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Abstract. Coverage Path Planning (CPP) problem is a motion planning
subtopic in robotics, where it is necessary to build a path for a robot
to explore every location in a given scenario. Unmanned Aerial Vehicles
(UAV) have been employed in several applications related to the CPP
problem. However, one of the significant limitations of UAVs is endurance,
especially in multi-rotors. Minimizing energy consumption is pivotal to
prolong and guarantee coverage. Thus, this work proposes energy-aware
coverage path planning solutions for regular and irregular-shaped areas
containing full and partial information. We consider aspects such as
distance, time, turning maneuvers, and optimal speed in the UAV’s
energy consumption. We propose an energy-aware spiral algorithm called
E-Spiral to perform missions over regular-shaped areas. Next, we explore
an energy-aware grid-based solution called EG-CPP for mapping missions
over irregular-shaped areas containing no-fly zones. Finally, we present an
energy-aware pheromone-based solution for patrolling missions called NC-
Drone. The three novel approaches successfully address different coverage
path planning scenarios, advancing the state-of-the-art in this area.
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1 Introduction

Unmanned Aerial Vehicles (UAVs) consist of aerial platforms with no pilots
onboard the vehicle. These platforms are remotely and manually operated by a
human, but they also perform automated pre-programmed flights. Autonomous
flights can be executed using intelligent systems integrated with onboard sensors.
These vehicles have increasingly been employed in several application domains,
such as surveillance, smart farming, and wildfire tracking.

Coverage Path Planning (CPP) problem is a motion planning subtopic in
robotics, where it is necessary to build a path for a robot to explore every location
in a given scenario [8]. UAVs can also deal with this problem, but several aspects
must be considered, such as maneuverability limitations, restricted payload,
and environmental conditions. Most UAVs nowadays engage in missions using
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geometric flight patterns [3]. The most employed in real-world scenarios is the back-
and-forth (BF), also known as a zigzag move or lawnmower pattern. Following
the same idea, one can design a spiral flight pattern (SP) where the UAV flies in
circles, slowly decreasing the circle radius while flying towards the center. Both
flight patterns deal with the problem in regular-shaped areas requiring very low
computation. UAVs can also explore approaches classified either as a heuristic or
complete. Such methods deal with irregular-shaped areas containing no-fly zones
(NFZ). UAVs follow a set of simple rules guided by pheromones in the heuristic
approaches when they do not have full knowledge about the area. They must use
their onboard sensors to gather data while covering the scenario but do not have
a coverage success guarantee. Complete methods perform exhaustive searches
over a discretized grid represented as a graph, guaranteeing the coverage success
by ensuring that the vehicle visits each decomposed cell.

Despite the technology progress related to control systems and energy mon-
itoring, one of UAVs’ main limitations is the endurance, due to the limited
payload of the vehicles. In multi-rotors, endurance is about 25-30 min, even in
more sophisticated models released in 2019 [2]. The energy consumed depends on
several parameters, such as flying time, optimal speed, turns, and altitude. The
number of turning maneuvers performed by these vehicles significantly impacts
energy consumption, so finding a path with the minimum turns enhances its
endurance. It is also possible to save energy using optimal speeds depending on
the path segment’s length [11].

This work aims to propose energy-aware coverage path planning solutions
for regular and irregular-shaped areas containing full and partial information.
We consider the impact of different aspects, such as distance, time, turning
maneuvers, and optimal speed in the UAV’s energy consumption.

This paper is organized as follows: in Section 2, we present the theoretical
foundation. Section 3 discusses the related work. Section 4 describes the proposed
energy-aware coverage path planning algorithms. Section 5 explains the simulation
and real flight experiments. Section 6 presents the conclusion and future work.

2 Theoretical Foundation

The CPP problem consists of planning a path covering the entire target environ-
ment considering the vehicle’s motion restrictions and sensor’s characteristics
while avoiding passing over obstacles. These obstacles can represent no-flight
zones (NFZ) that the UAV should not consider during the planning phase.

Cellular decomposition can be used to divide the target space into smaller
pieces, also known as cells, to simplify the coverage. This technique is helpful
to guarantee complete coverage, one of the major concerns about the CPP. The
most commonly used are exact and approximate cellular decomposition. The
former consists of splitting the space into sub-areas, whose reunion precisely fills
the target area, while the latter discretizes the area into a set of regular cells [8].

Coverage algorithms must consider several issues to guarantee a coverage
mission’s success, such as the area’s complexity, the NFZ, and the cellular
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decomposition. Moreover, it should take into account whether the coverage is
simple or continuous. In both cases, the coverage can be performed by a single
or multiple vehicles. The information availability also influences the searching for
a solution in coverage missions with UAVs.

Performance metrics must fulfill application requirements. The most common
are path length, mission time, coverage maximization, and the number of turns.
Authors usually connect such metrics with energy consumption, trying to minimize
them to save energy. However, for an efficient energy-saving regarding UAVs,
additional features need to be investigated as vehicle’s motions and constraints,
turning angles, and optimal speeds. Our approaches explore such features using
an energy model to minimize the energy directly.

3 Related Work

The coverage path planning problem has been extensively addressed in the litera-
ture. Andersen [3] explores different flight patterns in rectangular areas with no
decomposition. Coombes et al. [9] present an analysis of wind disturbances’ effect
in the mission time of a fixed-wing UAV in circular areas. Franco and Buttazzo
[11] present an energy-aware back-and-forth approach for photogrammetry in
regular-shaped areas. Li et al. [13] present a triple-stage algorithm exploring
features such as payload and power variation. Artemenko et al. [5] propose
energy-aware algorithms for smoothing paths, providing more effective turns.

In large and complex scenarios, authors usually apply an exact cellular
decomposition to split the area and simplify the coverage. Li et al. [14] explore
the decomposition to create paths in concave areas using a single UAV, and
Torres et al. [21] used it to capture pictures of convex and concave areas for 3D
reconstruction. Coombes et al. [10] propose a technique for fixed-wing UAVs
exploring wind to decrease flight time. Maza and Ollero [15] present a cooperative
strategy in a convex area using a team of heterogeneous UAVs. Balampanis et
al. [6] explore a spiral algorithm for missions in coastal regions using multiple
heterogeneous UAVs. Acevedo et al. [1] present a decentralized algorithm for
partitioning rectangular areas, where short-range communication UAVs share
information. Araujo et al. [4] explore continuous coverage with local priority,
where the UAV can revisit previously explored areas according to the raising
uncertainty or priority.

Several works present coverage solutions for precision agriculture using the
approximate cellular decomposition. Valente et al. [23] and Barrientos et al. [7]
propose algorithms for image mosaicing over irregular-shaped fields. Valente et al.
[22] propose a meta-heuristic exploring the jazz musician’s improvisation called
Harmony Search. Sadat et al. [19] present a non-uniform coverage, where the
UAV fly at different altitudes. Santamaria et al. [20] explore cells of different
sizes. Many authors have also explored biologically-inspired approaches for the
CPP problem using UAVs, including real-time search methods [16], evolutionary
computation [17], and swarm intelligence [18].
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4 Proposed Approaches

Our work proposes three novel energy-aware approaches for the coverage path
planning problem with UAVs. The solutions consist of flight patterns, complete
algorithms, and pheromone-based methods suitable for regular and irregular-
shaped areas of interest. The first two methods deal with scenarios where the
UAVs contain full information to perform the coverage, while the latter handles
a dynamic environment with only partial information.

4.1 E-Spiral

The energy-aware spiral flight pattern algorithm (E-Spiral) consists of a sequence
of maneuvers performed by the aerial vehicle to cover an area of interest using
approximate circular motions. E-Spiral computes coverage paths for regular-
shaped areas. Such areas comprise convex (∀i, γi < π) and concave (∀i, γi > π)
polygons without inner no-fly zones.

E-Spiral considers application requirements, such as overlapping and resolu-
tion, to compute a photogrammetric sensing application’s coverage path. The
centroid point cp is computed based on the vertices of the polygon. Then, the
minimum distance dcp from the centroid point cp to the edges ei is calculated.
The distance dcp, the width Lx and height Ly of footprint, the lateral ovx and
the frontal ovy overlapping are employed to calculate the number of layers needed
to fully cover the area. Lateral and frontal overlapping determine the distance
between each layer and the distance between two consecutive waypoints.
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Fig. 1. E-Spiral pattern with inner layers, turning angles, and overlapping rates.

The spiral coverage path passes by the area of interest’s vertices at the
beginning of the mission. Turning maneuvers with different inner angles are
necessary to cover the workspace fully. After the first completed layer, the vehicle
starts to decrease the radius at each step, flying towards the center, as illustrated
in Fig. 1. The first layer starts near vi. The distance between the inner layers
is set as dlayer = Lx − ovx and the distance dw between consecutive waypoints
in a straight line is set as dw = Ly − ovy. After covering an entire layer, the
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intersection points form the new vertices of the area of interest, and the coverage
continues in the next segment.

To determine the optimal speed for each straight segment of the spiral path,
we improved the energy model proposed by Franco and Buttazzo [11]. The
authors exploit the energy model to compute the integral of the energy for a
given distance d to find the optimal speed that minimizes the energy needed to
travel that portion of the path. This optimal speed exists due to the total drag
force curve, which combines the parasite drag and the induced drag. As the speed
increases during steady flights, the parasite drag increases while the induced drag
decreases. This behavior leads to a minimum value for the drag curve, where the
optimal speed requires less power to perform the flight, saving energy.

The energy model proposed by Franco and Buttazzo [11] presents an accurate
energy estimation considering back-and-forth coverage paths. The model considers
that the UAV starts from zero speed, reaches and keeps a constant speed, and
then decelerates until zero before the turning maneuver at the end of each straight
line. In this way, we improved the energy model to deal with more complicated
maneuvers, such as the ones performed during spiral paths, where the UAV
decelerates until a given speed different from zero, performs the turn while
moving, and then accelerates again. We evaluate the variation of speed according
to the executed turning angle, performing a set of real flight experiments with
an IRIS quadcopter. Knowing the vehicle’s entrance speed when it performs a
given angle allows us to modify the energy model when performing the integrals
for the acceleration/deceleration/constant-speed phases. The optimal speed can
be computed as follows:

Ed(v, d, γ) =

∫ v

vin

Pacc(v)dv +

∫ t(v)

0

P (v)dt+

∫ vout

v

Pdec(v)dv (1)

where vout = f(v, γ) is the entrance speed when performing the next turn with
angle γ. The data can be stored in a look-up table.

4.2 EG-CPP

The energy-aware grid-based coverage path planning approach (EG-CPP) gener-
ates trajectories for UAVs in irregular-shaped areas, consisting of a concave/convex
polygon with obstacles and NFZ. EG-CPP improves the approach proposed by
Valente et al. [23], which employs a Deep-limited search (DLS) with a backtrack-
ing procedure. The area is discretized through approximate cellular decomposition
and converted to a regular graph numerically labeled by the Wavefront algorithm.
It consists of a flooding algorithm that marks the neighborhood adjacency of
cells, as illustrated by Fig. 2.

EG-CPP replaces the original cost function (OF) proposed by Valente et
al. [23] by our improved version of the energy model proposed by Franco and
Buttazzo [11] to find the minimum-cost path to perform a complete coverage.
The OF is based exclusively on the sum of angles, which is unreliable and may
provide more expansive paths in real measured energy while discarding promising



6 Cabreira et al.

Fig. 2. Irregular-shaped area discretized into a regular grid with the starting position
marked with number 1 and the surrounding neighbors with number 2, and so on.
Obstacles and no-fly zones are marked with -1.

solutions during the minimization process. On the other hand, the energy model
splits the path into a set of straight segments and rotations to accurately predict
the energy cost. The energy-aware cost function (EF) exploits the energy model
to account not only for the energy required for every turn but also for the energy
needed when accelerating/decelerating and flying at a constant speed. Thus, it is
possible to evaluate the path and estimate the total energy (and time) using the
Equation (2) as follows:

ΓE =

m∑
i=1

( ∫ vi

0

Pacc dv + Pvi∆T i +

∫ 0

vi

Pdec dv
)
+

m∑
i=1

Eturn(γ
{i}) (2)

where the first summation computes the energy consumed during a set of straight
lines i by splitting it into three phases (acceleration, deceleration, and constant
speed), and the second summation considers all the rotations of the path. Pacc,
Pdec, and Pv define the power consumed when accelerating, decelerating, and
flying at a constant speed. Eturn(γ

{i}) is the energy to rotate an angle γ at the
i-th waypoint (computed as the power consumed when turning Pturn multiplied
by the duration of the rotation). ∆T i is the time when flying the portion of the
path at a constant speed, and it is computed considering the total distance and
constant acceleration and deceleration. The terms in Equation (2) are polynomial
functions obtained through real measurements and allow reaching high accuracy
in the energy prediction of a given trajectory [11].

The algorithm proposed by Valente et al. [23] presents a high computational
time due to the complexity of the area. In this way, we also include two pruning
techniques to reduce the computational time and save even more energy. The
original approach computes the entire cost of all possible paths at the end of the
algorithm, including those paths whose costs are much higher than the minimum
value. Thus, we modified the algorithm to store the minimum-cost and the path
associated with it. We then check if the current path’s cost is higher than the
minimum-cost path at each iteration. By adopting this technique, it is possible to
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drastically reduce unnecessary recursive calls, pruning a vast number of partial
paths. It is necessary to compute a path’s cost during the search phase, i.e., while
nodes are being explored. There is no need to compute the cost of the path from
the starting cell to the current one at each iteration, but only the additional
cost introduced by choosing the next neighbor. The current cost is passed as a
parameter of the function and added to the additional cost. The two proposed
pruning techniques can be applied to the algorithm using the original and the
energy-aware cost function. The techniques drastically reduce the algorithm’s
computational time, making it time-affordable for real-world applications.

4.3 NC-Drone

Pheromone-based methods are suitable for missions where UAVs contain incom-
plete information about a partially known environment. These methods comprise
algorithms based on colonies of insects, specifically ants, as their natural behav-
ior consists of leaving traces of pheromones while exploring areas outside the
anthill. While moving around the area of interest, UAVs leave virtual marks in
the grid-discretized scenario’s visited cells. This information helps other vehicles
in the next destiny decision-making. UAVs should move to unvisited or less
frequently visited locations to obtain full coverage, which means exploring cells
(von Neumann neighborhood) with the least amount of pheromone.

NC-Drone is an extension of the Node Counting (NC) for patrolling missions, a
specific domain of the CPP problem dealing with area surveillance. A cooperative
fleet must visit areas at regular intervals to supervise it. During the coverage, NC
chooses the next locations with the least amount of pheromone. When there is
more than one cell with the same minimum-value, NC randomly chooses among
them. Our NC-Drone adopts a simplified version of the energy model to consider
energy as a decision factor. It can identify when there is a tie between two or
more cells, verifying if one of these cells is aligned with the UAV’s sweeping
direction. In this case, the correspondent cell is selected, keeping the UAV in the
same direction and avoiding unnecessary turns. In this way, we can prolong the
straight segments of the path and minimize the number of turning maneuvers to
reduce energy consumption.

Furthermore, we develop decentralized variations of the NC-Drone, where
UAVs do not need to read and write in the grid as a centralized way. Instead, each
UAV stores the visited places in a matrix-form internal map of the area. They
select the next destinations based on the number of visits stored in the neighbor
positions of its current position in the matrix. A matrix-based communication
model is employed to share and synchronize individual information stored in the
UAVs’ internal matrices. We propose three types of synchronization when UAVs
are within a range: MAX, AVG, and MULTI. MAX compares every position in
both matrices and chooses the highest value. AVG calculates the mean between
the original values of both matrices and round the result to the nearest integer.
Both methods update the original matrix. MULTI combines multiple matrices
from all vehicles to decide where to move. UAVs copy the information from each
other when they are within the synchronization perimeter. When performing a
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move, the UAV superposes the stored content, summing its current position’s
neighbor values. Then, it chooses the least visited location as the next place to be
covered. UAV updates only its matrix during coverage. Other matrices internally
stored are individually updated when there is a new synchronization.

We also propose cooperative strategies, further exploring relevant aspects of
the patrolling problem, such as time, uncertainty, and communication. First, we
introduce the Watershed Strategy (WS), a technique used to represent matrices
as topographic relief. In this relief, the lower elevations correspond to the minor
values in the matrix, i.e., less frequently explored cells. The UAVs are attracted to
clusters of cells formed in these areas. Second, we present the Time-based Strategy
(TS), an approach exploring not only the number of visits but also the time when
the last visit occurs to guide the UAVs during coverage. Both strategies can be
combined. Then, we propose the Evaporation Strategy (ES) to model uncertainty
due to the absence of visits in certain places during patrolling. We also explore the
concept of full-range communication with Communication-Frequency Strategy
(CFS), where UAVs reduce communication, exchanging matrix-information from
time to time. Finally, we combine all strategies into a single solution for the
patrolling problem.

5 Experiments and Results

The E-Spiral is compared to the energy-aware back-and-forth (E-BF) [11], per-
forming a wide range of simulations on MATLAB®. We explore a set of polygonal
areas with different characteristics, such as vertices, irregularity, and size. The
number of vertices varies from 6 to 10. The level of irregularity varies from 0 to 1.
The average diameter varies from 200 to 600 meters. We generated fifty different
areas with all possible configurations, totalizing 3750 tested areas.

We set the optimal speeds that minimize energy for every straight segment
of the path using Equation (1). Then, we used the improved energy model to
compute the energy spent by each approach. The higher the number of vertices,
the better is the performance of the E-Spiral. The improvement reaches 16.1% in
areas containing ten vertices. Considering the irregularity, E-Spiral presents a
percentage of improvement of around 13%. Finally, the performance of E-Spiral
decreases as the area increases, but still overcomes the E-BF around 10%.

Table 1. Energy consumption and mission time in simulation and real flight (RF) with
the E-Spiral and the E-BF in Polygonal (P) and Rectangular (R) Areas.

Energy Consumption Mission Time
Path/Area Simulation RF Accuracy Simulation RF Accuracy
E-Spiral (P) 79158J 79228J 99.91% 379.35s 377.20s 99.43%
E-BF (P) 87945J 85837J 97.54% 420.60s 414.40s 98.50%
E-Spiral (R) 46681J 47329J 98.63% 223.91s 231.00s 96.93%
E-BF (R) 48182J 47401J 98.35% 230.81s 229.60s 99.47%
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Fig. 3. Real flight paths: (a) E-Spiral in polygonal area, (b) E-BF in polygonal area,
(c) E-Spiral in rectangular area, and (d) E-BF in rectangular area.

Real flights were also performed in two different areas: a polygon and a
rectangle. Table 1 presents the results and Fig. 3 illustrates the areas of interest
(red), the planned path (blue), the performed path (white), the starting (green
“x”), and the final position (red “x”). E-Spiral algorithm overcomes E-BF in both
areas of interest. It reduces the mission execution time around 9%, and the energy
consumption around 7.7% compared to E-BF.

Next, the EG-CPP algorithm is compared to the original grid-based [23].
The area of interest consists of a concave polygon with an internal no-fly zone
containing 47 valid cells. Cells outside of the area or within the NFZ are not
included. We ran both algorithms to generate 47 paths considering every valid
cell as a potential starting position. The minimum-cost path generated by the
energy-aware cost function (EF) starts at the cell (4,2), while the one generated
by the original cost function (OF) starts at the cell (6,1).

Table 2. Energy consumption in simulation (OF and EF) and real flights.

Path OF EF Real Flight Accuracy
Cell (6,1) OF 1890º 7.7053× 104J 7.3583× 104J 95.49%
Cell (4,2) OF 2205º 7.3593× 104J 7.1655× 104J 97.36%
Cell (6,1) EF 1980º 6.8607× 104J 6.7354× 104J 98.17%
Cell (4,2) EF 2025º 6.6165× 104J 6.2710× 104J 94.77%
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Fig. 4. Four real flights: (a) EF minimum-cost starting at cell (4,2), (b) EF starting at
cell (6,1), (c) OF starting at cell (4,2), (d) OF minimum-cost starting at cell (6,1).

Four real flights were performed to evaluate energy consumption, as shown
by Table 2 and Fig. 4. EF obtains the best results with an energy saving of
17%. The EF path starting at the cell (4,2) consumes 6.2710× 104J , overcoming
OF path starting at the cell (6,1), which consumes 7.3583× 104J . EF with cell
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(6,1) also overcomes the original approach (OF with cell (4,2)), with an energy
consumption of 6.7354× 104J VS 7.1655× 104J . The ideal path pointed out by
OF is unreliable, consuming more energy than an ordinary path: 7.3583× 104J
VS 7.1655× 104J .

The NC-Drone is evaluated on NetLogo with three metrics: Quadratic Mean of
the Intervals (QMI), Standard Deviation of the Frequencies (SDF), and Number
of Turning Maneuvers (NTM) [16]. These metrics highlight different application
requirements, such as the spatial/temporal distribution of visits and energy. We
ran 30 simulations with 10k, 15k, and 20k cycles with 4 UAVs in a 50x50 grid,
analyzing the results with Student’s T-Test. Fig. 5 presents the QMI results.
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Fig. 5. QMI results for NC-Drone strategies.

First, we compared NC-Drone with four heuristics [12]: Node Counting (NC),
Learning Real-Time A* (LRTA*), Thrun’s Value-Update Rule (TVUR), and
Wagner’s Value-Update Rule (WVUR). All approaches allow UAVs to write
pheromones in the visited places that can be read by vehicles. NC-Drone overcomes
all heuristics in QMI and reduces the NTM three to four times. NC-Drone also
overcomes NC, LRTA*, and TVUR in SDF, and presents similar results to
WVUR. Next, we compared decentralized variations of NC-Drone, which adopt
a matrix-based communication protocol. MAX and AVG present the best results
in QMI and NTM, while MULTI overcomes the two approaches in SDF.

We also ran experiments adding different strategies, such as Watershed (WS),
Time-based (TS), Evaporation (ES), and Communication-Frequency (CFS). WS,
TS, and WSTS outperform the original NC-Drone, improving QMI and drastically
reducing the standard deviation (SD) from 76% to 88%. MULTI, MAX, and AVG
present no improvements by adopting the strategies. We ran four ES experiments
with intervals of 100, 250, 500, and 1k cycles between each evaporation with a
factor of 0.1, which means that pheromone drops 0.1 at x intervals. ES overcomes
NC-Drone in all intervals regarding QMI, and ES-100 presents the best result
with a significant improvement (10%). ES also improved MULTI in all runs
and MAX in the interval of 100. Exploring the CFS, we ran five experiments
with intervals of 50, 100, 250, 500, and 1k cycles between every synchronization.
CFS-50 presents the best results in QMI, obtaining an outcome equivalent to the
one presented by NC-Drone, even sharing the matrices only at every 50 cycles.
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QMI improvements impact negatively on SDF and NTM in all approaches. One
can observe a trade-off and correlation between the QMI and NTM metrics.
Finally, we present a few combinations and a final algorithm composed of all
strategies. Results are slightly improved as more combinations are adopted, with
the best solution being CFS-WS-ES-Time-50. One can download all algorithms
and the complete set of results on GitHub 1. Full thesis is on Google Drive2.

6 Conclusion

This work proposed energy-aware coverage path planning algorithms for un-
manned aerial vehicles. All approaches explored an improved version of an energy
model to generate energy-efficient coverage trajectories. Our solutions include
a flight pattern (E-Spiral), a complete algorithm (EG-CPP), and a pheromone-
based heuristic (NC-Drone), able to deal with regular and irregular-shaped areas
containing full and partial information. We compared the proposed algorithms
with state-of-the-art strategies through simulations on MATLAB® and real
flights using an IRIS quadcopter.

As future work, we intend to explore a generic energy model for any UAV
based on parameters and characteristics, such as propellers, rotors, and payload.
One can consider using the closed-form energy model to generate energy-efficient
coverage planning strategies for different types of UAVs.
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