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Abstract. This work addresses the problem of exploring confined environments

autonomously using terrestrial mobile robots. We propose a methodology for path

planning in rough three-dimensional terrains and an exploration strategy that

uses the map’s navigable areas, the related navigation cost, and the information

expected from a frontier to select the next promising exploration sector. The safe

path generation algorithm models the environment as a graph and uses a linear

combination of weights applied to multiple traversability metrics of the terrain.

The exploration phase uses the expected volumetric information of frontiers; this

way, the exploration areas are selected according to their expected utility and

visitation cost. We also propose an online planning phase using the raw point

cloud to avoid obstacles. The online phase is faster to compute and uses the

MI-RRT algorithm, an RRT-based planner biased towards the most informative

frontier, capable of simultaneously planning and selecting a target frontier.
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1. Introduction

Confined areas are common in many industries: routine inspections, exploration, and

surveillance are tasks that could benefit from using autonomous mobile robots. However,

despite the advances in the field, there are still challenges to overcome for robot operation

in those situations. Some of the principal challenges ground robots face in subterranean

or enclosed scenarios lie in the lack of external or global localization, communication

interference, and complex and rugged terrain topography (Figure 1). These particular char-

acteristics force ground autonomous exploring devices to use terrain-aware path planning

methods that could generate safer paths and minimize risks during robot locomotion. These

hard challenges are gaining attention from the robotic academy and industry: even the

latest DARPA (SubT) Challenge (2021), a highly regarded robotic competition, focused in

underground environments [Allen 2019].

Confined areas are not only challenging for robots, but they also present hazardous

situations for humans, such as gases, risk of entanglement, among others, so using au-

tonomous robots instead of human personnel improves operational safety. For complex

https://h3ct0r.github.io/phd
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Figure 1. Examples of confined subterranean spaces: caves (a) and industrial
tunnel systems (b-c), from the DARPA Subterranean Challenge.

scenarios, such as subterranean caves, traditional 2D navigation techniques cannot capture

enough details of the environment to be successful for planning and exploration. Thereof,

we present a complete pipeline for autonomous three-dimensional exploration tailored

for subterranean confined spaces and environments alike. This work tackles the three-

dimensional exploration problem using an information-theoretic approach that considers

terrain traversability and expected mutual information gain as metrics for frontier selection.

Unlike traditional techniques, we use multiple 3D map representations such as octrees,

meshes, and point clouds to extract valuable data from the terrain to estimate safer, and

less bumpy navigation paths; hence, the paths are generated by a weighted deterministic or

probabilistic graph search algorithm combining multiple terrain metrics. In this sense, the

proposed terrain-aware exploration algorithms consider if a frontier is reachable and the

safest way to reach it. The frontier’s information gain is estimated over the reconstructed

scenario by measuring the expected information sensed by the robot. Also, unlike similar

works, our proposed pipeline can successfully perform exploration missions with a limited

sensorial kit of only one 3D LiDAR sensor, an IMU, and wheel encoders.

1.1. Contributions

The main contributions from this work are presented below, grouped according to the

different challenges related to the problem.

1. Path planning in rugged spaces:
± We proposed a practical method for terrain-aware 3D navigation for terrestrial

robots in confined and rugged spaces. In our proposal, the 3D point cloud generated

by an online SLAM method is reconstructed into a mesh and modeled as a graph

with terrain-aware edge weights. The optimal path uses a combination of metrics,

optimized by a graph search algorithm.
2. Exploration in confined and subterranean spaces:
± Static environment: we proposed a new method for autonomous exploration that

leverages the previous navigation scheme to generate efficient traversable paths that

consider static obstacles and narrow passages. We used the 3D sensor parameters

to project the expected best view of a frontier and estimate all reachable frontiers’

Information Gain. The next best frontier selected for visitation uses a tradeoff

between the navigation cost and the estimated frontier information gain.

± Dynamic environment: we present a methodology for autonomous 3D exploration

using an efficient probabilistic framework capable of online obstacle avoidance.

The method uses a biased RRT algorithm for global planning (MI-RRT) and a

traditional RRT for local planning. Both sampling-based algorithms are faster

by working directly with the raw point cloud. Furthermore, MI-RRT, uses the

expected information gain of the frontiers as biases for expanding the RRT tree,

thus reducing the time spent in an exploration cycle by performing the frontier

selection and path planning at the same step.



The direct contributions of this work were published in the principal conferences

in the area [AzpÂurua et al. 2021c, AzpÂurua et al. 2021b, AzpÂurua et al. 2021a]. We also

generated a comprehensive survey of the state-of-the-art in the autonomous exploration

of confined spaces that is currently in revision [AzpÂurua et al. 2022], and selected to

participate in the RSS Pioneers workshop [AzpÂurua et al. 2021a].

2. Navigation in rugged and confined spaces

Natural caves commonly present rough terrain, which is challenging for path planning.

Complex landscapes require a complete three-dimensional map for planning a safe and

efficient robotic locomotion. In this sense, three-dimensional meshes are adequate for

this task since they can represent any 3D shape, generating highly descriptive environ-

ment models. Unlike 3D point clouds, meshes have the face area, position, and normal

information, which help terrestrial robot mobility. Other representations such as eleva-

tion maps have difficulties representing some cave structures, e.g., arcs, narrow tunnels,

or terrain overhangs. In that regard, we extend the path planning pipeline presented in

[Santos et al. 2018] and [Azpurua et al. 2019] by integrating an automatic mesh genera-

tion process inside the planner, including a pre-processing step for filtering non-reachable

regions and a fast method to compute the interaction of the robot with the ground. In

contrast to our previous works in path planning, this pipeline is fast enough to be executed

online at the exploration and mapping phases directly on the robot’s onboard computer.

The proposal is also fully integrated with a low-level control algorithm based on Vector

Fields. Figure 2 shows the proposed path planning pipeline.

For the LiDAR-SLAM, we use the Lightweight and Ground-Optimized

Lidar Odometry And Mapping (LeGO-LOAM) methodology proposed by

[Shan and Englot 2018], which is a light-weight version of the LOAM technique,

optimized for land vehicles since it assumes there is always a ground plane in the scan as

captured via a multi-line LiDAR sensor. This method was validated for indoor, closed

spaces and underground caves, thus presenting itself as a practical mapping method for

confined spaces.
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Figure 2. General path planning and navigation workflow.

2.1. Mesh Reconstruction

Mesh objects are generally a well-behaved set of joined faces without empty spaces

between vertexes, in contrast to traditional point clouds. Therefore, in this work, we need

to convert a point cloud into a coherent mesh object to estimate terrain-aware paths. Mesh

reconstruction is generally an error-prone process that needs considerable parameter tuning



and consumes a significant amount of CPU resources. Automatic reconstruction of cave-

like environments is a particular challenge for reconstruction algorithms since the algorithm

must preserve holes and other delicate components of the environment to generate a faithful

three-dimensional mesh model. Noise and misalignments are common in point clouds

generated by mobile robots; therefore, a reconstruction method must tolerate these types

of errors. In this work we adapted the Surface Recon1 mesh reconstruction algorithm

proposed by Potje et al., which provides an intuitive set of parameters available for non-

expert users to adjust and, in most cases, works out-of-the-box. These characteristics

made Surface Recon an adequate proposal for an online and automated mesh generation

pipeline. The adapted algorithm has three main steps: (i) Normal estimation, (ii) Surface

reconstruction, and (iii) hole filling. The color embedding methods from the original

algorithm were removed from the pipeline to speed up the process since we are dealing

with LiDAR data without any texture attached.

At the final steps, the holes are filled in the trimmed mesh using the technique

presented by [Liepa 2003], with a threshold based on the average point distance to prevent

cave entrances and other passages from being filled. The sequential process of mesh

generation is depicted in Figure 3.

Figure 3. Example process for converting a raw point cloud of the environment
into a mesh: (left) input point cloud, and (right) final mesh.

2.2. Path planning

Estimating reachable and non-reachable regions is particularly crucial for ground robots

performing exploration tasks autonomously in uneven terrains. To generate a traversability

map, we use the reconstructed mesh of the environment M in order to estimate slopes. The

slopes are estimated by extracting the z normal vector (n⃗z) for every face of the mesh.

The mesh has a collection of faces F, and it is filtered considering the maximum

slope angle traversable by the robot (θmax). We generate a graph G = (V,E), where the

vertices V are the centroids of the mesh faces, and the edges E connect neighboring faces.

The remaining unconnected traversable stages (such as stairs or similar structures) can be

connected via a bumpiness threshold, calculated from a 3D sphere with a fixed radius from

the closest vertices between the sub-graphs using a KD-tree search. Finally, we inflate

borders and obstacles on G to prevent paths from being too close to dangerous areas. The

complete process is summarized in Algorithm 1.

2.3. Path cost estimation

The paths to reach the frontiers are determined by using the well-known Dijkstra shortest

path algorithm over the traversability graph. We define a path p =
{

n1, ..., ngoal

}

as an

ordered subset of neighboring nodes from G and p̄ = p\n1, where n1 is the robot current

pose q and ngoal is the location of a frontier f ∈ F . We use a metric that performs a

1www.github.com/verlab/mesh-vr-reconstruction-and-view

https://github.com/verlab/mesh-vr-reconstruction-and-view


Algorithm 1: Traversability graph estimation

M← generateMesh(M)
for i← 1 to |F| do

if n⃗z

i
< θmax then

M̂←M \ {Fi} ▷ Remove face

G ← graphFromFaceCentroids(M̂)
G ← KDTreeTraversablePlatformConnect(G)
G ← removeNonConnectedComponents(G)
G ← inflateBorders(G)
return G

linear combination of the normalized Euclidean distance, terrain traversability, and energy

consumption, as proposed in [AzpÂurua et al. 2021c]. The final path cost is given by:

C(τ) =
∑

n∈τ

[

0.25 ∗NdD(n) + 0.5 ∗NtT (n) + 0.25 ∗NeE(n)
]

, (1)

where Nd, Nt e Ne are normalization coefficients. The Euclidean distance D(n) is the

cumulative sum of the 3D Euclidean distance for neighboring nodes in the path and the

traversability metric is based on the positive angle T (n) between the normal n⃗z
i of face i

and the Z-axis (Z⃗):

D(n) =
∑

n∈p̄

d(n, n− 1), and T (n) = arccos

(

|n⃗z
i · Z⃗|

∥n⃗z
i ∥∥Z⃗∥

)

. (2)

The energy consumption is estimated as a linear regression of the battery consumption,

terrain inclination, friction coefficient, robot mass, and angle θ between the vectors linking

neighboring mesh centers:

E(n) =

(

Emean α(n)

2π

)

+ (aθ(n) + b)D(n), (3)

where Emean is the mean battery consumption while turning 2π rad and a, b are the linear

regression parameters. The quantities D(n) and α(n) are estimates of the angular and

linear displacements, respectively, when the robot moves between nodes n and n + 1.

Finally, the robot navigates the path to visit a frontier using a vector field navigation

algorithm with a potential-field based obstacle avoidance.

The proposed path planning and navigation pipeline was validated in virtual and real

representative scenarios. Figure 4a shows an virtual scene obtained via photogrammetry

reconstruction. Figure 4b shows the point cloud used to compute the cost functions of

each metric. The red, white, and yellow paths correspond to the shortest, flattest, and

most economical paths, respectively. The green path was obtained with the combined

cost function. The shortest path tends to perform as a direct line to the goal, bypassing

obstacles and other risk areas of the map. On the other hand, the most economical and

flat paths tend to minimize terrain roughness and high slopes. The gains of the combined

metric were defined as: Pd = 0.5, Pt = 0.25 and Pe = 0.25.

The real mine experiment was performed at the Mina du Veloso gold mine, located

in Ouro Preto ± MG, Brazil. Figure 5 shows the environment and robot setup. Mina du

Veloso is a 400-year-old colonial gold mine with almost 300 meters of narrow and rugged

multi-level corridors. The navigation and inspection experiment results inside the gold

mine can be observed in Figure 6, where the robot performed mapping over ≈55 m of

connected cave tunnels autonomously.



(a) Simulated environment in CoppeliaSim. (b) Point cloud with estimated paths.

Figure 4. Path planning validation in simulated reconstruction of a rugged outdoor
environment.

(a) Wide angle of the cave environ-
ment.

(b) Robot setup.

Figure 5. Experimental setup of the EspeleoRobô at the Mina du Veloso gold mine.

(a) Sequential process of mesh generation for path planning.

(b) Top and side view of the complete map, depict-
ing one instance of path planing (green line).
Odometry is signalized as white dots.

Figure 6. Inspection pipeline real experiment at the Mina du Veloso gold mine
(≈ 55m). Top: (a) sequential coverage and the correspondings map meshes
used to calculate the paths. Bottom: (b) final point cloud of the exploration
pipeline (top and lateral view). The LiDAR odometry of the robot is depicted
in a white dotted line, and the navigation path is shown in green.

3. Deterministic exploration (static environment)

We tackle the problem of an autonomous exploration with no initially prior information in

confined environments, such as subterranean mines, tunnels, and caves. The task will be

executed by a single ground robot R, where its pose q is represented by a configuration

qk ∈ SE(3). The robot must map a static environment E ∈ R
3, which poses critical

challenges for the navigation, for example, obstacles, uneven terrain, and narrow passages.

Let M be a three-dimensional occupancy grid representation of E , generated by the



observations of a 3D range sensor. The map will be initially set toM = Eunknown, as

we do not assume any previous information on the environment. Space already explored

(Eknown) can be either mapped intoMfree (visited cells that do not contain any obstacle at

the time of measurement) orMoccupied (cells with more than 0.5 probability of occupation

given the sensor model). Given an initial position ni ∈ Mfree, to reach a goal position

ngoal we must define a safe and efficient continuous path p = {n1, n2, ..., nn} →Mfree,

such that p0 = ni and pn = ngoal. Finally, a fundamental aspect of the exploration task is

the selection of a location to visit. Therefore, based on the concept of frontier, given a

collection of reachable frontiers F , we must select the one that looks more promising to

aggregate information to our map.

As proposed in the previous path planning section, a mesh reconstructed from the

estimated occupational grid serves as input for generating a traversability graph with the

robot’s reachable regions. Nevertheless, in this case, we are also using Octrees to represent

the environment’s occupied and free areas. This representation of the environment is handy

to perform ray casting and other topological analyses. In this regard, the information gain

and the path cost are calculated for every extracted frontier using both an octree and a

reconstructed mesh.

3.1. Reachable frontiers extraction

The traversability graph G and the complete mesh M are used to estimate the map frontiers.

The known traversable areas that are neighbors of unexplored regions, including regions

edging the map’s borders without being an obstacle, are considered frontiers. Therefore a

face in the mesh is considered as a frontier if:

isFrontier(M, i) =

{

1, if |NF(i)| ≤ 2

0, otherwise,
(4)

where NF(i) is the set of neighboring faces of face i.

The extracted frontiers that do not belong to the traversability graph are removed.

This way, unreachable frontiers are eliminated from the pipeline. The frontier points are

clustered into groups by their Euclidean distance using the Density-based spatial clustering

algorithm (DBSCAN) [Schubert et al. 2017], considering a distance (eps) and minimum

group size (Cmin). Finally, we use the KD-tree search to determine the visit location of a

frontier cluster as the closest reachable point in G to the cluster’s centroid. The frontier

estimation process is described in Algorithm 2, where B are the raw mesh frontiers, C the

clusters of reachable frontiers, and n a reachable node from G used as frontier visit point.

Algorithm 2: Reachable frontiers extraction

B ← {}, F ← {}
for i← 1 to |F| do

if isFrontier(M, i) then B ← B ∪ Fi ▷ Raw mesh frontiers ;
B′ ← traversabilityFilter(V,B)
C ← DBSCAN(B′, eps, Cmin)
for c ∈ C do

n← getCentroidReachableNode(G, c)
F ← F ∪ n ▷ Reachable frontiers centroids

return F



3.2. Information-theoretic frontier selection

To estimate the utility of a frontier, we use the mutual information gain metric over the

3D mapM, and the cost of the path C(τ) to reach the frontier. The mutual information

uses the probability of the octree cells to calculate the current entropy of the map and then

compares it with the expected entropy of the map after performing a virtual exploration at

the selected frontier. The entropy is defined as:

H(M) = −
∑

i,j,k

pijk log(pijk), (5)

whereM is the current map, and pijk is the outcome of the Bernoulli random variable

representing the cell occupation. The mutual information I(M, fi) is used to obtain the

expected information gain by visiting frontier fi, i.e.:

I(M, fi) = H(M)−H(M|fi), (6)

where H(M|fi) is the expected new entropy. The virtual exploration phase uses the sensor

model maximum range and field of view to project rays in the current mapM considering

the vehicle will be in the centroid of each frontier in F . Given the current mapM state,

the projected rays give a reasonable estimate of the maximum free volume the robot could

sense of a frontier. Since the measurements from these types of multi-line LiDAR sensors

results in a sparse Octree, we performed a filling step at the virtual map using a uniform

sampling of the mesh surfaces F, preventing the projected rays from escaping through

walls and solid objects over the occupancy gridM. Finally, the metric for selecting the

best frontier is:

c∗ = argmax
∀f∈F

MI(M, f) + e

C(pf )
, (7)

where pf is a path from the robot’s current position to frontier f , and e is a small tolerance

constant.

The deterministic exploration pipeline was validated in representative scenarios

from the DARPA SubT challenge2. The resulting maps and the reconstructed meshes for

the simulated scenarios can be observed in Fig. 7. We validated multiple frontier and path

selection metrics: (i) our proposed approach using the information gain and traversability

path generation, (ii) a greedy selection of the closest next frontier using the path that gives

the smallest Euclidean distance instead of the terrain aware one, and (iii) random selection

of the frontier using a terrain aware path. The results of this analysis can be observed at

the right side of Figs. 7a and 7b, where the displayed lines are the mean RMSE of the map

coverage for every timestep (10 repetitions). The proposed metric (blue) converges to a

lower error rate than the other metrics at all environments, even if the terrain-friendly paths

generated by the proposed metric are longer than the shortest euclidean path.

4. Probabilistic exploration (dynamic environment)

Different from the deterministic exploration, which considers mapping a static environ-

ment, here we also consider additive obstacles in E , meaning that the environment is not

static anymore. We consider an environment dynamic if there is a chance of the robot

encountering an additive environmental modification. An additive obstacle or additive

2Deterministic exploration video:https://youtu.be/RrkOvAZEteQ

https://youtu.be/RrkOvAZEteQ
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(a) Single-level cave scenario (b) Multi-level cave scenario

Figure 7. Exploration analysis. Estimated point-cloud (colored) and final recon-
structed mesh (brownish) for the cave environments: (a) a single-level cave,
(b) a multi-level cave map.

modification of the environment is any addition of points in the map related to a new

object that was not initially there. Examples of additive obstacles are collapsed structures,

closed doors (previously open), or other elements that could suddenly appear in E . As

before, given a collection of reachable frontiers F , we must select the one that looks more

promising, both in navigation easiness and expected information gain.

Unlike the previous approach, this proposal uses the raw point clouds for planning

using a RRT-biased planner (MI-RRT) towards the more informative regions. The use of

point clouds instead of the complete reconstruction pipeline for planning improves the

efficiency of the terrain analysis at the trade-off of a decreased connectivity precision when

generating the traversability graph; however, as seen in the experiments, the difference

in exploration performance is slight while the computing time is significantly decreased.

The proposed method is divided into three big steps: (i) frontier extraction, (ii) global path

planning, and (iii) local path planning. The frontier extraction procedure (i) uses the same

steps as before, extracting a traversability graph from a mesh of the environment, which

we use to cluster the reachable frontiers and estimate the information gain of them.

4.1. MI-RRT global planner with information bias

The global planner complements the sparse point cloud estimated in the SLAM step with a

denser cloud extracted from the mesh generated in the frontier extraction process. Sampling

the mesh has several advantages over only using the SLAM point cloud directly, allowing

for a denser representation, thus smoothing the generated final paths and filling small

holes in the map. The joint point cloud M̂ is then prepared in several steps to guarantee

traversability. The cloud is first voxelized, and then the normals of the points are estimated.

Next, the points with a normal greater than the maximum slope angle traversable by the

robot (θmax) are filtered. The adjacent points of those defined as not traversable (X) are

removed as well by using a search by radius (τinflation). The points closer to the border

are detected using the KD-Tree algorithm. After removing the border points, a clustering

algorithm (DBSCAN) is used to group the points closer to the initial location of the robot.

The final point cloud M̂ then possesses only traversable points, without obstacles and with

a safe margin between traversable regions and the obstacles. The traversable graph G is

then generated by a k-NN algorithm with a Euclidean distance filter (radius τbump).

Previously, we used the exact metric described in Equation 7 to select the best

frontier among the frontier’s set. Here, we propose to adapt the two-dimensional explo-

ration method presented in [Pimentel et al. 2018] into a fully 3D environment, where a

customized RRT expands to the frontiers given the proportional information gain. This

probabilistic method outperforms the previous deterministic frontier selection since it



can perform the frontier selection directly at the path planning phase. The proposed

RRT-based path search, called Mutual Information RRT (MI-RRT), is described in Al-

gorithm 3. The key of the proposed approach is modifying the sampling part of the

RRT planner to use biased point selection based on the information gain of frontiers

(sampleWithRoulette(G, V,F ′) function, where F ′ is the scaled set of information gain of

the reachable frontiers in G in the [0, 1] range. The roulette sampling uses the normalized

information weight of the frontiers to select the next point to add to the tree. We also added

an extra fixed probability of a completely random point to decrease possible local minima

(τrandom). The final result of the global planner is a set of ordered vertices to be visited

by the robot to reach a promising, informative frontier. This path has a low possibility of

collisions and should be safe to traverse in a static environment. Nevertheless, here, the

global path is used as a reference for the local planner.

Algorithm 3: MI-RRT path planning algorithm (G,N ,F ′)

V ← {xinit}
E ← ∅
for i← 1 to τiter do

xbiased ← sampleWithRoulette(G, V,F ′)
xnearest ← nearest(G, V, xbiased)
xnew ← steer(xnearest, xbiased)
if obstacleFree(xnearest, xnew) then

V ← V ∪ {xnew}
E ← E ∪ {(xnearest, xnew)}

G = (V,E)
pglobal ← extractPath(G)
return pglobal

4.2. RRT local planner with viewpoint filtering

For local planning, we also use the RRT algorithm, but instead of the complete map

of the environment, the RRT operates over a minor point cloud representing the local

surroundings of the robot. This local point cloud extraction uses an extension of the method

proposed in [Katz et al. 2007], which approximates the visibility of a point cloud from a

given view (in our case, robot pose) without surface reconstruction or normal estimation.

The method efficiently removes points that the robot cannot view in a given location, such

as occluded by walls, obstacles, or other robots. The path navigation is performed by

sampling the global path pglobal in a lookahead fashion ± similar to the way a pure pursuit

algorithm estimates the new point to visit. This way, the robot is chasing a ªconstantly

moving pointº over the global path that is at some distance ahead of it. The RRT planner

then constantly estimates the path from the current robot position to the closest location

to the sampled point3. Using a local point cloud is critical for planning safe paths with

reachable regions and detecting when the global path cannot be followed anymore. A

typical example of this is when the global path is interrupted by an obstacle. In this case,

if the distance of the robot to the end of the local path is less than a threshold τtarget, we

verify if the global target was reached and, if true, end this exploration cycle. On the other

hand, if the threshold was reached but the global target is still far away, we assume that

the robot ended the local path without reaching the frontier and needs to replan to another

frontier.

3Local planner navigation video: https://youtu.be/FN2rdfWwqpE

https://youtu.be/FN2rdfWwqpE


The RRT planner was validated in realistic cave environments4 against the best

and worst frontier selections of the previous exact exploration method: (i) the proposed

approach using the information gain and traversability path generation of the frontiers

to select the next visit point, and (ii) the random selection of the frontier using the exact

terrain-aware path. The results of this analysis can be observed in Fig. 8, where the

displayed lines are the mean RMSE for every timestep of five repetitions per experiment.

The standard deviation (σ) in the RRT metric is also shown in light purple. The RRT metric

(purple) has a better performance than the orange metric (exact path planning with random

frontier selection). However, the exact metric for frontier selection (MI ratio) still performs

better than the others. The probabilistic nature of the RRT with bias could explain the

inferior performance of the exact metric since there is no guarantee that the best path is

selected at all times.
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Figure 8. RRT exploration error (RMSE) mean of five runs comparing the real-
time SLAM point cloud with a reference map for the: (a) single-level cave,
(b) multi-level cave, and (c) synthetic cave.

5. Conclusions and Future work

This work has presented a pipeline for three-dimensional path planning for ground robots

in rugged terrains and two incremental proposals for terrain-aware autonomous exploration

for confined spaces. We proposed a deterministic exploration method using optimal path

search algorithms and a probabilistic method using a biased RRT that we call MI-RRT.

The basis of our exploration proposals uses a novel approach that combines the cost of

traversing rugged terrains and the expected information gathered by visiting a frontier.

Our proposed method uses octrees, meshes, and the raw point cloud to calculate the most

informative frontiers and generate safe paths considering terrain traversability, distance, and

energy consumption. Furthermore, unlike traditional exploration methods, the proposed

method works in complex 3D environments without assuming any priors over the map

structure. In contrast to other start-of-the-art works on real-world exploration in confined

scenarios, in this work, we proposed using a limited sensorial suite composed of only one

3D LiDAR, an IMU, and wheel encoders. This limited suite was shown to be sufficient for

terrain-aware exploration, being more economical, lightweight, and consuming less energy

than other approaches, with few drawbacks. For example, the lack of a dense sensor, such

as a projected depth camera, makes detecting small untraversable areas at the proximities

of the robot a challenge since our 3D sensor is sparse. Of course, this is a concern for an

actual robot deployment; however, in our tests, we did not observe dangerous situations

generated by this condition.

The proposed exploration pipeline leads to numerous open questions and research

directions, especially when dealing with multi-robot or learn-based approaches. For

4Probabilistic exploration video: https://youtu.be/Otboyqh6GWI

https://youtu.be/Otboyqh6GWI


example, multiple robots could improve the efficiency and resiliency of exploratory robotic

behaviors. In this regard, homogeneous terrestrial cooperation looks promising, where a

group of centralized or decentralized robots performs the exploration without repeating

paths between them, generating a comprehensive shared map combining the group’s

gathered information. However, cooperation is a challenge by itself, and it will need

the research of task allocation methods appropriate for confined scenarios using robots

with limited sensing and communication range to enable efficient multi-robot exploration

behaviors.
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