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Abstract. Unmanned Aerial Vehicles (UAVs) are being researched for their
potential in applications like search and rescue, and defense missions. The
goal is to enhance the intelligence, communication, and strategic organization.
Decision-making techniques enable intelligent UAV decisions, freeing human
commanders to focus on higher-level decisions. This research focuses on de-
fense and search and rescue scenarios, and combines AI-based decision-making
with UAVs. The study analyze the Loyal Wingman concept in a defense scenario.
Also, we propose a solution for a drone swarm to cooperatively search for peo-
ple in a rescue scenario. Our results demonstrate the effectiveness of distributed
decision-making methods in solving problems in both scenarios.
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1. Introduction
The study of decision-making in drone swarms is crucial for optimizing performance, autonomy,
and safety in various industries. Understanding swarm intelligence, human-swarm interaction,
and swarm behavior in complex scenarios can drive advanced swarm technologies, transforming
industries and tackling challenges. This research is essential for civil and military applications,
such as search and rescue missions and the deployment of loyal wingman unmanned aerial vehicle
(UAV), an emerging combat drone in the aeronautical industry.

This study investigates the utilization of combat-capable Loyal Wingman (LW) drones
in cooperative efforts to engage and disable aerial explosive threats. The focus is on a Manned-
Unmanned Team (MUM-T) defense scenario, where LW UAVs protect a leader UAV and critical
infrastructure. The research considers fully actuated UAV models [Santos and Bezerra 2022] and
proposes a problem breakdown for high-level decision-making tasks, enabling effective coordina-
tion and collaboration within the MUM-T. The project employs finite-state machines (FSMs) and
behavior trees (BTs) as AI techniques to design autonomous UAV behavior. The Kuhn-Munkres
task allocation algorithm is utilized for task distribution, promoting cohesive teamwork. The study
also extends the Cooperative Engagement Capability (CEC) to include drones and investigates dis-
tributed autonomous decision-making in a heterogeneous drone swarm within the CEC concept,
aiming to enhance cooperative engagement strategies. Integrating autonomous drone systems with
CEC is expected to enhance mission efficiency and success.

Moreover, this work also utilizes drone swarms for search and rescue (SAR) applications.
The integration of drone technology in SAR missions represents a groundbreaking advancement
in emergency response capabilities, as it harnesses the collective power and efficiency of UAV
systems. By employing drone swarms, SAR operations can revolutionize the way we respond to



emergencies and save lives. By integrating advanced swarm intelligence algorithms to drones,
this research aims to optimize SAR missions, and ultimately save lives. In this work we describe
the scenario where a swarm of drones searches for a person in distress in a forest. To tackle this
problem, we utilize an approach combining robotics and AI-based decision-making. This work
aims for a future where drone swarms act as indispensable allies in crisis management, rapidly
locating and aiding individuals in distress, and providing invaluable support to first responders.
Note that the two scenarios in this work are integral components of a unified study that explores
the application of decentralized decision-making within drone swarms in simulated environmens.

This paper is organized as follows. Section 2 presents the backgroung. Section 3 presents
the loyal wingman application, its experiments and results. Also, Section 4 presents the search
and rescue application, its experiments and results. Finally, Section 5 concludes the paper.

2. Background
Behavior in robotics refers to the actions or responses of a robot in a given situation. Behavi-
ors can be pre-programmed or learned through machine learning [Colledanchise and Ogren 2018,
Mahadevan and Connell 1992]. Robots exhibit a range of behaviors, from simple actions to
complex tasks based on sensory input [Choset et al. 2005]. Behavior-based control architec-
tures are commonly used, employing reactive behaviors that interact to produce the desired
overall behavior [Arkin et al. 1998, Colledanchise and Ogren 2018]. UAVs, or drones, utilize
behavior-based control architectures and sensors such as GPS and accelerometers to perform tasks
like surveillance and inspection [Garcia-Aunon et al. 2019, Ricardo Jr and dos Santos 2023].
They adapt their behavior based on sensor input to adjust flight paths and avoid obs-
tacles [Ricardo Jr and dos Santos 2023]. This adaptability enables UAVs to perform vari-
ous tasks in different environments, providing flexibility and surpassing human capabilities
[Ricardo Jr and dos Santos 2023].

2.1. Finite State Machines

FSMs are the most common mathematical model of computation where the system can be in only
one of a finite number of states at any given time [Buckland 2004]. i.e an FSM guarantees the
permanence in a certain state, unless a transition is triggered. The developer is responsible for
defining the behaviors (states) and the conditions that trigger transitions between behaviors. The
wide use of FSMs is due to their intuitive structure and ease of implementation. However, FSMs
have scalability disadvantages with the addition of behaviors and transitions, so code maintenance
is laborious [Colledanchise and Ogren 2018]. Reusability is also an issue, making it unpractical
for reusing behaviors in other projects.

2.2. Behavior Trees

The behavior tree (BT) approach is used to encode behaviors that are modular and reactive
[Colledanchise and Ogren 2018]. Since most of the problems found in the FSM are easily handled
by BTs, the method has surpassed the FSMs as the industry standard in AI games [Ogren 2012].
A BT framework [Colledanchise and Ogren 2018] is composed by nodes, which can be compo-
site or leaf. Composite nodes control the BT logic, while leaf nodes execute the behaviors or
check conditions. When executed, each node returns a execution status: Success, Failure, or
Running.

The types of nodes are dictated by the framework. The frequent types of composite nodes
are: sequence, selector, parallel, and decorator. After its execution, each node return a status of its
execution, Table 1 shows the return status logic of each node type. Sequence nodes sequentially



Tabela 1. Node types of a BT.

Node
type Success Failure Running

Selector
If one child

succeeds
If all children

fail
If one child returns

running

Sequence
If all children

succeeds
If one child

fails
If one child returns

running

Parallel
If N children

succeeds
If M -N children

fail
If all children return

running

Action Upon completion
When impossible

to complete During completion

Condition If true If false Never
Inverter If Failure If Success -

executes all their children in order, as long as they are successful. A selector is used when any child
can perform the task, it selects the first child that is successful. A parallel node executes its children
in parallel (at the same run time). A decorator (Inverter) node changes the execution status
of its child. Many types of decorator may exist, depending on the framework used. Conditional
check nodes are used to check if a condition is satisfied. The leaf nodes are implemented by the
agent developer: they are the behaviors themselves or conditional checks, e.g. a behavior such
as DefendLeader will keep returning Running while the behavior is executing. Then, if the
threat attacking was neutralized, the node return Success. Otherwise, if the leader is destroyed,
the node returns Failure.

2.3. Bayesian Search for Search and Rescue
In the Bayesian search theory approach for search and rescue missions, initial probabilities are
assigned to cells based on expert knowledge [Stone 1976]. The search process involves dividing
the search area into a grid map, with each cell having low, medium, or high probabilities of the
target’s presence. The search starts with the cell having the highest probability, and if the target is
found, the mission is successful. If not, the probabilities are updated iteratively using the Bayes
formula [Box and Tiao 2011] to reflect new information from the search.

The Bayes formula guides the iterative updates of probabilities, incorporating observed
data. To update the cell probabilities, variables p (probability of the target being in a cell) and
f (probability of finding the target if it is present) are introduced. The posterior probabilities of
searched and other cells are updated accordingly, leading to a dynamic adjustment of probabilities
and an improved estimation of the target’s location. This iterative process continues until the target
is located, demonstrating the effectiveness of the Bayesian search method for SAR missions.

3. Loyal Wingman Application
This section describes the application of LW systems using UAVs and decision-making capabili-
ties. The section assesses the effectiveness of LW systems using metrics, and discusses the deve-
lopment of decision-making for Kamikaze and Loyal Wingman UAVs. Experiments are presented
to validate the performance and efficiency of the implemented decision-making.

3.1. Loyal Wingman Scenario
To explore the concept of Cooperative Engagement Capability (CEC) within the Manned-
Unmanned Team (MUM-T), we present a defense scenario [Giacomossi et al. 2021a,
Ricardo et al. 2023] involving two teams comprising fully actuated UAVs. The MUM-T team
consists of Loyal Wingman (LW) UAVs that fly in formation alongside a manned leader, pro-
viding defense for both the leader and a protected area (PA). In contrast, the adversarial team
comprises a swarm of kamikaze threats, as in Figure 1. The primary objective of the MUM-T



Ground Assets

Figura 1. Scenario of interest where LW UAVs, highlighted in blue, supported by
ground assets, escort a leader UAV and engage kamikaze threats in order
to defend a protected area.

team is to prevent any damage to the leader or the PA. The mission is considered unsuccessful
if the leader or the PA are destroyed. Furthermore, to support the MUM-T members, the PA is
equipped with ground assets capable of providing aerial surveillance.

The LW is autonomous and capable of making intelligent decisions based on the situati-
onal awareness information. To neutralize the threats, the LW is equipped with two hypothetical
weapons, a mid-range freezing gun and a short-range vaporizer gun, both with a limited number of
cartridges and a fixed cool-down time interval. The vaporizer gun can neutralize the threat, while
the freezing gun slows down the threat by half of its maximum speed. The weapons’ model is
simplified, being the hitting success calculated by a given probability. Note that, the freezing gun
is intended to make the decision space more complex, and the vaporizer gun is also an idealized
weapon that uses energy to destroy the electronic components.

The leader is remotely controlled by a human and it is in charge of the formation coordi-
nation, i.e., it is capable of passing relative coordinate commands to the LW. We assume the loyal
wingmen to fly within one predefined formation pattern. In this paper, we consider this unique pat-
tern as an uniform-circular formation along the local horizontal plane with a desired radius. We
also assume that the leader is always capable to command the loyal wingmen whenever required.

In contrast, kamikaze UAVs detonate upon collision with the leader, an LW, or the PA,
causing damage to the target. Once a kamikaze selects a target, it pursues it until self-explosion
or neutralization. The number of kamikazes remains constant, as they immediately re-spawn after
being neutralized, ensuring a continuous stream of attacks. Though possessing simplified AI, the
kamikazes are faster and more numerous than the MUM-T, compelling the MUM-T to collaborate
effectively for neutralization. Situational awareness is shared by the ground assets, providing a
vector with the state (position, attitude, and linear velocity) of all entities.

3.2. Problem Breakdown

Robotic cognition involves decomposing agents into software layers for situational awareness,
decision-making, and control, as shown in Figure 2. This work focuses on high-level decision-
making, cooperation, and low-level path planning, guidance, and control tasks, idealizing situati-
onal awareness.

i

Figura 2. Problem breakdown indicating the main software layers.



The HL decision-making layer processes state information from situational awareness,
containing pose and linear velocity of objects in a global coordinate system. AI-based algorithms
process the states, generating action commands for rotational and translational movement, and
weapon use. The LL control translates movement actions into state references, which are used
to calculate control input for the MAV and allocate weapon actions. The MAV module includes
vehicle dynamics, control allocator, actuator model, and weapons model, with simplified aiming
and projectile dynamics. MAVs share a synchronized internal model, aware of threats and other
agents due to ground-asset radars. Each agent is identified by a unique ID. Note that this work
addresses only the high-level decision making aspects of the problem breakdown.

3.3. Problem Definition
In this section, we describe the problem to be addressed by LW agents’ decision-making. Their
main mission is to defend the protected area and the leading drone against multiple kamikaze drone
incursions. Effectively engaging and neutralizing threats is crucial for ensuring both safety and
mission success. To achieve this, LW UAVs must possess autonomous decision-making capabili-
ties, including flying in formation with cohesion and effectively engaging and neutralizing threats.
This requires the use of embedded weaponry, intelligent and strategic weapon deployment, and, if
necessary, sacrificing themselves to neutralize a threat.

The main problem of the HL decision-making can now be defined.

Problem I. The main problem is to develop an autonomous intelligence module for the LW MAV
to successfully achieve the mission objective, aiming at the smallest loss of LW agents during the
attack and defense maneuvers.

Based on this problem it is identified a need for defining a set of expected behaviors for
the agents. Therefore, we define the following subproblem:

Subproblem I.1. Design basic behaviors for the LW agents and to develop a decision-
making architecture to coordinate these behaviors.

To tackle Subproblem I.1 we need to design the adversary agents, to properly evaluate our
solution to Problem I.

Subproblem I.2. Design basic behaviors for the kamikaze agents and to develop a
decision-making architecture composed of these behaviors.

Agent
Action, a

State, s

Environment

Figura 3. Problem I definition diagram.

Therefore, the main agent in our problem is the LW UAV, who will have to perform actions
based on the AI-based decision making, as seen in Figure 3. The action a is performed by the agent
based on the agent’s state s as feedback. Note that the environment encompasses all agents.

3.4. LW-Kamikaze Assignment Problem
One of the subproblems also addressed is the allocation (or assignment) of tasks among the LW
UAVs. By task we mean the neutralization of a specific kamikaze threat. The classical assignment



problem, extensively studied [Burkard and Çela 1999, Munkres 1957], deals with optimally assig-
ning workers to tasks based on ratings or costs. The aim here is to facilitate cooperation among
MUM-T members, where the leader UAV commands the LWs and distributes tasks. Thus, let us
consider the following subproblem.

Problem II. Given a set of workers W , a set of tasks J , and a set of costs C indicating how
effectively each worker wi ∈ W , where i ∈ {1, . . . , n}, can perform each task ji ∈ J determine
the best possible assignment of workers to tasks, such that each task is assigned to one worker and
each worker is assigned one task, so the total cost is minimized.

One wishes to choose a set of n independent elements (ci,j) of a cost matrix C, where ci,j
is the element of the i-th row and j-th column of C, so that the sum of these elements is minimized.
This can be expressed as permuting the rows and columns of C to minimize the trace of a matrix
minL,R Tr(LCR), where L and R are permutation matrices, and the cost matrix is

C =

w1

w2

...
wn

j1 j2 ... jn
c1,1 c1,2 ... c1,n
c2,1 c2,2 ... c2,n

...
...

. . .
...

cn,1 cn,2 ... cn,n

. (1)

The Kuhn-Munkres algorithm, or the Hungarian algorithm, is a renowned solution to
the assignment problem [Munkres 1957], refined by J. Munkres. It operates on a cost matrix
C ∈ Rn×n, where each element ci,j represents the cost of assigning the jth task to the ith worker.

3.5. Decision-Making Development

To start addressing Problem I, we need the kamikaze agents to be functional via simplified but
effective AI. Consequently, we selected the FSM technique to develop the decision-making mo-
dule for the kamikaze. In this technique, a state s represents a behavior for the agent. In Fig. 4,
we present the decision-making developed for the kamikaze UAV, note that each UAV contains an
identical decision module.

?

ThreatInWeaponsRange?

ThreatInEngagementRange
and VaporizerAvailable?

Chase Threat

Go To
Formation

?

ThreatInVaporizerGunRange and
VaporizerAvailable? VaporizeThreat

ThreatInFreezingGunRange and
 FreezingAvailable? FreezeThreat

OutOfAmmunition? SacrificeAttack

Legend

Condition

Sequence ? Selector

Behavior Inverter

Approach
Formation

PermissionToJoinFormation
and InRangeToRejoin?

??

is LW allocated to a threat?

LW Swarm
Destroyed,
p4:0.5

LW Swarm
Destroyed,
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Attack
Loyal Wingman

State

Leader
Destroyed

Attack Leader
State

Area
Destroyed 

Attack
Protected
Area State

t1,p2,LW>0

IdleState
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Leader:True

t1,p3,

PA:True

t2=1[s]

Figura 4. On the left, the Behavior tree for the loyal-wingman UAV. The blue-
circled behaviors represent movement behaviors, and the red-circled beha-
viors depicting offensive behaviors. On the right, the Decision-Making mo-
dule for a kamikaze MAV using FSM.

The kamikaze has a set K of four behaviors, the initial behavior is IdleState, where the
agent is idle for t1 seconds and then selects a target based on the probabilities p1, p2, and p3,
which in this work are equally distributed probabilities used for each target type. Once a target is
selected, the FSM will transition to the representative state of the selected target and will remain
in that state until the agent is destroyed. The exception is Attack Loyal Wingman; this behavior



targets the closest LW, and will select the closest LW every t2 = 1 s, to avoid frequent target
switching. Once there are no more LW, the FSM transitions to attack the leader or the protected
area with a probability of 50% each.

To address the complexities of LW UAV behaviors and their desired capabilities, a more
elaborate AI architecture is needed. For Subproblem I.1, the decision-making module employs
the BT technique, chosen for its advantages over FSMs [Iovino et al. 2022]. The BT diagram
for an LW UAV, shown in Figure 4, includes default behavior of staying in formation (Go To
Formation) unless threats are detected. When a threat enters the engagement range or the LW
is assigned a task, it switches to the Chase Threat behavior, utilizing available weapons such
as the vaporizer gun or freezing gun. The LW selects a neutralization method based on weapon
availability and ranges. The preferred strategy involves freezing the closest threat within mid-
range, approaching it safely, and using the vaporizer gun. If both weapons run out of ammunition,
the LW resorts to the SacrificeAttack behavior. After eliminating the threat, the LW returns
to the formation by approaching it from a safe distance df ∈ R>0. It then requests permission to
rejoin and awaits the formation coordinates.

3.6. Simulation Results
The effectiveness of the overall method is evaluated using a Monte Carlo simulation with 122
iterations. These simulations are performed considering 4 LW against 3 kamikazes (that respawn
once neutralized) with the PA located at the origin and the leader hovering at the point (5, 0, 5)
m. The LW have a maximum speed of 1.5 m/s, being the kamikazes 50% faster. The freezing
and vaporizer guns have an ammo of 10, a cooling down of 1 s, and a hit probability of 95%. The
freezing gun can reduce the kamikaze speed by half during 5 s. Figure 5 shows the simulation
results. It can be seen that, on average, the survival time is 169.3 s and the number of kamikazes
destroyed is 34, without considering the sacrifice attack behavior, which is an excellent result
since the MUM-T can only directly neutralize a maximum of 40 kamikazes given that each LW
is equipped with a vaporizer gun with an ammo of 10. This corresponds to 85% of the total
neutralizing capability.

Figura 5. Monte Carlo simulation results. ST stands for survival time and KD
stands for kamikazes destroyed.

4. Search and Rescue Application
This study examines UAVs’ potential in search and rescue (SAR) missions, focusing on AI tech-
niques for addressing challenges. It introduces a tailored strategy and decision-making process
for drones and swarms, emphasizing autonomous and collective capabilities. The experimentation
includes two approaches: developing autonomous and collective decision-making and a search
strategy.

4.1. Search and Rescue Scenario
Developing a search and rescue scenario using drones provides an opportunity to study the intrica-
cies of the complex problem of locating missing individuals. By simulating scenarios and evalua-
ting the performance of drone swarms, insights into the effectiveness of different search strategies



Figura 6. Search and Rescue scenario, a swarm of drones, within the red circle.
The environment symbolizes obstacles as trees. The objective is to locate
the lost person.
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Figura 7. Search process using three drones. Green, yellow, and red cells re-
present low, medium, and high probability regions, respectively. No flight
zones are illustrated as blue cells. The yellow circle with a person repre-
sents the object of interest. Each line with a different color represents the
path taken by a different drone. Gray circle represents the start point.

and algorithms can be gained. This involves designing environments, incorporating factors like
obstacles, and limited visibility to mimic real-world search scenarios. For this, we utilize a 2D
swarm simulator [Giacomossi et al. 2021b] with the proposed scenario involving a UAV swarm in
a forest region of approximately 60, 800 m2 and dividing the area into (38× 16m) squares. The
swarm assumes that the UAVs lack prior information about the missing target’s position and must
navigate around obstacles. The drones operate within a shared UAV swarm network, allowing
the exchange of mission-related data, including the positions of all mission components and the
location of the identified target. The target is considered located when a drone is within a distance
of less than two squares, as depicted in Figure 6 by a circle around the target.

4.2. Search Process using a Probability Map

At the start of the search process, the drones communicate to select different cells on the map with
high probabilities and navigate towards it to begin the search process, as in Figure 7. Once the
drone reaches the intended location, it actively initiates the search process using Hill Climbing
(HC) search and Bayesian Search (BS) algorithms [Giacomossi et al. 2023]. In Figure 8, we can
observe the search process being performed by the drone. The drone follows a strategy where it
visits a cell and, in case the object is not identified, it examines the probabilities of the 8 neighbo-
ring cells. Then, using the HC algorithm, the drone moves to the cell with the highest probability



Figura 8. The search selection is shown within the green square, where the drone
covers 8-connected cells. High, medium, and low probabilities are repre-
sented by Red, Yellow, and Blue cells, respectively. The Gray cells indicate
areas already visited by the drone. Inside the blue square, the sequence
depicts the drone employing the Bayes algorithm to update the probabili-
ties associated with each cell as it explores them. The numbers in each
cell represent these probabilities, which are continually updated.

to continue the search.

In the blue sequence in Figure 8 we illustrate the Bayes algorithm updating the cell proba-
bilities in a simulation. The probabilities of all map cells are updated at each step using the solution
described in [Giacomossi et al. 2023]. As seen in frames (a) and (b), the probabilities increase as
the drone visits new cells without finding the object. In each instance of the simulation, a new
probability map is created randomly. The probability for each cell in the map is assigned using
an uniform distribution. The location of the individual is also updated to a new high probability
cell in the newly generated map. Also, new obstacles are randomly positioned in the map, which
helps to evaluate the algorithm’s performance under different conditions. The random assignment
of probabilities to each cell ensures that the simulation results are unbiased towards any particular
scenario.

4.3. Decision-Making for the Search and Rescue Drone Swarm

Our decision-making can be divided into two categories: autonomous intelligence, referring to a
single UAV, and collective swarm intelligence, referring to the group. Therefore, decisions are
decentralized to each UAV, and cooperative, as the group must cooperate to attain the mission.
The implemented intelligence modules are described in Figure 9. The target search module dis-
tributes UAVs among scenario according to the strategy developed. Each drone autonomously
starts searching the scenario. To control drone behavior, a FSM was developed, representing dif-
ferent behaviors. The FSM for the search and rescue UAV is shown in Figure 9, comprising two
main states: SearchState and SeekState. Two auxiliary states, GoToClosestDrone
and RandomTarget, help prevent blockages caused by local minima. Note that each drone has
its own FSM.

The drone’s default behavior is to search for the missing target in the SearchTarget
state. When the target is located, either by the drone itself or another agent, it transitions to the
SeekState. In this state, the target’s coordinates are shared with all agents. If the drone en-
counters an obstacle hindering its movement, it switches to the GoToClosestDrone behavior,
navigating towards the nearest agent as a heuristic. If the drone remains blocked, it enters the
RandomTarget state, selecting a random target to navigate towards. Once unblocked, the FSM
returns to the default SearchTarget state. Notably, the drone can transition to the SeekState
from any state in the FSM.
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Figura 9. Finite State Machine that controls the drone’s behavior. On the right,
the proposed heuristics description for Swarm Intelligence.

Tabela 2. Results of the experiments.

Exp. Strategy Mean Time [s]
1 Lawn Mower - [Giacomossi et al. 2021b] 57.6
2 Probability Map + HC + BS 33.4

4.4. Experiments

The simulator [Giacomossi et al. 2021b] has been enhanced to generate a new probability map
during each new instance, which includes updated obstacles and a new location for the missing
person. This dynamic probability map enables the drones to adapt their search patterns based on
the latest information, enhancing their efficiency. For the experiments, we evaluate the average
time taken to complete the mission in 270 runs and compare it to the results obtained in our previ-
ous section, which employed a strategy based on the lawn mower search [Giacomossi et al. 2023]
and no additional information.

4.4.1. Results

In Table 1 we present the results obtained from the experiments. Notably, Experiment 2 demons-
trated a shorter mean time of 24.2 seconds compared to Experiment 1. This indicates that the new
strategy utilizing the probability map with the addition of the HC and BS algorithms resulted in
an approximately 72% improvement in time efficiency for identifying the missing person. These
results suggest that the HC and BS algorithms significantly reduced the time required to complete
the task, in comparison to the approach adopted in Experiment 1.

Also, consider that the drones are being simulated in a 2D environment with reduced
degrees of freedom, simplified dynamics, and with idealized identification and communication
capabilities. So notice that these results can deviate from real world performance. Furthermore, it
demonstrates the importance of improving the search method when the goal is to optimize the time
efficiency. Note that the Experiment 2 may be more useful as a model for achieving that goal, but
the Experiment 1 is still a safe approach when performing a search when there is no information
about the region, i.e, no previous map of probabilities is provided.

The results of the comparison between the mission with and without the aid of a pro-
bability map provide evidence that using such a map can significantly reduce search time. An
interesting observation from the experiments is that when the target is located in a high probability
area with most of its cells in the direct path of the drones, as seen in Figure 8, the time taken
to locate the target is significantly reduced. This is because the drones can fly almost directly to



Figura 10. Drone performing the search in the 8-connected cells. Red, Yellow and
Blue cells are the high, medium and low probabilities respectively. In Gray,
cells already visited. The numbers represent the probability of each cell.

the target, bypassing areas with low probabilities of detection. However, if the target is not in a
high probability area, the algorithm may lead the drones to wrong areas, resulting in decreased
time efficiency. Therefore, while the use of a probability map can improve search time in optimal
scenarios, its effectiveness may vary in situations where the map has incorrect assumptions. Thus,
the accuracy of the probability map is a critical factor that has a significant impact on the search.

5. Conclusion
This paper delves into the utilization of decision-making techniques in the context of swarms of
UAVs. The research undertakes an evaluation of two distinct applications: the so-called loyal
wingman drones within a defense scenario, while the second concentrates on a civil application,
targeting search and rescue missions aimed at locating missing individuals. For both applications,
AI-based decision-making techniques were employed. Additionally, a tailored set of rules and
strategies was developed to address the unique challenges presented by each specific problem.

This study evaluates the Cooperative Engagement Capability (CEC) concept in a Manned-
Unmanned Team (MUM-T) operating in a gamified defense scenario. The team consists of a
manned-controlled UAV and a group of loyal wingman UAVs with combat capabilities. The goal
is to enhance the defense of the leader UAV and protect critical infrastructure from a swarm of
Kamikaze UAVs equipped with explosives. The loyal wingmen use vaporizer and freezing guns
to counter threats. AI-based decision-making and collaboration within the MUM-T are aimed at
achieving higher efficiency in the mission. The study developed AI modules for both LW and
kamikaze UAVs, focusing on FSMs and BTs. The Munkres algorithm was employed to evaluate
cooperative capabilities within the MUM-T, and a uniform-circular formation was proposed.

This work also investigates the use of UAV swarms for search mission, focusing on lo-
cating unknown individuals. A UAV swarm simulator was developed to evaluate various aspects
of the research. We developed intelligent search strategies based on autonomous and collective
decision-making for UAVs, employing a Finite State Machine (FSM) to control drone behaviors,
a discrete map of the search region, and a blockage prevention heuristic to reduce UAVs stuck in
local minima. The swarm intelligence approach was found to be effective, reducing the number
of UAVs in local minima and reducing the mission completion time. Future works can investigate
various communication challenges such as delays and packet loss, state estimation, incorporate
more realistic drone dynamics, and adopt a sensor model that better reflects real-world conditions.
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