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Abstract. One of the significant challenges in Multiagent Systems (MAS) is the
creation of cooperative plans to deal with the different scenarios that present
themselves in a dynamic, real-time environment composed of teams of mobile
robots. This work involves capturing human knowledge to demonstrate how
robot teams can better cooperate in solving the problem they must solve. The
research used the environment RoboCup 3D Soccer Simulation (3DSSIM) and
the collection of human demonstrations were carried out through a set of tools
developed from adapting existing solutions in the RoboCup community using a
crowdsourcing strategy. In addition, fuzzy clustering was used to gather human
demonstrations (setplays) with the same semantic meaning, even with minor
differences. With the data organized, this work used a reinforcement learning
mechanism to learn a classification policy that allows agents to decide which
group of setplays is best suited to each situation that presents itself in the envi-
ronment. The results show the ability of the robot team to evolve, from learning
the suggested setplays and their use in an appropriate way to the skills of each
robot.
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1. Introduction
Machine learning meets an essential demand of robots to learn intuitive or even instinctive behav-
iors and knowledge of the human being. For example, although the movement “walking” is natural
to the humans, the algorithmic understanding of how the organism executes it is not known. Ma-
chine learning allows robots to walk similarly to humans, learning to generalize movements from
examples.

When we consider robots as a group or a team, we can model them as a Multiagent Systems
(MAS). MASs are systems composed of multiple interactive computational elements known as



agents [Wooldridge 2009]. An agent is an element capable of perceiving its environment through
sensors and acting on this same environment through actuators. An agent is considered intelligent
or autonomous if it has a fundamental characteristic: autonomy. An agent is autonomous if it
can decide its actions on its own, without human intervention [Russell and Norvig 2021]. Another
fundamental characteristic for an agent to be part of an MAS is the ability to interact with other
agents. Interaction is not restricted to exchanging information; it must include some social activity
such as cooperation, coordination, negotiation, etc [Wooldridge 2009].

This work focuses on a class of problems whose environments have the follow-
ing properties: partially observable; stochastic; dynamic; continuous; multiagent; real-
time [Russell and Norvig 2021]. We can reduce this class of problems to the standard challenge,
chosen by scientists, of robot football [Kitano et al. 1998]. Robots must be able to make complex
decisions in a short time, cooperating with allied robots and competing against robot or human
opponents to meet this challenge. Since 1997, the RoboCup Federation1 has promoted scientific
development in artificial intelligence and robotics through scientific competitions between robots.

The thesis described by this paper aims to present experimental evidence that it is possible
to capture humans’ intuitive or unstructured knowledge when watching a robot game playing
soccer to compose a dataset for training the robot team. Coordinated collective plays, called
setplays, compose the dataset. We use a deep reinforcement learning solution for the team to learn
a setplay selection policy from a large set of demonstrations performed by humans.

This paper was situated in state of the art through a systematic literature review, whose
main results are described in section 2. In section 3, we present the solution built during the Ph.D.
thesis summarized by this paper. Section 4 describes the assessment and results, and section 5 sets
forth our conclusion and future work.

2. Related Work
When we look for works related to cooperative plans applied to robot soccer, we can find an impor-
tant framework for designing use setplays in teams of robot soccer players [Mota et al. 2010]. This
work was complemented later with a graphical interface [Reis et al. 2010], [Cravo et al. 2014].
Although these works represent an important landmark in the area of MAS applied to robot soc-
cer, they do not use any machine learning approach. The designers should manually create each
coordinated plan for the robots.

Learning from Demonstration (LfD) was used to learn low level robot
skills [Freelan et al. 2014]. The behavior was decomposed in low level actions such as
look for the ball, align to goal and kick. Despite the authors claiming that the solution ap-
plies to high-level collective behaviors, all the experiments described included only low-level
robot skills. Another work, introduces the crowdsourcing approach in the context of robot
soccer [Moradi et al. 2016]. However, it uses reinforcement learning only to train individual
behaviors of the robot possessing the ball. We can find works that use reinforcement learning
to learn the best transition in a state machine that represents a setplay [Fabro et al. 2014], or
individual decision-making by robot soccer players [Shi et al. 2018]. Some works investigate the
transfer of knowledge from the simulated environment to real robots [Bianchi et al. 2018].It is
also worth mentioning the presence of many works that use deep reinforcement learning to train
skills in soccer robots, such as walking, running, kicking [Abreu et al. 2019], [Melo et al. 2021],
[Abreu et al. 2021], [Spitznagel et al. 2021], [Teixeira et al. 2020].

No works were found that use approaches based on LfD and deep reinforcement learning

1http://www.robocup.org



to take advantage of the critical view of human spectators to point out opportunities for better
agents’ performance in a robot soccer MAS. This thesis fills this gap in state-of-the-art, presenting
experimental evidence that the intuitive knowledge of human spectators can improve robot soccer
team performance.

3. Learning Setplays from Demonstration
The solution to the problem of learning setplays from demonstrations of human spectators was
divided into three stages, as illustrated in Figure 1. In the first stage, volunteers are expected to
watch the MAS Bahia Robotics Team (BahiaRT)2 matches in recent official competitions using a
version of the official RoboCup 3D Soccer Simulation (3DSSIM) Logplayer (RoboViz)3 modified
in this work, taking breaks in situations that they consider that the robots simulated in BahiaRT
had an unwanted collective behavior, or underperform. The scenes captured in stage 1 are taken to
stage 2, where LfD takes place. To support the first stage, we selected a subset of features present
in the BahiaRT world model [Simões and Nogueira 2018].

In the second stage, the Strategy Planner (SPlanner) [Cravo et al. 2014] tool was changed
so that it can be used effectively as a demo generator in the 3DSSIM environment, making it
able to start a new setplay from the scene captured in RoboViz. In section 3.1, we describe our
crowdsourcing strategies and the toolkit produced for this work.

Figure 1. Learning Setplays from Demonstration: complete solution split into
three stages.

In the third stage, we developed a fuzzy clustering engine to organize the dataset by set-
plays similarity. This is important to turn the dataset able to be used by agents in real-time, and to
deal with semantic equivalence as defined in section 3.2.

The clustered dataset is used by a deep reinforcement learning solution based on algorithm
Deep Q Network (DQN) [Mnih et al. 2015] to learn a setplays selection policy. The Section 3.3
describes the solution.

3.1. BahiaRT Collecting Setplays Toolkit
The construction of the database with setplays is based on a strategy of crowdsourcing in which
people from anywhere in the world can contribute by playing the role of the human spectator.

We built a set of tools to support this strategy, bringing together the modified versions
of RoboViz and SPlanner [Simões et al. 2021]. To make it easy to install and use the tools, they

2The BahiaRT is the scientific competition team from State of Bahia University. More details available
at https://www.acso.uneb.br/bahiart

3https://github.com/magmaOffenburg/RoboViz



were organized into a docker container4, preventing users from compiling the tools, installing
libraries, and solving problems with dependencies. This organized set of tools for collecting
setplays was called BahiaRT Setplays Collecting Toolkit [Simōes et al. 2022] and made pub-
licly available together with all the necessary documentation for publication in the repository
https://bitbucket.org/bahiart3d/setplaysdataset.

We added a demonstration mode to RoboViz to allow users to watch game logs and pause
and capture any scene in the game to start a new setplay demonstration. When a new demonstration
is launched, the user can choose the team to whom the user will make the demonstration, the type
of setplay (offensive or defensive), and the play mode when the setplay will start. Then he chooses
the teammates and opponents players who will participate in the new setplay [Simões et al. 2021].

SPlanner has also gained a demo mode capable of importing the demo file generated by
RoboViz. When starting, SPlanner already creates a new setplay using the parameters defined in
RoboViz and positions the screen at step 0 with all participants selected. The user will then be
able to use its graphical interface to create collective play suggestions for the robot soccer team. n
this work, we also completed the SPlanner development by adding support for opponents’ players,
defensive setplays, and new offensive behaviors [Simoes et al. 2020].

The BahiaRT Setplays Collecting toolkit includes a submission form for users to send the
text files generated by SPlanner containing all the information describing the setplays created as
demonstrations [Simōes et al. 2022]. During four months, we received 382 setplays’ demonstra-
tions. The following subsection describes our solution for organizing this dataset in clusters.

3.2. Organizing the Dataset
The crowdsourcing strategy adopted in this work potentially generates an arbitrarily large number
of instances in the dataset. This fact can make it unfeasible to use in the 3DSSIM environment that
uses a 20ms simulation cycle. However, the chances of having equivalent setplays are high, with
many different people generating demos from robot soccer games. They would not be setplays
precisely the same since many of the attributes that make up a setplay have continuous values, re-
ducing the probability of absolute equality. Then, we define that this equality between the setplays
will exist when there is a semantic equivalence [Simões et al. 2020].

Definition 1 (Semantic Equivalence) Two setplaysSPi and SPj , i ̸= j, are considered semanti-
cally equivalent if they represent the same play at the abstract domain knowledge level.

To organize the dataset of setplays, we used a two-level strategy, splitting the set of fea-
tures that describe a setplay into two subsets. The first subset has four features: (i) our play-
ers number; (ii) their players number; (iii) abort condition; (iv) number of steps. These fea-
tures are integer values, except for abort condition which is a boolean expression represented
here as a binary tree. We extracted these features after analysis of setplay files generated by
SPlanner [Simões et al. 2020]. A 5th feature might complete this set: (v) the list of steps. How-
ever, this feature is a list of objects of type Step described by nine additional features. So, we
expanded the list of steps in the second subset of features. We use the algorithm Fuzzy C-
Means (FCM) to organize the dataset in clusters considering only the features (i). . .(iv) in the
first level. The Figure 2 shows the two-level FCM approach we use in this work.

We used the feature (v) in the second round of execution of algorithm FCM, applying it
to each cluster generated in the first level. So, the feature (v) expands to second level: (v.i) our
players in Step; (v.ii) their Players in Step; (v.iii) wait time; (v.iv) abort time; (v.v) our players list;
(v.vi) their players list; (v.vii) next step; (v.viii) transition condition; (v.ix) behaviors list.

4https://www.docker.com/



First Level 
(identifying the set plays)

Second Level 
(The steps within each set play)

setplay #1
ourPlayersNumber theirPlayersNumber abortCondition Steps stepsList

setplay #1 / step #0
ourPlayerInStep theirPlayersInStep waitTime ...

ourPlayerInStep theirPlayersInStep waitTime ...

ourPlayerInStep theirPlayersInStep waitTime ...

...

behaviorsList

setplay #1 / step #1

setplay #2
ourPlayersNumber theirPlayersNumber abortCondition Steps stepsList

...
ourPlayersNumber theirPlayersNumber abortCondition Steps stepsList

behaviorsList

behaviorsList

setplay #2 / step #0
ourPlayerInStep theirPlayersInStep waitTime ...

ourPlayerInStep theirPlayersInStep waitTime ...

ourPlayerInStep theirPlayersInStep waitTime ...

...

setplay #2 / step #1

behaviorsList

behaviorsList

behaviorsList

... / ...
ourPlayerInStep theirPlayersInStep waitTime ... behaviorsList

Figure 2. The two-level FCM architecture organizes the dataset in clusters.

The features (v.i). . .(v.iv), and (v.vii) are scalar values. The properties (v.v) and (v.vi) are
lists of pairs of Cartesian coordinates which identify all players’ positions in the current step of
a setplay. The feature (v.viii) is a boolean expression represented as binary tree and the feature
(v.ix) is a list of strings describing the behaviors executed by each teammate on current step.

The FCM requires the definition of an appropriate distance measure to measure the sim-
ilarity between the dataset instances. Euclidean distance is commonly used to estimate the dis-
tance between two instances with scalar properties. However, the proposed dataset schema con-
tains some non-scalar data types. In this work, we defined new distance norms for features
represented as a list of Steps, binary trees, a list of Cartesian pairs, and a list of strings. We
used the new norms to modify the standard FCM distance calculus between instances and cen-
troids [Simões et al. 2021].

We used the FCM with the new distance norms to organize the dataset of setplays in
clusters to be used in the reinforcement learning solution described in the following subsection.

3.3. Learning a Setplays Selection Policy

FCPortugal Setplays Framework (FSF) [Mota et al. 2010] uses a setplays manager based on the
approach of Case-Based Reasoning (CBR) [Wangenheim and Wangenheim 2003]. This approach
builds a case history from the agents’ use of setplays. The team BahiaRT extends the FSF to sup-
port setplays execution. However, the CBR solution is not scalable to a large dataset of setplays.
This work presents a Deep Reinforcement Learning (DRL) strategy to learn a new setplays select
policy to choose one of the clusters of the dataset generated by the solution described in subsec-
tion 3.2. So, the CBR applies on the setplays in the selected cluster. The complete solution is
exhibited in Figure 3a.

The strategy uses the DQN algorithm using a Deep Q-Network to represent the learned
policy. The DQN receives the clustered dataset and the properties from BahiaRT’s world model
as input and generates a cluster number as output. The CBR loads the setplays definitions of this



(a) BahiaRT’s new architecture using the learned set-
plays selection Policy implemented in a Deep
Q-Network.

(b) BahiaRT’s training architecture uses BahiaRT
Gym

Figure 3. DQN solution to learn and execute a new setplays selection policy.

cluster and selects the best setplay to use in the current situation.

We use Open AI Gym [Brockman et al. 2016] for training the Deep Q Network and the
DQN implementation in stable baselines 3 [Raffin et al. 2021]. Figure 3b shows the complete
training architecture.

As Open AI Gym does not offer a 3DSSIM environment, we developed our environment
named BahiaRT Gym [Simōes et al. 2022]. This environment is uncoupled from the BahiaRT
team’s code. Any 3DSSIM team can use BahiaRT Gym for DRL experiments. Both single agent
and multiagent training are available. All perceptions sent by the simulator to the agents and the
actions sent from agents to the simulator are available in BahiaRT Gym for use in the observation
space or reward calculus. BahiaRT Gym also connects the agents to send exploratory actions dur-
ing training. The observation space used for training the setplays selection policy is defined from
the results of preliminary experiments [Simões and Nogueira 2018] and the results of the setplays
files collected using the BahiaRT Setplays Collecting Toolkit [Simōes et al. 2022]. Players posi-
tions, ball position, play modes and ball’s field zone are the features used in the observation space.
The action space A is defined by an integer representing the identification of the group of setplays
generated by the dataset organizer:

A = {1, . . . , C∗}, (1)

where C∗ is the total number of groups found by the fuzzy organizer of the dataset defined in the
section 3.2. The algorithm updates the weights of the Q-Network when a training episode ends
using the reward function defined as

r(si, ai) =
∆xB
|∆xB|

× 2|∆xB | ×
[
1 + 10× (flagGS + flagGC) + 3× flagSS +

flagFS
2

]
, (2)

where si ∈ O is the state observed at the instant i at the beginning of the training episode and
ai ∈ A is the action chosen by the agent at the instant i. ∆xB = xfB −Xs

B , where xfB and Xs
B are

the coordinates on the x axis of the ball at the final and initial instants of the episode, respectively.
The flags define boolean conditions and receive value 1 for true and 0 for false. flagGS is true
when the BahiaRT scores a goal in the episode, and flagGC is true if BahiaRT concedes a goal in
the episode. flagSS is true when a successful setplay finishes in the episode, and flagFS is true if a
failed setplay ends in the episode.



This subsection describes a DRL for training a setplays selection policy represented by a
Q-Network. The following section presents the results of the experiments used for assessment.

4. Assessment
We assessed the results of our solutions in two parts. In the first one, we evaluated the appropriate-
ness of the dataset clustering (see subsection 4.1). Then we assessed the learned setplays selection
policy regarding its effects on BahiaRT’s performance, as described in subsection 4.2.

4.1. Assessing dataset clustering
One of the main challenges in using clustering algorithms is defining the number of clusters. We
defined two number of clusters, one for the first level C(1), and the other for the second level C(2).

We executed the FCM algorithm using values of C(1) =
√
n
2 , . . . , 2×

√
n, where n = 382

is the total number of setplays in the dataset. For each value of C(1), we run the algorithm 10
times to minimize the effects of random initialization of centroids. We use a Cluster Validation
Index (CVI) named Fuzzy Silhouette (FS) [Eustáquio et al. 2018] to assess the best value for C(1)

regarding the dataset used in this experiment. The FS is a maximization index in the interval
[−1; 1].

(a) FS variation in the level 1 (b) Number of instances for each group c(1); for1 ≤
c(1) ≤ 10.

Figure 4. Results of experiments for a dataset with n = 382 instances, and 9 ≤
C(1) ≤ 38.

Figure 4a shows the variation of FS for 9 ≤ C(1) ≤ 38. The higher value of FS is obtained
for C(1) = 10. We split the dataset into C(1) = 10 clusters and got the distribution of setplays
exhibited in the figure 4b. Each group c(1) = 1, . . . , 10 has a different number of setplays with a
considerable difference. While the average is 25 setplays per group, there are groups in the order
of 40 instances.

We followed the same procedure for the second level executing 10 instances of the FCM

algorithm for each cluster 1 ≤ c(1) ≤ 10, considering
√

n
c(1)

2 ≤ C(2) ≤ 2 × √
nc(1) . nc(1) is the

number of instances in cluster c(1).

Figure 5a shows that each group c(1) can be split into 2 to 6 subgroups. When we sum
the number of groups C(2), for all c(1) = 1, . . . , 10 clusters, we get a total of C∗ = 35 groups,
which we use to define the action space for learning the setplays selection policy, as described in
section 3. The distribution of groups is a consequence of the values of FS found in the second
level as illustrated in figure 5b. It is noticeable that, for some groups, most values of FS increased
compared to level 1.



(a) Number of clusters on level 2(C(2)) to split each
group (c(1)) from level 1. (b) Maximum FS value for each cluster c(1) after exe-

cution of FCM on level 2.

Figure 5. Experimental results for clustering on level 2 using a dataset with n =
382 instances split into ten groups in level 1.

The next subsection presents the assessment of the learned setplays selection policy re-
garding its effects on the BahiaRT’s overall performance.

4.2. Assessing the Learned Setplays Selection Policy

The learned setplays selection policy assessment starts with selecting three opponent teams for
training and evaluation. The selected teams are a sample representing teams with historical perfor-
mance better (magmaOffenburg5), similar (ITAndroids6), and worse (WITS-FC7) than BahiaRT.

We executed BahiaRT using the training architecture defined in section 3. The BahiaRT
Gym [Simōes et al. 2022] controls the episodes start and reset and updates the reward to the Q-
Network. We used a set of 100 matches against each selected opponent, alternating the opponents
to avoid overfitting in the Q-Network.

After training the Q-Network, we executed another series of 300 matches (100 for each
opponent) to measure the overall performance when compared to the team before using the new
learned policy. As the reward function consider the ball displacement as one of its main variables,
we used heat maps of the ball’s position to assess the results. We also used some game statistics
as shown in Tables 1 (baseline before training) and 2 (after training).

Table 1. BahiaRT’s games before using the learned setplays selection policy.

Opponents Wins Draws Loses Avg. GS Avg. GC
ITAndroids 16 58 26 0,31 0,41
WITS FC 59 41 0 0,87 0
magmaOffenburg 0 0 100 0,01 5,64

When we compare each line of the two Tables, it is clear that some increase in the number
of Wins is detected in matches against ITAndroids and WITS-FC. The increase in the average of

5Team from Hochschule Offenburg University, Germany. https://robocup.hs-offenburg.de/
6Team from Instituto Tecnológico da Aeronáutica (ITA), Brazil. http://www.itandroids.com.br/
7Team from Wits University, South Africa. https://www.wits.ac.za/



(a) BahiaRT˙old vs WITS-FC

(b) BahiaRT vs WITS-FC

(c) BahiaRT˙old vs ITAndroids

(d) BahiaRT vs ITAndroids

(e) BahiaRT˙old vs magmaOf-
fenburg

(f) BahiaRT vs magmaOffen-
burg

Figure 6. Heat maps of ball’s position in 100 matches against each opponent
before and after setplays selection policy training.

Goals Scored (GS) and the decrease in the average of Goals Conceded (GC) explain the results. On
the clash against magmaOffenburg, we noticed a slight reduction in the average of GC. Still, this
result is insufficient to turn the overall performance of team BahiaRT similar to magmaOffenburg.

Table 2. BahiaRT’ game after training the new setplays selection policy.

Opponents Wins Draws Loses Avg. GS Avg. GC
ITAndroids 26 53 21 0,45 0,28
WITS FC 67 33 0 1,03 0
magmaOffenburg 0 0 100 0,01 5,14

A deeper analysis is possible when we evaluate the heat maps of the ball’s position. We
call BahiaRT˙old the original team before training and BahiaRT is the team with the new learned
policy. In all heat maps, the BahiaRT defense in on the left side and the attack is on the right side.

When we compare the ball’s position heat map resulting from 100 matches against WITS-
FC, we can see a difference in the region inside the green circle in Figures 6a and 6b. The ball’s
position concentration in this area in Figure 6a moved forward to the attack field in Figure 6b.
From this highlighted region in Figure 6b, the BahiaRT’s agents can perform a direct shot to goal
and score. These results explain the increase in the number of goals scored in matches against
WITS-FC in Table 2.

The clash against ITAndroids presents three points of attention. The first point is the
region within the yellow circle in Figures 6c e 6d. The yellow circle shows that the ball positions
are less concentrated in the BahiaRT’s defensive goal area in Figure 6d than in Figure 6c. These
results explain the decrease in the number of goals conceded in Table 2. The highlighted regions in
the purple and green circles show an increase in the concentration of ball positions in the offensive
midfield and BahiaRT’s attack goal area. This fact explains the increase in the number of goals
verified in Table 2.



The Figures 6e e 6f shows two highlighted zones: the BahiaRT’s defensive goal area
(green circle) and the entire defensive midfield (purple rectangle). In the green circle, we can
note a decrease in the ball’s position concentration in the BahiaRT’s defensive goal area. The
purple rectangle shows the ball positions more spread out in the defensive midfield. These two
facts explain the reduction in the number of goals conceded. The use of defensive setplays in the
learned setplays selection policy allows the team BahiaRT to use more efficient defensive behavior,
turning harder to magmaOffenburg to perform fast passes and score goals. In the next section, we
discuss the results, present our conclusions and some possible future work.

5. Conclusion and Future Work

The results presented in section 4 show evidence that it is possible to collect demonstrations from
human spectators to teach a MAS of robot soccer players better setplays to be used in the diverse
situation. The evolution of game statistics is explained by analyzing the ball’s position heat maps
and exposing the influence of the reward function used in the DRL strategy. We highlight that
the team BahiaRT is not in the state-of-the-art of basic skills like walking and kicking. However,
it presents a clear evolution when playing against opponents of different levels. It is clear evi-
dence that the high-level strategy, using intuitive human knowledge, can increase the overall MAS
performance.

The thesis summarized in this paper generated several products: (1) a DRL solution to
learn a new setplays selection policy using demonstrations collected using a crowdsourcing strat-
egy [Simões 2022]; (2) BahiaRT Gym: an open software available for the community to execute
any DRL experiment using the 3DSSIM simulator [Simōes et al. 2022]; (3) BahiaRT Setplays Se-
lection Toolkit: a set of tools to allow users to watch games and build setplays demonstrations
to send to the authors [Simoes et al. 2020] [Simōes et al. 2022]; (4) A new FCM organizer to the
setplays dataset able to deal with non-scalar data types [Simões et al. 2020] [Simões et al. 2021];
(5) a dataset of almost 400 setplays that will be published to be used by the commu-
nity [Simões 2022].

These results show a clear contribution of this work to the advancement of the
state-of-the-art and some technical contribution to the research community that can use
the tools and dataset produced on this work for their research projects. The thesis pro-
duced five publications [Simões and Nogueira 2018], [Simoes et al. 2020], [Simões et al. 2020],
[Simões et al. 2021], and [Simōes et al. 2022]. The work was also awarded as best oral presen-
tation(2020), second best oral presentation(2018) and third best oral presentation(2021) in the
Workshop de Estudantes de Pós-Graduação em Ciência da Computação (WE.PGCOMP/UFBA).
The BahiaRT Gym was presented and awarded second place in the RoboCup 2022 3DSSIM Free
Scientific Challenge, which contributed to the third place for team BahiaRT in the Technical Chal-
lenge8.

This thesis opens some future work opportunities: applying the same solution to other
problem domains(e.g., Unmanned Aerial Vehicle (UAV)’s MAS); investigating the effects of ba-
sic skills (e.g., walking, kicking) on the learning of the setplays policy; studies of other solutions
to evaluate the dataset clustering or organizing the dataset; assess a solution to use DRL to select
an individual setplay without using CBR; investigating a new set of non-default hyperparame-
ters for DQN or other DRL algorithms to learn the policy; evolution of the BahiaRT Gym. The
opportunities for future research are diverse.

8https://ssim.robocup.org/robocup-2022-soccer-simulation-3d-results/
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