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Abstract. This work studies the trajectory planning of an unmanned hybrid
aerial-underwater vehicle (HUAUV) called Hydrone, which is being developed
by the Intelligent Robotics and Automation Group (NAUTEC) of the Federal
University of Rio Grande (FURG). This study presents a new trajectory plan-
ning algorithm, based on closed-loop rapidly exploring random trees (CL-RRT).
This algorithm is developed for an HUAUV and introduces two heuristics to im-
prove its energy efficiency in hybrid tasks. Simulated experiments were carried
out in 135 virtual scenarios, comparing three approaches: one without heuris-
tics and two with the proposed heuristics. Simulated results demonstrate that
using the heuristics can significantly reduce energy consumption and even im-
prove the vehicle’s average speed during missions. In particular, in 95% of
the scenarios, the lowest energy consumption was achieved by one of the two
heuristic-based algorithms. This article concludes by summarizing the findings
and identifying potential future research opportunities.

Master’s dissertation1 presented to the Postgraduate Program in Computer
Engineering (PPGComp) of the Federal University of Rio Grande (FURG) in Janu-
ary 2023 advised by Prof. Dr. Paulo L. J. Drews Jr. and co-advised by Prof. Ar-
mando A. Neto. Article submitted to Thesis and Dissertation Competition (CTDR).

1. Introduction

1.1. Hybrid Unmanned Aerial Underwater Vehicles

Hybrid Unmanned Aerial Underwater Vehicles (HUAUVs) are a class of mobile robots
that combine the characteristics of unmanned aerial vehicles (UAVs) and unmanned un-
derwater vehicles (UUVs). And the idea of combining these vehicle classes is not new
[Drews et al. 2009].

By having the ability to navigate in two different media, HUAUVs are capable
of obtaining a complete perception of environments close to water, such as riverbanks,
ports, oil platforms, and even flooded caverns. This enables activities such as complete
inspection of partially submerged structures, environmental monitoring and assessment,
and search and rescue without the need for human assistance to switch between environ-
ments.

1https://argo.furg.br/?BDTD13671

https://argo.furg.br/?BDTD13671


However, navigating in both media demands a platform that can adapt to two
densities that are almost three orders of magnitude apart. It must also be lightweight and
waterproof. These challenges are not trivial and are being studied by research groups at
many universities around the world [Alzu’bi et al. 2018, Ma et al. 2018, Lu et al. 2019,
Chen et al. 2020].

Figura 1. Hydrone concept [Horn et al. 2020]

1.2. Problem

Efficient and safe navigation in hybrid scenarios involves planning trajectories that mini-
mize resource consumption and ensure physical integrity. These trajectories must account
for dynamic changes due to differences in fluid density when searching for the best path
to follow (Problem 1).

Problem 1 Let a HUAUV be modeled with different dynamics for aerial and aquatic
operations, with their respective control laws. This vehicle navigates in an environment
X , with static obstacles. Let the existence of a transition zone around the water surface be
assumed at z = 0, in the range −µ ≤ z ≤ µ, for µ ≥ 0. Finally, assume a cost function
to be provided such that it relates the vehicle’s actions to the energy consumption along a
trajectory. Then, the main goal is to find a trajectory from the vehicle’s starting point to a
given goal (rgoal), such that x(t) ∈ Xfree for all t > 0. The planner algorithm must also
minimize energy consumption and allow for a smooth transition between environments.

1.3. Contributions

As contributions, this work presents a new trajectory planning algorithm for a multirotor
Hybrid Unmanned Aerial Underwater Vehicle; it also presents two heuristics for energy-
saving trajectory planning.

Regarding scientific publications, the standard nonheuristic algorithm of this
work, called Hybrid CL-RRT, was presented in [Pinheiro et al. 2022] (JINT, Qualis
A2). And the HUAUV survey of this work is also available in a pre-print version
[Pinheiro et al. 2023] (submitted to RAS, Qualis A1).

Furthermore, throughout the development of this work, studies were carried out in
areas complementary to trajectory planning, such as vehicle design, modeling, control, si-
mulation, visual-based navigation, and prototyping [Grando et al. 2020, Horn et al. 2020,
Aoki et al. 2021, Aoki et al. 2022a, Aoki et al. 2022b, Pedroso et al. 2022] (all six of
them published in LARS, QualisCC B1). Other publications also explore the use of
deep reinforcement learning for mapless navigation and obstacle avoidance in aerial and



underwater environments [Grando et al. 2021, Grando et al. 2022a, Grando et al. 2022b]
(one of them published in ICRA, QualisCC A1; and two of them published in LARS,
QualisCC B1).

2. Literature review

Previous studies on Trajectory Planning for multirotor-based HUAUVs are limited.
However, recent works have addressed similar problems.

In [Su et al. 2021], trajectory optimization for an HUAUV navigating between air
and water is addressed. An improved teaching- and learning-based optimization (ITLBO)
algorithm is proposed to minimize position and velocity errors. The simulation results
demonstrate the effectiveness of the algorithm.

In [Liang et al. 2021], a heuristic generalized extensive neighborhood search
(GLNS)–k-means algorithm is proposed for a multirotor, underwater-glider, and tail-sitter
HUAUV. The algorithm combines k-means clustering and the GLNS algorithm to find
optimal paths. An online replanning strategy is introduced and MATLAB simulations
evaluate the approach.

[Wu et al. 2020] presents an improved teach-and-learn-based optimization
(ITLBO) algorithm for trajectory optimization of a coaxial eight-rotor HUAUV. The ap-
proach considers navigation errors and collision probability. Simulation results demons-
trate its effectiveness.

The three-dimensional multi-domain trajectory planning for multirotor HUAUVs
is underexplored. Challenges like high-dimensional state space and abrupt environment
transitions require customized approaches and knowledge of the robot’s dynamic model.
Section 3 presents the trajectory planning techniques and robot model used in this work.

3. Methodology

3.1. Hydrone vehicle model

The Hydrone vehicle is an HUAUV that has four vertical aerial actuators, two horizontal
forward facing underwater actuators, and two vertical underwater actuators (Figure 2).
Therefore, during flight, the vehicle model is the same as a UAV model. However, un-
derwater, the Hydrone vehicle has an underactuated ROV-like model. Hence, it relies on
the passive stability of the roll motion, achieved by carefully placing the vehicle’s center
of buoyancy above the center of mass. In addition, it can produce forward, upward, and
downward forces, and pitch and yaw rotations [Horn et al. 2020].

3.2. Vehicle constraints

As presented, the HUAUV in question has some limitations. The main one is with regard
to its underwater actuation. The model proposed by [Horn et al. 2020], has a pair of
propellers facing forward as a way to act on the x-axis on the body frame. Still, it does not
have actuators facing backwards. Thus, as this vehicle model was developed considering
standard off-the-shelf products, its motor-propeller sets do not consider reversing motor
rotation. Therefore, the vehicle depends on the drag force to reduce the forward speed
underwater.
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Figura 2. Hydrone forces and moments. Above, the vehicle operates in the aerial
mode, while below it acts in the aquatic mode. Around the surface level
(z = 0) there is a transition zone.

This significantly impacts its underwater maneuverability. First, the vehicle can-
not rotate around the z axis in {B}. Second, when it describes curves underwater, the
radius of curvature of these curves depends on the vehicle momentum.

3.3. Power estimation
In the work by [Horn et al. 2019] the authors carried out a survey of energy consumption
for some motor-propeller combinations for HUAUVs. Through these data, it is possible
to derive polynomial functions of energy consumption that associate it with the forces
generated by the sets of motors and propellers.

Figura 3. This figure shows the power consumption and polynomial regression
curves for aerial and underwater actuation systems. Both curves follow a
second-degree polynomial trend. The underwater system presents higher
consumption than the aerial system from null force until 7,5N , while the
aerial system assumes higher values for higher forces, widening the diffe-
rence between the two systems.

These functions are assumed by this work to be significant enough to represent the



overall energy consumption of a vehicle in a hybrid environment, although other systems
would also consume battery energy.

4. Hybrid Closed-loop RRT
The CL-RRT algorithm [Kuwata et al. 2009] can be used in several situations. Among
these, for planning the trajectory of unmanned aerial vehicles [Arslan et al. 2017,
Zhu et al. 2018]. To this end, the algorithm uses the vehicle model to generate trajec-
tories in the X space and verify possible collisions. Then, these trajectories are associated
with nodes of the exploration tree.

To develop a planner that did not need to solve the vehicle dynamics equations
for each node of the expanded tree, a simulated survey of the navigation costs associated
with each environment and at transition was carried out. Significant variance in the data
was verified, however, it was possible to observe that the water navigation cost is much
lower than the air navigation cost. Thus, two techniques were proposed for optimizing
the energy efficiency of HUAUVs:

1. the use of constant estimated costs for each medium, and for the transition;
2. and the use of a skewed tree expansion.

Another significant aspect of Hybrid CL-RRT is that it should be able to handle
domain transition. As the vehicle model and several others in the literature focus on verti-
cal medium transition, this planner maintains this approach to avoid possible disturbances
and instabilities during vehicle navigation. In this way, this proposed planner also seeks
to approximate the real application of this class of vehicles.

The main loop of the hybrid planner is presented in Algorithm 1. Essentially, this
is the same as that adopted in the work by [Kuwata et al. 2009]. It has an initial phase of
updating both the vehicle state and the map. Then, the propagation of the vehicle trajec-
tory is made for the next instants, predicting its state after the planning. Then, the hybrid
tree is expanded and the best path is selected. Finally, the repropagation procedure is
performed, where the references associated with the best path are passed to the predictive
model and the approximate trajectory to be performed by the vehicle is identified. If this
trajectory is valid, then the references are passed to the navigation system; otherwise, the
invalid nodes are marked before starting a new loop.

The expansion of this hybrid tree (Algorithm 2) is done similarly to that of a
traditional tree: random points are sampled from the map; the tree is expanded in the
direction of this point; if there is a collision in the edge between these two points, the
new point is discarded, otherwise it is added to the tree; and so on. However, there is one
important difference in this expansion: the medium transition.

In order to implement a hybrid trajectory planning approach, it is essential to
devise effective strategies for transitioning between different domains. In our study, we
adopted a specific strategy that involves conditioning the transition between nodes on a
vertical edge. Essentially, when a new point is sampled and the closest existing point is
either in the transition region or in another medium, we adjust the x and y coordinates
of the position of the new point to ensure that it satisfies the vertical condition. In this
way, we can facilitate a smoother and more efficient transition between different domains
during the robot’s trajectory planning.



Algorithm 1 Hybrid CL-RRT execution loop

Require: x(0), rgoal

1: initialise T with node at x(0)
2: repeat
3: update x(t) and Xfree(t)
4: propagate x(t) to x(t+ T ) with hybrid system model
5: repeat
6: expand T
7: until time limit T is reached
8: choose the current best path P ∈ T
9: if P ∈ ∅ then

10: apply safety action and goto line 18
11: end if
12: re-propagate from x(t+ T ) by using references associated with P
13: if x(t) ∈ Xfree(t) ∀t ∈ [t, t+ T ] then
14: send P to the controller
15: else
16: mark infeasible parts of T and goto line 8
17: end if
18: t← t+ T
19: until reach rgoal

Because this work is not yet concerned with strategies for the best medium tran-
sition, the strategy adopted provides only a form of transition. It is therefore assumed
that this will be sufficient to satisfactorily generate paths that explore both domains. It is
also assumed that the repropagation step (trajectory verification), before passing the tra-
jectory to the navigation system, can predict collision situations well enough and that the
HUAUV control can handle the references provided from these vertical transitions well
enough.

4.1. Water-biased Hybrid CL-RRT

As verified in the energy consumption survey conducted by [Horn et al. 2019], the energy
consumption per unit of force is higher for the aerial domain than for the aquatic domain.
In addition, from the construction aspects of HUAUVs, it is known that these vehicles
need to generate more force to keep the vehicle in the air rather than to keep it submerged.
Thus, the first heuristic proposed to reduce energy consumption consisted in biasing the
tree expansion to further explore the water environment. From this, it is expected that
the vehicle will generate trajectories with lower amounts of force and, consequently, less
energy consumption for the same displacement.

As described above, the expansion of an RRT takes place through the random
sampling of points in space. Therefore, in order to bias this sampling, a technique was
used in which pseudorandom numbers are generated in a certain interval. If the generated
number is smaller than a constant percentage of the interval, then the point is sampled in
the water domain; otherwise, it can be sampled anywhere in the hybrid space.



Algorithm 2 Hybrid CL-RRT expansion
Require: Map, segment length

1: psample ← sampleRandomPoint()
2: closest node← getClosestNode(psample)
3: pclosest ← closest node.pos
4: pdir ← psample − pclosest

5: pnew ← pclosest + p̂dir · segment length
6: if transition(pclosest, pnew) then
7: pnew ← verticalTransition(pclosest,pnew)
8: end if
9: if collision(pclosest,pnew) then

10: return
11: else
12: T .addNode(pnew)
13: end if

4.2. Estimated Costs Hybrid CL-RRT

The second proposed heuristic is based on the assumption that there are approximately
constant average costs for traveling between two points in the same environment or the
transition. Therefore, based on a survey of these average costs, it would be possible to
estimate the cost associated with a path section (between two nodes). In this way, it would
be possible to identify, in addition to the nodes closest to a certain position, those that have
the lowest cost in a certain region. Thus, besides simply adding child nodes to the closest
nodes, it would be possible to add the new nodes to the least costly ones in a given region
in an attempt to minimize (at least locally) the cost of the paths.

The expansion function associated with this heuristic has a structure similar to
the previous ones. However, as presented in Algorithm 3 on line 12, instead of simply
adding the new node as a child of the closest node, the verification of which parent node
(neighbor) in a certain radius of the new node (neighborhood) would generate a lower
displacement cost is performed. After checking the best parent node, the new node is
added to the tree as a child of that node. Then, since this node is now part of the tree, it is
verified which nodes in the neighborhood can be reached with less cost. If a path is found
that allows reaching any of the neighbors at a lower cost, rewiring is performed.

It is clear that this approach would increase the number of steps for the expansion
of the tree, which would probably lead to a longer execution time for each new insertion.
However, this work seeks to evaluate the possibility of reducing energy consumption in
missions performed by HUAUVs, more specifically reducing the energy consumption of
their motors, and not reducing execution time or consumption of computational resources.

To carry out the survey of cost estimates, several techniques could be used: from
an experimental survey to consulting manufacturers’ catalogs, or even using generic mo-
dels for motors. However, for this work, this survey was considered to be possible using
a significant number (in the order of thousands) of small trajectories in simulation. It is
clear that for this the motor model used in the simulation should be consistent and close
to the real one, as is the case.



Algorithm 3 Estimated Costs Hybrid CL-RRT expansion
Require: Map, segment length, costair, costuw, costtrans, r

1: psample ← sampleRandomPoint()
2: closest node← getClosestNode(psample)
3: pclosest ← closest node.pos
4: pdir ← psample − pclosest

5: pnew ← pclosest + p̂dir × segment length
6: if transition(pclosest, pnew) then
7: pnew ← verticalTransition(pclosest,pnew)
8: end if
9: if collision(pclosest,pnew) then

10: return
11: else
12: min cost← closest node.cost+ getCost(pclosest,pnew)
13: min cost node← closest node
14: neighbours← getNodesInRadius(pnew, r)
15: for node ∈ neighbours do
16: if transition(pnode,pnew) then
17: continue
18: else
19: pnode ← node.pos
20: this cost← closest node.cost+ getCost(pnode,pnew)
21: if this cost < min cost then
22: min cost← this cost
23: min cost node← node
24: end if
25: end if
26: end for
27: T .addNode(pnew)
28: rewireTree(newnode, neighbours)
29: end if

5. Simulated results
For testing the goal-reaching effectiveness and the energy-saving efficiency of the heu-
ristics, experiments were conducted in 200 different scenarios. In each scenario, the fol-
lowing were randomly changed: the arrangement of obstacles, the starting point, and the
goal region.

The scenario randomness allowed for obstacles to be significantly close to the
vehicle since the beginning of its operation. And this, as well as the fact that the vehicle
had no way to brake underwater, led to some unsuccessful missions, resulting in the vehi-
cle not being able to reach its goal safely. Thus, the results for the number of successful
missions for each planner were as presented in Table 1.

The water-biased approach allowed the vehicle to avoid some aerial obstacles that
the other two planners struggled with. This led to more successful missions for the Water-
biased CL-RRT, followed by the Estimated Costs Hybrid CL-RRT and the standard Hy-



Tabela 1. Successful missions by planning algorithm out of 200.

Planner algorithm Successful missions
Hybrid CL-RRT 152(76%)

Water-biased Hybrid CL-RRT 158(79%)
Estimated Costs Hybrid CL-RRT 154(77%)

brid CL-RRT. In total, 135 (67.5%) scenarios were completed by all three algorithms.

Therefore, the results for the use of the three planners in the 135 scenarios are
presented below. Figure 4 presents the data for the average energy consumption of each
of the algorithms. According to this graph, it can be observed that the algorithm without
heuristics (called original in the graph legend) shows a larger dispersion of values. In
contrast, the hybrid planning algorithms with heuristics present less-dispersed values,
which are also apparently a little lower than those of the standard algorithm. Still, the
estimated-cost heuristic seems to produce similarly grouped values but with a slightly
smaller average than the water-bias heuristic.
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Figura 4. Average energy consumption by planning algorithm. The vertical axis
shows the number of samples in the interval represented by the respective
blue bar.

Through the graph in Figure 5 it is possible to confirm the statements about the
previous graph, such as the statement that the algorithm without heuristics produced a
larger sample interval for the average energy consumption in the scenarios considered. In
addition to this, it can be seen that despite being similar, the distributions for the heuristics
present significant differences, since the upper bound for the confidence interval for the
median of the distribution of the estimated cost heuristic is 258,69 J/m and the lower
bound for the confidence interval for the median of the distribution of the water bias



heuristic is 266,31 J/m.
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Figura 5. Average energy consumption by planning algorithm.

Finally, a last perspective is the comparison of the algorithms for each scenario.
In this situation, the performance of each algorithm in relation to the others is separately
assessed for each one of the cases. Such results are presented in Table 2.

Tabela 2. Comparison between the energy consumption data of each algorithm
for each scenario. The number of times each algorithm was the best
(lowest consumption) or the worst (highest consumption) among the th-
ree for the 135 scenarios considered.

Planner algorithm Best Worst
Hybrid CL-RRT 7 (5.18%) 82 (60.74%)

Water-biased Hybrid CL-RRT 39 (28.89%) 47 (34.81%)
Estimated Costs Hybrid CL-RRT 89 (65.93%) 6 (4.44%)

6. Conclusion
In conclusion, this work achieved its objectives successfully by formulating a base trajec-
tory planning algorithm and introducing two heuristics. The comprehensive comparison
conducted demonstrated the strengths of the proposed algorithms. Future work could
involve studying the impact of atmospheric and underwater currents on the algorithms’
performance, exploring the use of node rewiring in other algorithms, and conducting real-
time experiments with the planning algorithms in controlled environments using HUAUV
systems. These opportunities for further research were identified but not explored due to
time and resource constraints.
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