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Abstract. For an Unmanned Aerial Vehicle to become autonomous, it must per-
form actions without human interference. Regardless of its application area,
path planning is required to carry out a mission. Nowadays, several applica-
tions require the UAV to operate in an unknown, 3D, and unstructured environ-
ment. Another essential point is considering the movement restrictions in the
execution of the movements, where achieving smooth curves reduces the num-
ber of stops on 90 degrees curves. One observable aspect among the existing
and most used techniques is ”which would be the best technique to work in each
of these environments”. This work aims to answer this question with a deeper
analysis of all path planning categories: classic, metaheuristic, and machine
learning. We develop our planner to analyze these techniques considering com-
pleteness, distance, time, CPU usage, memory usage, collision prevention, and
robustness. This planner is modular, so it is possible to add new techniques and
scenarios to be studied. We also performed tests in simulated and real environ-
ments.

1. Introduction

The use of UAVs (Unmanned Aerial Vehicles) has been growing exponentially in the
last years [Mohsan et al. 2022]. Nowadays, it is already possible to perform autonomous
flights to complete various missions [Nguyen et al. 2021, She and Ouyang 2021]. Path
planning is essential for an autonomous UAV to complete these missions as it aims to
find the best trajectory for the robot to move between the starting point and the objec-
tive [Li et al. 2019].

The main challenge for autonomous UAVs is to define the best path planning tech-
nique and use it together with the control, localization, and mapping modules to make the
UAV move in unstructured three-dimensional, dynamic, and unstructured environments
[Sankararaman and Goebel 2018].

There are several path planning techniques and each of them has different results
in different environments [Rocha and Vivaldini 2022]. The path planning techniques to
be evaluated fall into three main categories: classical techniques (exact and approximate),
metaheuristic, and machine learning.

The exact classical techniques are based on mathematical models and have a high
computational cost [Patle et al. 2019]. The main examples of this technique are: A-Star
(A*) [Perez-Grau et al. ] and Artificial Potential Field (APF) [Li 2019].



On the other hand, classical approximate techniques perform free space searches
using free space sampling techniques [Noreen et al. 2019], requiring less computational
cost than classical techniques. The main algorithms of this approach are: Rapid Exploring
Random Tree (RRT), Rapid Exploring Random Tree Connect (RRT-C) [Zhang et al. 2018]
and Probabilistic Roadmap (PRM) [Xu et al. 2021].

Meta-heuristic techniques can deal with uncertainty, as there is no need to indicate
the steps to the result explicitly. Therefore, metaheuristic techniques should be understood
as generic and adaptable methods and procedures, for which other known techniques
would be ineffective [Dokeroglu et al. 2019]. The most efficient metaheuristic techniques
for path planning are: Particle Swarm Optimization (PSO), Gray Wolf Optimization
(GWO), and Glowworm Swarm Optimization (GSO) [Rocha and Vivaldini 2020].

It is also possible to use machine learning techniques, with reinforcement learning
being the most used category for path planning. Reinforcement learning is the type of
learning trained to obtain a sequence of decisions. The agent learns to achieve a goal to
complete uncertain and complex tasks. The training is a trial and error system to solve
the problem based on rewards and penalties for the actions. The prime example of a
reinforcement learning algorithm is Q-Learning [Qu et al. 2020].

One of the contributions of this work is the evaluation of these path planning
categories, observing their main characteristics, advantages, and disadvantages through
tests in simulated and real environments.

Another contribution is the proposed architecture for the planner, which was de-
veloped based on modules. Therefore, the UAV functionalities can be easily changed
by modifying or adding new modules. The proposed architecture contains modules for
control, localization, mapping, static and dynamic local planner, and path planner. Each
one of them has several algorithms implemented. This way, the evaluation can be made
among different techniques and use the best one for each situation.

In this paper, we describe as following in Section 2 the proposed planner. Section 3
presents simulations and evaluations of path planning. And we conclude our work and
propose some directions for future work in Section 4.

2. Proposed Planner
In this Section, the planner’s architecture is presented, showing how it works to move
in unknown environments and locate itself in the environment, avoid dynamic obsta-
cles, how it smoothes trajectories, and the role of the decision maker. Also, to ex-
plain how the scheduler works in a simulated (Python and Gazebo) and real environ-
ment. All simulations were made based on the Software-in-the-Loop (SIL) philosophy
with the help of the Robot Operating System (ROS) framework and Muti Robot Systems
(MRS) [Báča et al. 2020]. The modular architecture can be seen in Figure 1.

2.1. UAV and Control
The UAV selected for the simulated environment was the F450, implemented in the MRS
system. From this, it is possible to validate the path planning algorithm in a simulated
environment, facilitating tests in a real environment. For flights in a real environment,
the commercial drone Parrot Bebop 2 was used, which is also a very popular UAV on the
market.



Figure 1. Proposed Planner Architecture

In the F450, the control used is the Model Predictive Control (MPC).This control
is implemented in the MRS simulator, a set of control methods that encompasses the
concept of prediction and obtaining the control signal through the minimization of a given
objective function and considers future error and constraints on process variables.

The drone dev platform was used to maintain stability and control the Parrot Be-
bop 2 during the flight and ensure that the UAV obeys its restrictions, adopting the R-LQR
control (Robust Linear Quadratic Regulator) proposed by [Benevides et al. 2019]. This
control stabilizes and executes the proposed trajectory, even in windy environments.

2.2. Mapping

Velodyne is used to identify unknown environments in the simulations carried out in
Gazebo to obtain more accurate data from the environment and better validate the path
planning algorithm. Moreover, for python simulations, the sensor is simulated.

The Parrot Bebop 2 was used in a real environment, but it cannot load the Velodyne
and maintain a stable flight, due to Velodyne’s weight. Therefore, mapping was performed
using the Parrot Bebop 2 monocular camera with the OrbSlam2emitting a point cloud.

A risk zone was implemented around the obstacles to increase the reliability of
these mappings. The UAV can enter the risk zone only as a last resort. It is developed
to prevent the UAV from colliding with obstacles due to some risk factors. According to
[Sankararaman and Goebel 2018], the risk factors can be uncertainties and performance
constraints. The uncertainties are weather, no GPS signal, degraded sensors, among oth-
ers. And, the performance constraints are battery management, UAV system failures,
stability, dynamic obstacles, and dynamic and aerodynamic constraints.

2.3. Localization

In Python simulations, the location is done using the current position of the matrix point.
This position is always correct as if using ground truth.

In the Gazebo simulations, the Visual Inertial Odometry (VIO) package [Forster et al. 2016],
implemented by the MRS system, together with the range finder sensor was used. Fur-
thermore, in a real environment, OrbSlam 2,was used together with the UAV’s odometry
to define the current position of the UAV.



2.4. Dynamic Obstacle

Dynamic obstacle avoidance differ from static obstacle avoidance as it needs a faster
response. The Pedestrian Avoidance Method (PAM)algorithm was used. This algorithm
starts by tracking the obstacle and identifying which direction has more space to contour.
Then, when defining the direction, the trajectory nodes in the space where the obstacle
moves are smooth.

2.5. Smoothness

The ideal for the trajectories to be followed by the UAV is that they make as few turns as
possible, minimizing the Jerk 1 and keeping the constant torque [Goel et al. 2018]. The
curves need to be as smooth as possible, if necessary, obeying the restrictions of the UAV
[Pandey et al. 2018]. That is why all path planning algorithms are smoothed before being
passed to the control of the UAV.

For this, splines are applied along the generated trajectory to obtain a trajectory
that obeys the UAV constraints. Mathematically, B-Spline curves can be drawn as a series
of line segments joining the control points [McKinley and Levine 1998].

2.6. Path Planning Improvements

All used algorithms were optimized by adjusting the hyperparameters as shown in a previ-
ous work [Rocha and Vivaldini 2022] and using them correctly with the other UAV mod-
ules, except for APF, which was implemented to improve the algorithm that differs from
the conceptual model.

Three improvements were implemented in APF. The first improvement aims to
avoid the local minimum and make the trajectory smoother, so the repulsion field has been
changed to use the same as lifen2016path. The second improvement aims to increase the
completeness of the algorithm, especially for complex environments. This improvement
is based on a bidirectional APF as presented by [McIntyre et al. 2016]. However, the
initial and goal node exchange is made only when the algorithm enters a local minimum,
unlike the original algorithm, which is done at each iteration.

The third improvement aims for environments with a short distance between the
source and objective node, but there is a big obstacle between them. This improvement
was made based on Line of Sight (LoS). The algorithm searches from the target node
to the source node. Initially, an auxiliary node is created to receive the value of the
objective node. Then, all nodes in LoS from the auxiliary node will be added to a list.
Finally, the node with the highest value is added to the route and will be the new auxiliary
node. These steps are repeated until the auxiliary node is the source node, meaning a path
has been found between the source and target node. This algorithm was demonstrated
in [Rocha et al. 2021].

2.7. Decision Maker

Initially, the decision maker updates the current UAV position (obtained by the methods
shown in Section 2.3) and the map according to the position of surrounding obstacles
(obtained by the method explained in Section 2.2).

1Ratio of change of acceleration



In this way, the UAV will partially have the initial node (its position), the objective
node, and the scenario in which it will act. From this information, it is possible to apply
the path planning techniques, which return a smoothed trajectory (as shown in Section 2.5)
for the UAV to follow.

This trajectory is formed by the coordinates of the nodes in the created map. Be-
fore sending the coordinates to the controller, the current position and the obstacle map are
updated. Besides that, it is checked if there are collisions between the UAV and obstacles,
and then checking for collisions between the UAV and news discovered static obstacles
when the map was updated. If there is a collision with a dynamic obstacle, the replanning
is performed according to the method explained in Section 2.4. If there is a collision with
a static obstacle, the trajectory is recalculated using the path planning algorithms. After
this process, the UAV can send new coordinates to the controller.

3. Simulations and Discussion
This Section presents the results, divided into three steps. In the first step, tests were
carried out to evaluate the planner’s behavior in Python, that is, with the perfect control
and localization system. In this step, the analyzed techniques were A*, APF, PRM, RRT,
RRT-C, PSO, GWO, GSO, and Q-Learning.

In the second step, a scenario was simulated in the Gazebo to test the algorithms
using ROS communication, as in the real world. Finally, this scenario was tested in a real
environment in the third step to validate the proposed technique. In both environments,
the analyzed techniques were A*, RRT-C, PSO, and Q-Learning, because they were the
techniques with the best results from each category in the first step. The path planner was
validated from these tests and analyzes, proving capable of moving around in unknown
and unstructured environments.

All steps were performed on a Samsung Odyssey Intel Core i7 7700HQ notebook
with 8GB RAM and NVidia GTX 1050 4GB graphics card. The language adopted was
Python 3.8.

3.1. First Step
The simulations were carried out in 5 different unknown environments to analyze each
technique’s advantage and disadvantage. The environments analyzed were small and
simple, small and unstructured, large and simple, large and unstructured - 1, large and
unstructured - 2. The small environment has 50x50 meters, and the large environment has
100x100 meters.

In the simulations in a small and simple environment, the RRT-C technique ob-
tained better results concerning time. However, the APF obtained the shortest path length.
Considering the trajectories performed by the techniques, we can see that both the APF
and the RRT-C returned formats of similar trajectories and respect the dynamic and aero-
dynamic restrictions of the UAV due to the few curves on the way and the ones that exist
are pretty smooth. The trajectory generated by the RL is a good option for the UAV to
follow as it has few turns, minimizing the Jerk, allowing the UAV to increase speed and
reach its objective faster.

The simulations in a small and unstructured environment aim to analyze the con-
sequence of an unstructured scenario for each technique. In this environment, the RRT-C



technique obtained better results about time, being less than 0.1 seconds faster than the
RRT. However, the APF obtained the shortest trajectory length, approximately 0.2 sec-
onds slower. Analyzing the trajectories performed by the techniques, we can see that the
RRT-C did not provide such a smooth curve, and the APF came next to the obstacle. So,
considering shorter time, shorter trajectory length, and smoother path to be followed, A*
presented better results. On the other hand, the trajectory generated by the GSO and the
RL presented a path with fewer curves and a good length, allowing the UAV to increase
speed and reach its objective faster.

Simulations in large and simple environments aim to understand how the com-
plexity between techniques is affected by the size of the environment. The APF had the
best shortest time in this environment, but the RRT-C had the best worst and average time.
Checking both techniques’ standard deviation and time variance, we noticed that the RRT-
C has more homogeneous data, making the technique more reliable. The technique that
obtained the shortest trajectory was the A*, with the average time better than the other
techniques.

The first large and unstructured environment simulations are intended to under-
stand the impact of the number of obstacles on the techniques. In this environment, the
RRT had the best shortest time, the APF had the worst time, and the A* had the best
average time. Checking the techniques’ standard deviation and time variance, we noticed
that the A* has more homogeneous data, making the technique more reliable. The RRT
presented the shortest path, only 0.17 meters shorter than the trajectory provided by the
A*.

The second large and unstructured environment simulations were used to identify
the main limitations of each technique. In this environment, the RRT-C had the short-
est and most prolonged time, and the PRM had the best average time. Checking both
techniques’ standard deviation and time variance, we noticed that the PRM has more ho-
mogeneous data, making the technique more reliable. The A* presented the shortest path.
However, the time to obtain it was far above an acceptable time. Analyzing the trajec-
tories performed by the algorithms, we can see that the A*, APF, and PRM presented
smoothed paths with few curves and were very similar to each other.

The RRT presented a trajectory with an acceptable size in good time. However,
its worst time, as well as the variance and standard deviation, are too high, not being a
reliable technique for real-time use. The PRM proved to be the best technique for this
environment because despite having a trajectory of 10 meters than the smaller one, its
response time is faster, and it has homogeneous data, making it more reliable.

After this analysis, we can observe how the environment affects the performance
of the algorithms. All techniques are affected by the environment complexity, but the
ones that suffer the most change are A* and metaheuristic techniques. The complexity
of the APF increased with the number of obstacles. This fact is notable by verifying the
results of the austere environments. The unstructured environment had a faster response
time than the simple environment since there were fewer obstacles between the source
and objective node.

The PRM, RRT, PSO, GWO, GSO, and RL had more impact related to the di-
mension of the environment. Time grows exponentially with the size of the environment



and increases more and more with its complexity. The RRT-C is influenced by the num-
ber of obstacles, environment dimension, and complexity. The algorithm response time
increased with each environment it was tested. Despite the technique being influenced
by all factors, it was still the technique that presented one of the lowest response times.
Despite this, it is worth mentioning that the PRM was the technique that presented the
lowest variance and standard deviation, showing to have more stable results for real-time
flights, which require some confidence.

Dynamic obstacle avoidance was performed as presented in Section 2.4. Tests
were performed with obstacles moving linearly, coming from all directions. In all the
movements in which the dynamic obstacles were performed, the algorithm could generate
a smoothed trajectory to avoid the collision. In addition, it could detect when an obstacle
had already passed or was not on its way to the objective node. An example of this
trajectories can be seen in Figure 2.

Figure 2. Avoiding Dynamic Obstacle with Obstacles Moving from Top to Bottom

3.2. Second Step

The scenarios chosen to conduct the tests in a simulated environment were indoor 20x10
meters. This scenario was chosen because it is possible to validate the algorithm con-
sidering a 3D, unstructured, and unknown environment. Furthermore, as it is a relatively
small environment, it will be possible to validate how much security the planner can offer
concerning the distance to obstacles.

In this step, two scenarios were used. The first is a simple environment in which
it is only possible to reach the objective if the UAV avoids static obstacles by going up
and down, aiming to understand the main difficulties of the algorithms when interacting
with 3D environments. The second is an unstructured 3D environment, aiming to obtain
meaningful data about the path planner.

The simulations were done in Gazebo to emulate a mission similar to a real envi-
ronment. In these simulations, the path planning algorithms that obtained the best results
in the first stage (A*, RRT-C, PSO, RL), the VIO method for localization, Velodyne to
mapping, and the MPC control were considered. Each algorithm ran one time on the
Gazebo.

The reinforcement learning technique showed the lowest processing average, de-
spite having one of the highest standard deviations, followed by RRT-C. On the other
hand, A* obtained the highest computational cost, as this technique analyzes the entire



environment before returning an answer, being more expensive than the others. However,
the memory usage was similar for all algorithms and their standard deviation.

The RRT-C presented the lowest average time to generate the trajectory and the
second lowest average between the lengths of the trajectories, despite indicating the high-
est standard deviation for the trajectory. The PSO presented the lowest average trajectory
length. The A* obtained results close to the RRT-C, presenting a minor standard deviation
in both metrics, showing to be more reliable for flights in real environments.

The main algorithm difference between Python and Gazebo was the computational
cost and time to return a trajectory. In Python, PSO was the most extended algorithm,
followed by RL. In the Gazebo, the situation is reversed, showing that the PSO takes
longer to return a trajectory considering the environmental obstacle amount. On the other
hand, the RL maintains the same average time regardless of the number of obstacles.

In Python, the computational cost of A* was higher than the others. However, in
Gazebo, it was the lowest, depending on the number of environmental obstacles. Further-
more, the computational cost of all algorithms has decreased, except for the RL, showing
that the processing required to execute it is independent of the scenario, as was the case
with memory usage, which decreased in all algorithms except RL.

In the unstructured environment, the completeness of all algorithms was 100%,
except for PSO, which was 16%. As the PSO generates an initial trajectory and opti-
mizes it until collision-free, it is possible to obtain high completeness and a low collision
avoidance rate. Due to these reasons, it can be concluded that the PSO is ineffective in
performing flights in real missions because the probability of generating a trajectory with
a collision is small, even considering the replanning.

PSO had the lowest processing average, despite having one of the highest standard
deviations, followed by RRT-C. On the other hand, A* had the highest computational cost,
as shown by the analysis performed in a complex environment.

The RRT-C presented the lowest mean time to generate the trajectory and standard
deviation. Reinforcement learning and A* had similar path length averages, second only
to PSO, with A* having the lowest standard deviation of all the techniques since its path
is deterministic.

After analyzing these algorithms in environments with different complexities, it
was possible to notice that A* returns the most reliable trajectories in good time. However,
the computational cost is higher than the other algorithms. On the other hand, RRT-C has
a small computational cost, returning good trajectories in the shortest time.

PSO and RL take a long time to return a trajectory, so they could not be used for
real-time flight. However, it can be used in missions where planning is done before the
flight and adopts faster algorithms for replanning.

The PSO returned the lowest average path length in all environments and had a
low computational cost. So it is a great technique to calculate the initial trajectory and
then use A* or RRT-C to replan.

In the unstructured environment, A* was the algorithm that planned the trajectory
in the shortest time and obtained the lowest standard deviation. In addition, A* also



returned to the lowest trajectory, followed by RRT-C.

The trajectory generates time of A* and RRT-C was similar to that found in
Python, probably because it is considering replanning. That is, the number of obsta-
cles in the environment is similar. Nevertheless, the PSO time decreased, showing that
the time for the PSO to generate a trajectory is exponentially dependent on the number of
obstacles in the environment.

The computational cost and memory usage of all algorithms have also drastically
decreased. The computational cost exponentially depends on the number of environmen-
tal obstacles, except for the RL, which maintained the exact computational cost regardless
of the scenario.

3.3. Third Step

The third step carries out tests in a real environment to validate the robustness of the
planner and evaluate how a real UAV moves with the developed algorithm. For this, the
metrics analyzed were: trajectory length (m) and flight time (s) in different risk zones.
The environment chosen for this step is the same as used in Step 2.

The flights were carried out in the Living Area of the Computer Department (DC)
of UFSCar, with an area of 5x2.5 m. The environment in the simulator has 20x10 m.
Therefore, the trajectory scale was reduced for the tests carried out in this environment.

With the Parrot Bebop 2 camera, it was impossible to map the environment be-
cause the point cloud returned by the monocular camera returns more obstacles than there
are actually in the environment or does not detect some essential obstacles for the map-
ping. Moreover, even with the PCL statistical filter, it was impossible to filter to remove
noise. For this reason, the flights in a real environment were made only to validate the
robustness of the planner, proving that it is valid to carry out flights in a real environment.

As the environment mapping cannot be done in real-time, we used the mapping
carried out previously, and the data on obstacles was passed to the planner. The controller
used was the R-LQR. The localization was done with OrbSlam2, and several features
were needed in the environment to help the algorithm define the current coordinate.

The trajectories were performed in a real environment using three different sizes
of risk zones, without risk zone, 1 meter, and 2 meters. Each flight was performed three
times, and the performance was similar on all flights.

The trajectories performed by the planner obtained 27.17, 28.13, and 28.66 meters,
respectively. Next, the trajectories performed by the planner obtained 28.21, 29.84, and
30.91 meters, respectively. Finally, the trajectories performed by the planner obtained
54.77, 65.06, and 77.37 meters, respectively—all considering flights without a risk zone,
with 1 and 2 meters.

The variation of the simulator trajectory and the trajectory returned by the planner
were 1.04, 1.71, and 2.25 meters, considering flights without risk zone, with 1 and 2
meters, respectively. With this, we can see that the error between the trajectories increases
with the length of the trajectory.

The variation of the trajectory performed in a real environment and the trajectory
returned by the planner were 27.6, 36.93, and 48.71 meters, considering flights without



risk zone, with 1 and 2 meters, respectively. The error also increased with the path length
but in a much higher proportion than with the simulated environment. Although the vari-
ation between the trajectories was considerable, there was no collision during the course.

This significant variation is because the proposed planner returns discrete trajec-
tories, and the R-LQR control considers each point of these as if it were a complete
trajectory. That is why the UAV moves at each point. The beginning and the end have a
more significant error since the UAV stops at these points and ends up going a little for-
ward and returning to the requested point. Consequently, trajectories in real environments
are longer.

The variation between the trajectories executed in the simulator and the planner
trajectories is approximately 5%, considering the trajectories executed in a real environ-
ment are almost 50%. There was no collision in any trajectory despite the high variation,
so it can be said that the robustness of the planner is good.

4. Conclusion
Several tests were carried out in the most different scenarios, which allowed us to con-
clude that each Path Planning technique is better implemented in specific missions than
in others. This work analyzed each of these techniques and verified which would be the
best environment to implement them. Also, it presents how the complexity of each one is
increased according to the environment. Furthermore, the most common format is evident
that each technique usually returns to the trajectory.

Meta-heuristic techniques usually return a trajectory with a sizeable open curve,
facilitating the trajectory of the UAV. Machine learning techniques also tend to return tra-
jectories with more straight lines, allowing the UAV to increase speed during the course.
Classic techniques return straight trajectories, but they always follow through the middle
of the scenario. Consequently, these techniques need to dodge obstacles more often, caus-
ing several small, sharp, but smoothed curves to reach the goal. Reinforcement learning
techniques, on the other hand, reach their goal with the fewest possible curves, with the
rest of the trajectory being straight.

The response time of A* was found to be more influenced by the complexity of the
environment. On the other hand, the PRM, RRT, PSO, GWO, GSO, and RL techniques
suffered more impact on the dimension of the environment. And the APF with the number
of obstacles present in each environment. The RRT-C was the only one that underwent
significant changes with complexity, several obstacles, and environment size. However,
even so, one of the algorithms returned the trajectory in the shortest time in all cases.

It can be seen that the A* technique is the best to be used in entirely unknown
environments. Moreover, machine learning techniques, meta-heuristics, or APF, if the
scenario has many obstacles, are the best option if the mission needs the UAV increases
the velocity. For example, if it is a mission to be done in forests or mountains, it is better
to use the classic approximate techniques, as they can better explore the environment.
On the other hand, if it is a mission in an urban environment, A* or PRM are the most
indicated techniques due to their high reliability, variance, standard deviation, and speed
in dealing with uncertainties.

The analysis of the algorithms in a 3D environment showed that the PSO is the



best algorithm to carry out the first planning since its computational cost is lower when
fewer obstacles are considered. Furthermore, even though it is one of the algorithms that
returned in the longest time, as it is the first planning, it will not interfere with a real-time
flight. In addition, the PSO returned the shortest and smoothest trajectories. However, due
to its low completeness, it is better to use RL (priority security) or A* (prioritize speed) if
you know that the environment is very complex.

As a replanning algorithm, A* is a good choice, as it returned the trajectory in a
shorter time in the simulations performed in the Gazebo. In addition, all of its plans have
a low standard deviation in time and distance, demonstrating reliability.

Finally, the flights were performed in a real environment to validate the robustness
of the planner. Flights were made with three different risk zones, each performed three
times, confirming the planner’s reliability in obtaining the same results, regardless of
flight time.

For more information, the code is available in github 2 with demonstration videos.
Besides, this planner has a software registration with code BR 51 2022 000783 5, entitled
”Plannie”.
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