RAM-VO: A Recurrent Attentional Model for Visual
Odometry

Iury Cleveston', Esther L. Colombini'

!Laboratory of Robotics and Cognitive Systems (LaRoCS)
Institute of Computing, University of Campinas
Campinas, Sao Paulo, Brazil

{iury. cleveston, esther}@ic .unicamp.br

Abstract. Determining the agent’s pose is fundamental for developing au-
tonomous vehicles. Visual Odometry (VO) algorithms estimate the egomotion
using only visual differences from the input frames. The most recent VO meth-
ods implement deep-learning techniques using convolutional neural networks
(CNN) widely, adding a high cost to process large images. Also, more data does
not imply a better prediction, and the network may have to filter out useless
information. In this context, we incrementally formulate a lightweight model
called RAM-VO to perform visual odometry regressions using large monocu-
lar images. Our model is extended from the Recurrent Attention Model (RAM),
which has emerged as a unique architecture that implements a hard attentional
mechanism guided by reinforcement learning to select the essential input infor-
mation. Our methodology modifies the RAM and improves the visual and tem-
poral representation of information, generating the intermediary RAM-R and
RAM-RC architectures. Also, we include the optical flow as contextual infor-
mation for initializing the RL agent and implement the Proximal Policy Opti-
mization (PPO) algorithm to learn a robust policy. The experimental results
indicate that RAM-VO can perform regressions with six degrees of freedom us-
ing approximately 3 million parameters. Additionally, experiments on the KITTI
dataset confirm that RAM-VO produces competitive results using only 5.7% of
the input image.

M.Sc. Dissertation submitted to CTDR 2021 - Defense date: 05/07/21

Supervisor: Prof. Dr. Esther Luna Colombini

1. Introduction

Autonomous vehicles have been a long-standing research topic for the scientific commu-
nity. Building vehicles capable of functioning without human supervision is challenging,
requiring the vehicle’s pose determination. Visual Odometry (VO) is the field concerned
with estimating the egomotion of an agent using only visual differences from the input
frames. VO emerged with the promise of solving the main issues that wheel odometry
presents, such as the pose estimation error due to wheel skating, skidding, and displace-
ment over uneven terrain [Scaramuzza and Fraundorfer 2011]]. Direct and indirect meth-
ods have been developed to estimate the agent’s pose by capturing the apparent motion
from sequential frames. These methods require the environment to have satisfactory illu-
mination, texture, and the subsequent frames must overlap.

Figure 1. Sequences of eight observations defined by a learned policy with the
sparse optical flow.

However, hand-crafted solutions based on either direct or indirect approaches be-
come complicated due to the problem’s nature, which presents a vast search space, and
considerable non-linearities. Usually, these solutions do not cover all possibilities and
suffer from robustness issues when used in different environments. In recent years, Deep
Learning (DL) techniques have appeared as a novel way to perform statistical learning on
real data captured from the environment, showing promising results in complex datasets,
such as KITTI [Geiger et al. 2013]]. These datasets impose a great challenge for tradi-
tional methods due to sudden changes in the agent’s speed, changes in the scene such as
illumination, shadows, occlusions, and simultaneous motion of numerous objects. Never-
theless, DL techniques can solve these problems by learning the multiple nonlinear factors
that impact the scene generation and motion [[Goodfellow et al. 2016].

Although DL provides significant advantages, the visual odometry field makes
unrestricted use of convolutional neural networks (CNN), which add a substantial cost
when dealing with high-resolution images. Further, more input data does not mean a
better prediction, and the network may have to filter out useless information. Therefore,
the implementation of lightweight architectures has sparked an interest in approaching
the problem from a new perspective. Though capturing only the necessary information is
fundamental, learning where to look requires elaborating several cognitive concepts, such
as attention and memory. Particularly, attention has quickly attracted the scientific com-
munity’s interest due to its ability to provide inexpensive solutions to complex problems.
In this context, the Recurrent Attention Model (RAM) [Mnih et al. 2014] has emerged as
a novel architecture that implements a recurrent hard attentional mechanism to incremen-
tally select the essential pieces of information. The attentional mechanism is guided by
a REINFORCE [Williams 1992]] policy learned via reinforcement learning (RL). Despite
this, RAM was introduced essentially as a concept proof, only implemented for classi-
fication tasks on the MNIST dataset, not possessing the complex structures to deal with
visual odometry tasks.

Therefore, this work proposes constructing a monocular end-to-end visual odom-
etry architecture — RAM-VO — employing the reinforcement learning paradigm to train a
hard attentional glimpse sensor over time. In this sense, we incrementally extended the
RAM architecture by implementing spatial and temporal structures to operate with com-
plex visual inputs; our methodology establishes the RAM-R and RAM-RC as intermedi-
ary models. In the end, the optical flow is added to provide contextual information to ini-
tialize the RL agent, and the Proximal Policy Optimization (PPO) [Schulman et al. 2017]]
enables the learning of robust policies. RAM-VO can predict 6-degree-of-freedom (DoF)
poses in real-world sequences and is more computationally efficient than similar methods.
To the best of our knowledge, this is the first architecture to perform visual odometry that

implements reinforcement learning in part of the pipeline.

1.1. Contributions

This work provides the following contributions:

A lightweight VO method that selects the important input information via atten-

tional mechanisms;

 The first visual odometry architecture that implements reinforcement learning in
part of the pipeline;

 Several experiments on KITTI [Geiger et al. 2013]] sequences demonstrating the
validity and efficiency of RAM-VO;

* A Survey of Deep Supervised Learning for Visual Odometry, to be submitted soon
to the Journal of Neurocomputing;

* RAM-VO: Less is more in Visual Odometry, submitted to IEEE Robotics and

Automation Letters (RA-L).

2. Related Work

The first visual odometry method implemented with deep learning was proposed by
Konda et al. [Konda and Memisevic 2015] in 2015. Their model implemented an end-to-
end CNN architecture to estimate direction and velocity from raw stereo images; however,
the problem was formulated as a classification task, and the experimental results were not
satisfactory due to limited data. After that, the architectures started to coupled LSTM
layers to provide temporal representation. In 2017, Wang et al. [Wang et al. 2017]] pro-
posed the DeepVO, which is an end-to-end monocular architecture capable of extracting
visual features directly from the input raw images with a CNN and determining temporal
relation with an LSTM.

At the same time, Flowdometry [Muller and Savakis 2017]], based on the FlowNet
architecture, extracted the optical flow from the input images. The pipeline’s first stage
computes the optical flow from monocular images using the FlowNetS, while the sec-
ond stage computes incremental changes in angle and displacements. Also, Zhao et
al. [Zhao et al. 2018|] proposes the L-VO architecture, which predicts the 6-DoF pose
from 3D optical flow for a monocular VO. The loss function employs a Bivariate Gaus-
sian model, and the FlowNet computes the optical flow, while the DepthNet computes the
depth map. Further, the DPC-Net [Peretroukhin and Kelly 2018] model aims to integrate
the representation capabilities of deep neural networks with the efficiency of geometric
and probabilistic algorithms. DPC-Net implements a CNN-based architecture to learns
the corrections for the pose estimator. Yin et al. [Yin et al. 2017/] proposed an architec-
ture able to recover the scale by estimating the depth from the input monocular images
based on a modified ResNet and conditional random fields. Tang et al. [Tang et al. 2018]
proposes a Geometric Correspondence Network, consisting of a CNN trained together
with an RNN to detect the keypoints’ location and generate descriptors.

Several other methods provide technological contributions. The most recent
employ deep learning structures and demand the adoption of large and representative
datasets. Conversely, lightweight and efficient methods are essential to the field. Rein-
forcement Learning (RL) and attention applied to visual odometry can provide a solution
in such scenarios. The model becomes efficient by selecting only the necessary input data,

and learning a robust policy can reduce the drift error. However, we have not found any
method that implements RL in any part of the visual odometry pipeline.

2.1. The Recurrent Attention Model (RAM)

The Recurrent Attention Model (RAM)[Mnih et al. 2014]] implements a hard attention
mechanism similar to the biological visual system, which progressively constructs an
informative latent space by multiple observations in the input image. Hard attention re-
quires the model to consider only the relevant elements while discarding the others com-
pletely [Correla and Colombini 2021]]. The observations are iteratively integrated into the
model, providing the knowledge to perform the classification. The location of each obser-
vation is determined by a policy learned through REINFORCE [Williams 1992]]. RAM is
constituted of four different networks, as shown in Figure [2|

GLIMPSE}\IETWORK — LOCATIONﬂNETWORK > I
2

CORE NETWORK
fh ht

ACTION NETWORK

fa

—»at

Figure 2. The RAM architecture is constituted of four different networks.

The glimpse network f, represents the attentional system and comprises a glimpse
sensor to extract meaningful patches from the input images. First, the glimpse sensor re-
ceives an image x; and a location l;_; as input. Then, several patches are extracted in
different resolutions, centered at the location 1;_;. This process builds a pyramidal-like
structure p(xy,1;_1) representing what was observed on the image. Finally, the glimpse
network concatenates p; and l;_; to include the location where the information was ex-
tracted, resulting in the final vector g,. The core network f, stores the multiple obser-
vations by receiving the feature vector g, and the previous internal state h,_; as input at
every time step ¢. Through fully connected layers, the core network outputs the current
internal state h;, which condenses all the sequential information provided by the glimpse
network. The location network f; generates the location I, for the subsequent observation
by sampling a Gaussian distribution with two dimensions (z, y) and a fixed standard de-
viation. For each subsequent observation, a novel Gaussian distribution is generated by
using the internal state h; to parameterize the mean y,. After all observations, the action
network f, consumes the internal state h, to predict the class a,;, which is the final goal.

The hard attention mechanism introduces a non-differentiable structure and thus
requires reinforcement learning to train the model. Therefore, the RL setup is an in-
stance of a Partially Observable Markov Decision Process, in which the true state of the
environment is unobserved. In this sense, the glimpse sensor is the agent, the whole
image is the environment, and the rewards are defined according to the success in the
classification. The goal is to maximize the return G = Zthl r¢, which is sparse and
delayed, via J(0) = Eym,...0)[G], where p(hy.7; @) depends on the policy. Maximizing
J(0) is not trivial because it involves an expectation about high-dimension iteration se-
quences. However, we can obtain an approximation of the gradient with the REINFORCE
rule [Williams 1992]] as V.J(0) = L "M S°T Vlogr (Li|hi,; 0) (Gi — b;), where h},
are the sequences obtained by running the current policy 7y for i = 1,..., M episodes,
Gi is the accumulated reward after executing action I}, and b, is the baseline value, which

reduces the variance for the gradient updates. Although bringing innovative ideas from
biology, RAM was proposed mainly as a proof of concept, lacking the necessary com-
plexity to deal with high-resolution images and regression tasks.

3. The RAM-VO Architecture

The original RAM architecture was created for simple classification tasks. In this sense,
we have developed a methodology to extend it to visual odometry tasks by increasing
the architecture’s complexity to deal with more challenging input data. The methodology
comprises three steps: a) creating the RAM-R to learn the displacement between single
pixels in two different images; b) increasing the RAM-R complexity to provide the dis-
placement between two images with complex visual structures, generating RAM-RC; ¢)
producing the final RAM-VO for visual odometry tasks by learning the optical flow and
improving the temporal representation, policy parametrization, and pose regression.

3.1. RAM-R: Simple Regression on Pixel Dataset

Adapting RAM to regression tasks requires two glimpse networks, allowing the architec-
ture to consume two different images simultaneously. Therefore, RAM-R can find the
same features in both images and determine their correspondence. To do so, we changed
the original action network to generate linear outputs instead of class’ probabilities. Be-
sides, the architecture’s capacity has been increased, which means the number of layers
in each subnetwork increased, ensuring more representation power since the input infor-
mation has doubled. Unlike the original RAM, the policy’s standard deviation is also
learned during training, promoting exploration in the first epochs. RAM-R is composed
only of fully connected layers, in which the core network is a classic recurrent neural
network; the layers use the rectified linear unit (ReLLU) as activation functions, except the
last layer in the locator and regressor network, which uses the hyperbolic tangent (tanh).
We have not used any regularization techniques, such as dropout and batch normalization.
We evaluated our results using our own created dataset called Pixel, consisting of black
images with a single white pixel, with a 100 x 100 pixels resolution. The RAM-R aimed
to regress the distance (, y) between pixels from two separate input images. The experi-
mental results achieved an MAE of 3.118 in the test set, which we considered satisfactory
to continue increasing the model complexity.

3.2. RAM-RC: Complex Regression on City Dataset

Once the RAM-R performed satisfactory regressions with a simple problem, we made the
regression more complicated. The City dataset comprises images with 300 x 300 pixels
extracted from a city’s panoramic image in high resolution. This dataset provides an indis-
pensable environment to understand the agent’s behavior when dealing with highly non-
linear visual information. In this sense, we can observe how the agent uses the glimpse
sensor to choose an action; and how the sequence of observations generates a usable la-
tent space for predictions. RAM-RC included more sophisticated memory elements such
as the Long Short-term Memory (LSTM) in the core network, allowing the model to
track long-distance dependencies and better represent the predictions. LSTM structures
diminish the problem of vanishing gradients during training, stabilizing the model. We
proposed only one LSTM layer for this problem, although more layers allow the model to
have a hierarchical representation of the sequential data. For this purpose, we modified the

glimpse network to interpret structured visual elements through convolutional networks
(CNN). Thus, three independent convolutional layers process each glimpse scale without
any pooling layer between the CNNs. We found it reasonable to use a kernel size of 5 and
to generate four channels for the first CNN layer and eight channels for the second. The
experimental results achieved an MAE of 3.810 in the test set.

3.3. RAM-VO: Visual Odometry Regression

Visual odometry regression is substantially more complex than the experiments reported
so far. The 6-DoF regression makes the predictions trickier; the input images have a
higher resolution, requiring a better state representation. Initially, the RAM-RC was
adapted to allow 6-DoF regressions; thus, the network regressor’s capacity doubled to
allow the rotational and translational predictions independently. The glimpse network has
also been changed to promote the learning of the scene’s geometry. We were inspired
by the FlowNetS architecture, in which the input images are concatenated and used into
the convolutional channels; this alternative design favors the model to capture the scene’s
geometry, especially the optical flow. In this sense, RAM-VO still has three convolutional
pipelines but processes the two images simultaneously (Figure [3).

...

1 Locator Baselmer " Regressor
'

. wﬁl | fo256, reli | [fo256,tanh | | c 266, tanh |
+1

GLIMPSE

| Core g
'

Istm 1024
Istm 1024 |
]

h
32 el | [fe32 tanh | | fc 32, tanh | | 032, leaky relu | [fc32, leaky relu | 1
h

| fc 2, linear | | fc 2, tanh | | fc 1, linear | | fc 2, linear | | fc 2, linear | ,
'
H

! Output ;
H '

Te 128
leaky relu

T 128
leaky relu

leaky refu

z%
8
S

- fe 256, fe 512,
leaky relu leaky relu

Figure 3. Overview of RAM-VO (top) and Glimpse Network (bottom).

8
S

We understand that the ability to generalize well is closely associated with learn-
ing the scene’s geometry; learning appearance does not provide good generalization re-
sults in our case. Therefore, RAM-VO learns the optical flow in the glimpse network,
already integrating the two image’s information and releasing the core network to deal
only with the integration of observations. These structural modifications remove ineffi-
ciencies like redundancy and bottlenecks. Considering that the convolutional operations
are performed on both image patches simultaneously, applying the same filters reduces
the computational cost compared to performing the features’ extraction separately. How-
ever, convolutional operations still add a high cost to the model; although the number of
parameters has decreased due to their sharing, the cost of applying the filters increased.
Hence, we maintained the convolution operations but used only six layers for the high-
resolution scale, with 128 channels in the last operation. In this sense, we observed that

convolutional operations with smaller kernels significantly minimize the loss; therefore,
we chose to keep the high-resolution scale with a kernel size of 3 x 3 pixels and the other
scales with a 5 x 5 kernel since they represent large areas. We define padding values
as zero, removing entirely pooling operations. The input information’s dimensionality is
reduced by varying the stride between 1 and 2 during the filters’ application.

The supervised loss and the reward function are both defined in terms of the MSE.
We also evaluated MAE as a reward function; however, it does not penalize outliers; and
in visual odometry, we want to minimize the outliers as much as possible since only one
poor prediction can harm the entire trajectory. Therefore, the supervised loss L is defined
as L = + SV 1P = pll + k||@ — @l|5, where p and @ are the position and orientation
prediction, respectively; p and ¢ are the ground-truth values; and k is the constant factor
weighting the two losses; we defined it as 1. The reward function R is then defined as
R = HLL Similar to previous experiments, we prefer not to bias the RL agent towards
a specific behavior; therefore, only the visual odometry error is employed in the reward
function. The weighting constant £ can also be altered to favor one component over
another; this is especially necessary when the ground-truth values are not normalized,
and the orientation component must be compensated since they present a lower variation
range. We preferred to maintain the ground-truth values normalized and k£ = 1 for this
baseline version. Also, we composed the orientation component ¢ with the Euler angles
as roll ¢, pitch 6, and yaw ; the position p is composed of the coordinates x, y, and z.
In conclusion, the RAM-VO’s goal is to regress the 6-DoF vector [¢, 0,1, x, 1y, 2]7.

3.4. Learning a Policy with Proximal Policy Optimization (PPO)

The REINFORCE [Williams 1992]] algorithm is known for presenting convergence issues
and slowness; this occurs by abrupt updates on the policy’s parameters, which can harm
the entire training by converging to suboptimal regions. The Proximal Policy Optimiza-
tion (PPO) [Schulman et al. 2017/] intends to solve these issues by updating the policy
inside trusted regions. The PPO’s surrogate function determines that the current policy
must be close to the last one, avoiding large parameters shifts. The use of memory replay
also played an essential role since it allowed the policy refinement with already sampled
data, improving the architecture’s efficiency. We defined the refinement iteration as 20,
which means the RL policy updates in the proportion of 20:1, compared to the supervised
network. This is an essential advancement since we always want the best policy to control
the input information flow. In practice, the PPO implementation consisted of replacing
the locator and baseliner network with a similar architecture in terms of layers and units.

3.5. Providing Optical Flow as Contextual Information

A further step was to initialize the last LSTM layer in the core network with contextual
information to give the RL agent an image overview for subsequent observations. The
most helpful information is the optical flow extracted between the two frames since it
resumed the salient features required to predict the motion. We decided to inform the
dense optical flow extracted by the Farneback method and use CNN layers to determine
their importance, as shown in Figure 4] Initializing the RL agent with the dense optical
helped to determine the most valuable image regions for further exploration through the
subsequent glimpses. The optical flow provided information on whether the vehicle is
either in rotational or translational motion so that the integration of the observations can

occur appropriately. The Farneback method generated an image pyramid with increasing
resolutions, enabling tracking large object’s motion; we kept the pyramid levels as 10
with a window size of 40x40 pixels. The motion was tracked from the lowest-resolution
level and refined as the keypoints were propagated to the next level.

: . Locator * ' Regressor

[(tocator.fe_sta_1 | [locatorfe_mu_t |

: Context

. [Ttocatorfe sta 3 | [locatorfe mu3] [regressorfe 1t 2 | [regressorfe Ir 2]
. N std mean -

1. Core : N
o g, = o :
- coreldstm bt 1 [T~ Ly

+ [ocatorte s 2 | [[locatorfe_mu 2 | = [reeressorte i1 | [[regressorfe_ir 1]

context.conv_3

context.conv_4 [v
t.fe_xt * o

Figure 4. The RAM-VO architecture with contextual information.

However, the initialization must occur only for the last LSTM hidden space h?;
the regressor network must be changed to consume the first LSTM latent space h;. The
locator and baseliner networks still consume the h?. These alterations aim to prevent
the regressor from shortcutting the observations’ integration and learning directly from
the contextual information. The context network is then trained with gradients provided
by the baseliner network; thus, the goal is to maximize the expected reward. The entire
process consists of extracting the optical flow from the input image pair, resizing it to a de-
termined size by an average pool operation, and processing it through four convolutional
layers with four channels. Similar to the glimpse network, we did not employ pooling
operations between layers. The context network can also be seen as a primitive bottom-
up attentional system, where the salient features present on the scene are informed to the
agent a priori. Afterward, the agent captured more details guided by cognitive processes,
in this case, represented by the locator network; this process is called top-down attention.
In this sense, contextual information provided the second kind of attention to the RAM-
VO; and the LSTM latent space initialization provides a way to embed information for
the first RL state. This allowed the agent to have a scene overview of interesting regions
and determine the first glimpse location instead of randomly chosen.

4. Materials and Methods
4.1. Dataset

In this work, we used the KITTI [Geiger et al. 2013]] dataset for the final experiments,
composed of the first eleven (00-10) sequences that have ground-truth information.
Specifically, we used the grayscale images provided by the left camera, resized to
1200 x 360 pixels in resolution. To compare our results with other methods, we chose
sequences 0, 2, 4, 5, 6, 8, 9 for training, sequences 10 for validation, and sequences 3,
7 for testing. We preprocessed each image by equalizing the pixel intensity histogram in
small windows of 8 x 8 pixels with the Contrast Limited Adaptive Histogram Equalization
method; then, we normalized the preprocessed images with the z-score function.

4.2. Evaluation Metrics

To evaluate our results, we computed the method’s global consistency with the Absolute
Trajectory Error (ATE), given at instant ¢ by & = G, 'AH;, where G; is the ground-
truth pose, H; is the estimated trajectory pose, A is the best alignment transformation.
Also, we measured the trajectory’s local consistency with the Relative Pose Error (RPE),
defined at instant z by F; = gzig“}: , where k is a fixed time interval, which determines the
consistency accuracy. We cémpﬁtéd RPE by averaging all sub-sequences ranging from
100 to 800 meters in KITTI’s sequences.

4.3. Hardware and Hyperparameters

We built this work in Python 3 with Pytorch. The hardware used for training the models
was an Intel Core 17-10700KF @ 3.80GHz, Nvidia RTX 2060 with 6Gb, and Cuda v11.1.
The model configuration consisted of 3 image patches of 32 x 32 pixels, batch size of 128,
supervised learning rate of 1 x 10~%, and RL learning rate of 1 x 10~%; we employed the
Adam optimizer for both networks. We trained the models for 400 epochs without early
stopping or learning rate decay. The average training time was around 13 hours, and the
inference time is 35ms for a pair of frames.

5. Experimental Results

We conducted several experiments (Table (1)) to validate the number of observations on
building a internal state h; for visual odometry. Also, we altered the number of obser-
vations from 1 to 12 and also tested with random observations. Then, we replaced the
REINFORCE algorithm with PPO to estimate the impact of the policy on the generaliza-
tion; subsequently, we altered the internal state h; capacity from 1024 to 256 hidden units
to evaluate the impact on the drift error (Table [2).

5.1. The Impact of Observations

Experiments with 4, 8, and 12 observations have the locations determined by the learned
policy, and the model achieved the best generalization results with 4 and 8 glimpses; 12
glimpses have not provided better results. More observations demand more from the core
and locator networks since a single poor observation can harm the entire internal state

Table 1. The impact of the number of observation. t,,. represents the average
translational RMSE drift (%) on length of 100m to 800m. 1., is the average
rotational RMSE drift (°/100m) on length of 100m to 800m. ATE represents
the average absolute trajectory error.

Train set Test set
Configuration trpe Trpe ATE trpe Trpe ATE
1 glimpse at center 0.984 0.408 3.216 16.369 7.666 36.104
1 glimpse random 16.516 4.940 127.158 25969 7.939 42.221
4 glimpses 3.599 1.608 36.463 10.929 3.985 17.418
8 glimpses 3.021 1393 20311 10.888 4.206 19.806

8 glimpses random 5.227 2126 58.193 12.461 4.127 21.004
12 glimpses 3335 1.504 32517 13181 5771 24.762

Figure 5. The sequence of four observations on the first frame on sequence 2.

and delay, even more, the sparse reward. Considering the experiment with 8 observations,
the totality of input information is 5.7% of the total available. We conclude that the
agent is retrieving high informative regions for most observations, and the learned policy
indicates a preference for observing the left-center part of the image, as shown in Figure[3]
Single observations have not provided enough information for building effective models.
Observing the image’s center harmed the generalization by reducing the data diversity
necessary to learn complex behaviors. Further, a single random observation impeded even
the learning by capturing little and sparse information. Good predictions with random
observations require learning the general dynamics since the input space is ample and the
model’s capacity is limited.

5.2. The Impact of Capacity and PPO

Replacing REINFORCE algorithm with PPO and reducing the internal state h; capacity
from 1024 to 256 hidden units enabled us to know the minimum capacity required to de-
liver robust and lightweight models. Therefore, we made 8 observations and computed
the statistics for three distinct executions. PPO with 1024 hidden units provided the best
generalization, and decreasing the number of parameters strongly affects generalization
on average. Although PPO 1024 had the best performance, the difference in the results
may not justify a three-fold increase in parameters. PPO algorithm is susceptible to initial-
ization; hence, we selected the best models of three executions to predict the trajectories
(Figure[6)). PPO 256 has only 2.92 million parameters and provides results similar to PPO
1024 on the best execution. Additionally, we confirmed that the PPO provided a slightly
better generalization capacity than the REINFORCE.

Table 2. The impact of PPO and the internal state capacity.

Train set Test set
Config. Param. t,pc Trpe trpe Trpe
PPO 1024 16.54M 4.09+0.27 1.68+0.17 10.63+1.38 4.37+0.43
PPO 512 5.84M 707+243 2.734+£0.74 1549+4.06 7.084+1.87

PPO 256 2.92M 7.294+1.68 2.79+044 15.50+£5.18 6.68£2.00

5.3. Comparison with Literature

We compared our proposed model RAM-VO using PPO with traditional VO methods in
literature such as ORB-SLAM [Mur-Artal et al. 2015], DeepVO [Wang et al. 2017], and
ESP-VO [Wang et al. 2018], as shown in Table[3] All selected methods perform monocu-
lar visual odometry in the KITTI dataset. Except for the ORB-SLAM method, the others
are end-to-end learning methods. RAM-VO obtained competitive results using less input
information, around 5.7% of the total available. While RAM-VO uses top-down attention
to capture regions of interest, methods like ORB-SLAM need to analyze an entire image
to detect keypoints. DeepVO and ESP-VO are based on the FlowNet architecture and have

Figure 6. RAM-VO trajectories’ predictions for training (first row) and testing (sec-
ond row) sequences on the KITTI dataset using our best model.

more convolutional layers and channels than RAM-VO. Although DeepVO and ESP-VO
may present similar results on average, the RAM-VO with 256 hidden units in the core
network achieves comparable results with only 2.7 million parameters in total. Concur-
rent methods regularly pass 32 million parameters, especially when they are extensions
of architectures like AlexNet, and FlowNet.

Table 3. RAM-VO results compared to other methods on test sequences.

Data Seq. 03 Seq. 07 Seq. 10
Method % trpe I'rpe trpe I'rpe trpe T'rpe
ORB-SLAM - 21.07 1836 2453 3890 86.51 98.90
DeepVO 100 8.49 6.89 391 4.60 8.11 8.83
ESP-VO 100 6.72 6.46 3.52 5.02 9.77 10.20
RAM-VO 1024 5.68 5.72 3.08 9.17 5.63 13.85 3.24
RAM-VO 256 5.68 7.08 4.01 7.55 4.30 15.02 5.12

6. Conclusion

In this work, we incrementally created the RAM-VO architecture for end-to-end visual
odometry using monocular images. RAM-VO extends the RAM [Mnih et al. 2014] for
complex regression tasks while also defining an attentional glimpse sensor for high-
resolution input images. The observations are guided by reinforcement learning and
recurrently integrated for subsequent use. RAM-VO is the first architecture for visual
odometry that implemented reinforcement learning to the best of our knowledge. Exper-
imental results indicate that RAM-VO could regress 6-DoF poses in the KITTI dataset
with generalization and utilizing around 5.7% of the total input data. Also, we provided
alternative models with the optical flow for a bottom-up attentional system and PPO for
learning more beneficial policies.

Acknowledgment

The authors would like to thank the Brazilian National Council for Scientific and Tech-
nological Development (CNPq), grant 130834/2019-0, and Bradesco Bank for supporting
our research.

References

Correia, A. d. S. and Colombini, E. L. (2021). Attention, please! a survey of neural
attention models in deep learning. arXiv preprint arXiv:2103.16775.

Geiger, A., Lenz, P, Stiller, C., and Urtasun, R. (2013). Vision meets robotics: The KITTI
dataset. INT J ROBOT RES, 32(11):1231-1237.

Goodfellow, 1., Bengio, Y., and Courville, A. (2016). Deep learning. Adaptive computa-
tion and machine learning. The MIT Press, Cambridge, Massachusetts.

Konda, K. and Memisevic, R. (2015). Learning Visual Odometry with a Convolutional
Network:. In Proceedings of the 10th ICCV Theory and Applications, pages 486—490,
Berlin, Germany. SCITEPRESS - Science and and Technology Publications.

Mnih, V., Heess, N., Graves, A., and Kavukcuoglu, K. (2014). Recurrent models of visual
attention. arXiv preprint arXiv:1406.6247.

Muller, P. and Savakis, A. (2017). Flowdometry: An Optical Flow and Deep Learning
Based Approach to Visual Odometry. In 2017 IEEE WACV, pages 624—631, Santa
Rosa, CA, USA. IEEE.

Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015). Orb-slam: a versatile and
accurate monocular slam system. IEEE transactions on robotics, 31(5):1147-1163.

Peretroukhin, V. and Kelly, J. (2018). DPC-Net: Deep Pose Correction for Visual Local-
ization. IEEE Robotics and Automation Letters, 3(3):2424-2431.

Scaramuzza, D. and Fraundorfer, F. (2011). Visual Odometry [Tutorial]. IEEE Robotics
& Automation Magazine, 18(4):80-92.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Tang, J., Folkesson, J., and Jensfelt, P. (2018). Geometric Correspondence Network for
Camera Motion Estimation. IEEE Robotics and Automation Letters, 3(2):1010-1017.

Wang, S., Clark, R., Wen, H., and Trigoni, N. (2017). DeepVO: Towards End-to-End
Visual Odometry with Deep Recurrent Convolutional Neural Networks. 2017 IEEE
ICRA, pages 2043-2050.

Wang, S., Clark, R., Wen, H., and Trigoni, N. (2018). End-to-end, sequence-to-sequence
probabilistic visual odometry through deep neural networks. INT J ROBOT RES, 37(4-
5):513-542.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229-256.

Yin, X., Wang, X., Du, X., and Chen, Q. (2017). Scale Recovery for Monocular Visual
Odometry Using Depth Estimated with Deep Convolutional Neural Fields. In 2017
IEEE ICCV, pages 5871-5879, Venice. IEEE.

Zhao, C., Sun, L., Purkait, P., Duckett, T., and Stolkin, R. (2018). Learning monocular
visual odometry with dense 3D mapping from dense 3D flow. arXiv:1803.02286 [cs].
arXiv: 1803.02286.

	Introduction
	Contributions

	Related Work
	The Recurrent Attention Model (RAM)

	The RAM-VO Architecture
	RAM-R: Simple Regression on Pixel Dataset
	RAM-RC: Complex Regression on City Dataset
	RAM-VO: Visual Odometry Regression
	Learning a Policy with Proximal Policy Optimization (PPO)
	Providing Optical Flow as Contextual Information

	Materials and Methods
	Dataset
	Evaluation Metrics
	Hardware and Hyperparameters

	Experimental Results
	The Impact of Observations
	The Impact of Capacity and PPO
	Comparison with Literature

	Conclusion

