a point cloud (p}) that cor-
responds to a visited region (r;’c) The region’s area is related to the robot’s
dimensions, which corresponds to an approximation of the real Gator’s length
and width, i.e., 3.0 m x 2.0 m.

From the point cloud (p}) that is contained in the region (r%), it is necessary
to identify the inertial data (iy) that corresponds to the same region. By over-
laying the trajectory with the map, considering the measurement timestamps,
we can spatially reference the two measurements and assign them to the visited
region (r%).

Multisensor Fusion In order to achieve a more complete representation of
the surrounding terrain, it is necessary to estimate the inertial navigation costs
(C.) for unvisited (unknown) coordinates. This process takes into account laser
measurements (P%) around the robot as prior knowledge for the navigation cost
predictor.

Our proposed predictive model is based on a class of deep learning architec-
tures called CNN [13]. The proposed CNN predictive model will learn the rela-
tionship between inertial and LiDAR measurements, combining data provided
by different sensors. A CNN receives as input a two-dimensional matrix, which is
computed from a point cloud (P} or Py), i.e., a set of three-dimensional and con-
tinuous points, contained in a region (r} or r¢). To convert the three-dimensional
points into a two-dimensional grid, the region is discretized regarding a 0.05 res-
olution, resulting in 60x40 cells. The average of the points is computed for each
cell, regarding Z-axis (height), obtaining a two-dimensional terrain grid.

The proposed CNN architecture is composed of: i) Convolutional layer; %)
Rectified linear unit (ReLU); #4¢) Batch normalization; iv) Pooling; v) Dropout;
vi) Fully-connected layer; and vii) Fully-connected linear activation layer. For
the proposed approach, four convolutional units composed by Convolutional,
Batch normalization, ReLU, and Max-pool layers, are applied.

Navigation Cost Mapping This problem is related to the assignment of es-
timated navigation cost (C.) to the respective three-dimensional coordinate in
the Navigation Cost Map (M). The estimated navigation cost (C.) is computed
from a point cloud (PY). This point cloud (PY) is extracted from an unvisited
coordinate (¢g*) and is contained in a region (r¥), centered in the referred coordi-
nate (g*). The estimated navigation cost (C.) is then assigned to the respective
coordinate (g¥) in the Navigation Cost Map (M).

To select the unvisited coordinate, we first take into account the set of visited
coordinates (G"), and for each visited coordinate (g}7) we define a neighborhood.
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We then predict navigation cost for every unvisited coordinate within this neigh-
borhood range. This process is repeatedly performed for unvisited points. We
finally obtain a 3D Augmented Terrain Map, comprised of 3D points and their
respective navigation costs.

3 Experiments

3.1 Experimental setup

Experiments were conducted using: i) a 49.7 cm x 50.8 cm Pioneer P3-AT equipped
with an IMU Xsens MTi, a GPS, and a laptop (Fig. 3a). The different velocities
applied to the robots were set to 0.4, 0.6 and 0.8 m/s and the robots were tele-
operated with a joystick; and i) a 1.3m x 2.7m John Deere Gator, equipped
with an IMU MicroStrain 3DM-CV5-25, a Velodyne VLP-16 and an on-board
computer (Fig. 3b). The robot was driven manually, so its velocity was not regu-
lated. The coordinate system for both robots considers: i) X-axis points towards
the robot front; i) Y-axis points to the left side of the robot; and i) Z-axis is
obtained accordingly to the right-hand rule.

~ w’?
»
J

(a) Pioneer P3-AT

Fig. 3: Mobile robotic platforms used in the experiments.

Data acquisition was performed in two outdoor environments, with different
levels of roughness and slope. The first outdoor environment contains five dif-
ferent Levels of Roughness (LR). The Levels of Roughness in first environment
are: i) LR1 - Low level of roughness; i) LR2 - Medium-low level of roughness;
ii1) LR3 - Medium level of roughness; iv) LR4 - Medium-high level of roughness;
and v) LR5 - High level of roughness. The second outdoor environment contains
different levels of roughness and slope, including regions such as a parking lot,
building areas, and bush-land. The Pioneer P3-AT and Gator robots were used
in first and second outdoor environments, respectively.

3.2 Speed-Invariant Transformation Evaluation

This experiment evaluates the quality of the proposed Inertial Speed-Invariant
Transformation (ISIT). Inertial measurements acquired at different speeds are
transformed in corresponding inertial signals at a constant speed. In Fig. 4 are
presented the raw and the transformed Linear Accelerations in Z-axis, for area
1. From Fig. 4 it is possible to visually observe that transformed inertial data,
even at different speeds, present reduced inertial magnitude variations.
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Fig.4: Raw and speed-invariant inertial data, for different speeds. In Fig. 4a,
the raw inertial data in area 1 can be seen. In Figs. 4b and 4c, the transformed
inertial data is shown.

In Table 1 we observe the high magnitude dispersion, computed from raw
inertial data, for different areas and speeds. Higher dispersion equates to higher
inertial magnitude variation between different speeds. In Table 2, we observe
the magnitude dispersion, computed from transformed inertial data, comparing
different predictive models, areas, and speeds.

Table 1: Dispersion of raw inertial magnitudes, with different areas and speeds.

Area 1 Area 2 Area 3
Dispersion of Raw Inertial Magnitudes 210.982 279.043 78.664

Table 2: Dispersion of transformed inertial magnitudes, with different areas and
speeds.

Test
Area 1 Area 2 Area 3
Area 12.022 28.394 2.425
2nd Degree Polynomial | Train Area 2 2.294  32.847 1.853
Area 3 2.181 28572 2.277
Area 12.024 28909 2.232
3rd Degree Polynomial |Train Area 2 2.338  34.345 2.897
Area 3 2.540 30.748 2.432
Area 12.187 31.673 2.108
Random Forest Train Area 2 2.622 37.129 0.922
Area 3 2.318 32.049 2.789

From Tables 1 and 2, it is possible to verify that the transformed inertial
data for all predictive models presented lower dispersion of magnitudes than
raw inertial data. In other words, after the speed-invariant transformation, the
different inertial data became more similar, regarding the magnitude variation.
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Table 2 shows that the proposed ISIT model (2nd Degree Polynomial Regression)
presents lower dispersion measurements in seven of nine scenarios.

3.3 Roughness Level Classification Evaluation

This experiment evaluates the accuracy of the proposed roughness level clas-
sification process. In this assessment, for the same environment and the same
speed, different sets of inertial data are used to train and test the classification
models. Train and test inertial data were collected in different environments to
avoid overfitting in the training process. Additionally, three different classifica-
tion models are evaluated: i) Random Forest; i4) Ada Boosting; and iii) Support
Vector Machine (SVM). These classification models are used due to good results
obtained in the classification terrain context [10][3][8].

Table 3: Results for roughness level classification on outdoor terrains. In this
experiment are presented the accuracy for Random Forest, regarding three dif-
ferent speeds, for each run.

Speed Test

run 1 run 2 run 3
run 1 1.000 0.946 0.908
0.4 |Train run 2 0.954 1.000 0.913
run 3 0.960 0.955 1.000

run 1 run 2 run 3
run 1 1.000 0.953 0.949
Random Forest| 0.6 |Train run 2 0.961 1.000 0.946
run 3 0.964 0.953 1.000

run 1 run 2 run 3
run 1 1.000 0.816 0.933
0.8 |Train run 2 0.784 1.000 0.777
run 3 0.923 0.812 1.000

Table 3, shows roughness level classification results, only for the better clas-
sification model. Results show that the proposed Random Forest classification
model presents high accuracy in tackled classification problems. Additionally,
our proposed classification model achieves a mean accuracy of: 7) 93.9% for 0.4
m/s, with a standard deviation of 0.020; i7) 95.4% for 0.6 m/s, with a standard
deviation of 0.006; and 4i) 84.1% for 0.8 m/s, with a standard deviation of 0.063.
The results of the best baseline technique were achieved by SVM model, with
mean accuracy of: 7) 89.4% for 0.4 m/s; ii) 86.9% for 0.6 m/s; and i) 79.6%
for 0.8 m/s.

3.4 Outdoor terrain mapping evaluation

In this experiment, we evaluate the estimated outdoor terrain maps and the
estimated navigation costs, to measure the accuracy of the proposed outdoor
terrain mapping approach. In Fig. 5, are presented the baseline outdoor terrain
map (using Random Forest regression) and the proposed outdoor terrain map
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(using CNN predictive model). The baseline regression technique is used due to
good results obtained in terrain analysis predictions [9]. From Fig. 5, it is possi-
ble to observe the adequate representation of flat regions, regions with smooth
transitions (like slopes in terrain), and rugged regions.

Table 4 shows the obtained navigation costs. We observe that path costs
computed from the proposed CNN approach are lower than path costs computed
from the baseline approach.
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(a) Baseline method. (b) Our approach.

Fig. 5: Outdoor terrain maps for Environment 2 - Area 2.

Table 4: Path costs generated by motion planner accordingly to different predic-
tive models on different terrains.

Path costs
Path Baseline Methodology
Area 4 Area 2 Area 4 Area 2

1041 11.38  1.55 1.28
25.27  51.18  2.20 9.18
16.38 57.48 1.34 7.54
17.15 44.16  1.27 4.58
24.31 2649  3.79 2.04

CUb W N

3.5 Outdoor terrain mapping effectiveness

This experiment focuses on evaluating the effectiveness of the proposed out-
door terrain mapping approach. In Fig. 6 are presented different trajectories,
computed from the proposed outdoor terrain map, regarding i) only distance
(green) and; i4) only navigation cost (orange). The path length considering only
distance is 407.08 meters, while path length considering only navigation cost is
425.72 meters. The path cost considering only distance is 488.15, while the path
cost considering only navigation cost is 5.81.

Table 5 presents the path costs computed from planned paths regarding dis-
tance and navigation cost. From Table 5, it is possible to verify the higher nav-
igation costs for planned paths computed considering only the distance aspect.
In this sense, regarding the obtained results, we can state that a 3D Augmented
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Terrain Map with navigation costs increases the efficiency and safety navigation
for ground robots in outdoor environments.

r Distance based path
, [ Navigation Cost based path

Fig. 6: Trajectories computed from outdoor terrain map: i) distance (green) and;
ii) navigation cost (orange).

Table 5: Path costs computed from the proposed outdoor terrain mapping ac-
cordingly to different metrics (distance or navigation cost) on different terrains.

Path costs

Terrain Distance Navigation Cost

4 488.15 5.81
4 74.35 2.31
Paths 2 91.91 8.42
2 35.23 5.72
2 51.85 4.20

4 Conclusion and Future Work

In this work, we addressed the problem of creating an outdoor terrain map
based on inertial and laser sensors. Unlike other state-of-the-art approaches, our
method considers inertial speed-invariant measurements, combined with laser
measurements, to estimate the environment navigation costs providing a rich
3D terrain map.

This work’s major contribution is the proposition of an approach to predict
navigation costs, from untraveled regions represented as point clouds, through
Deep Learning. Moreover, creating a three-dimensional augmented terrain map
provides efficient complementary information to decision-making in path plan-
ning tasks on outdoor environments.

Real-world experiments performed on environments with different terrains
showed that the generated maps are reliable and accurate, considering the com-
puted path costs. The proposed inertial speed-invariant transformation proved
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to be an alternative to reduce the impact of speed change during robot motion
in terrain analysis step. The accuracy obtained from the roughness level classifi-
cation process showed a viable approach to represent and classify the roughness
levels on outdoor terrains. Finally, we showed the use of CNN to estimate inertial
navigation cost presented accurate results.

As future work, we intend to make the proposed outdoor terrain map rep-

resentation more flexible to incorporate features from different types of sensors
such as cameras. We also intend to study a strategy to make the inertial navi-
gation cost invariant to the robot size.
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