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Abstract. Pushing is a fundamental yet challenging primitive in robotics,
especially in cluttered and constrained environments. This dissertation proposes
a novel two-level approach combining a low-level Deep Reinforcement Learning
(DRL) policy and a high-level navigator to transport objects through narrow
passages. The DRL policy ensures the object stays within a tight capsule,
enabling integration with classical planners. Experiments show that this
method reliably pushes irregular objects through spaces as narrow as twice
their diameter, outperforming unconstrained methods, and succeeds in complex,
mapless environments with dead ends and tight corridors.
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1. Introduction

This dissertation focuses on a subfield of nonprehensile manipulation called planar
pushing, which has been used throughout the literature [Bauza and Rodriguez 2017,
Bauza et al. 2019, Lynch 1996, Salganicoff et al. 1993] as a testbed for developing and
studying general nonprehensile methods. On a high level, planar pushing is defined as the
task of positioning and orienting an object on a flat surface using only pushing actions.
In addition, as it is relevant for most applications, there are obstacles on the surface that
must not be touched by the robot or the object. This formulation can describe both mobile
and manipulator robots. For example, a robot arm might push a cup while avoiding
other kitchen utensils over a cluttered table, or a mobile robot might push a large box
to transport it through a warehouse.

Furthermore, pushing is in itself a valuable manipulation primitive. It allows
robots to manipulate objects that are too large, heavy, or awkwardly shaped to
be grasped directly. Pushing also enables fine adjustments in object position and
orientation, which can be crucial for precise assembly or preparation tasks. Dogar
and Srinivasa [Dogar and Srinivasa 2010], King et al. [King et al. 2013], and Lee et
al. [Lee et al. 2015] combine pushing and grasping for better manipulation, for example,



by using pushing to put an object into an easier to grasp configuration or to reduce
uncertainty on the object’s state. In cluttered or dynamic environments, pushing can help
clear paths, reposition obstacles, or group objects for easier handling. In addition, pushing
can reduce mechanical complexity and energy consumption, as it often requires simpler
hardware and avoids the need for complex grasp planning or force control. It is a valuable
skill for both manipulator and mobile robots that transport objects. By incorporating
pushing, robots can complete more tasks, improve task efficiency, and exhibit more
human-like manipulation capabilities.

Figure 1 illustrates an instance of the problem addressed. The blue circle
represents the robot, the black circumference shows the boundary of the robot’s local
sensing range, the red polygon is the pushed object, the yellow polygon represents the
goal pose, and the gray areas are the obstacles. The black dot on the object and goal helps
to identify the shape’s orientation. The robot must transport the object to the goal position
and orientation only using pushing actions and without colliding with the obstacles. The
robot does not have a map of the environment and can only perceive the obstacles inside
the local sensing range.

Figure 1. Mapless planar pushing: the robot (blue dot) pushes an object (red
polygon) to a goal pose (yellow polygon) in an unknown and cluttered
environment using only local sensing (dashed circle).

The goal is to place the object in a specific pose within the position and angle
thresholds, defined by (x,y), an angle 6, and threshold distances (e, €p). Unlike the
easier task of achieving a certain position without considering the orientation.

1.1. Contributions

In this dissertation, we design and implement a system that combines path planning and
DRL to robustly and precisely push an object of arbitrary shape to a goal pose in a
cluttered, unknown environment. To demonstrate our system’s flexibility and robustness,
we apply it to the challenging mapless scenario, which is useful for local obstacle
avoidance and unknown environments.

Our main contributions are:

* Proposition of a DRL policy that learns to efficiently push objects of arbitrary
shapes towards a predefined goal pose (z, y, §) within a capsular region.

* A robust framework tailored for the transportation of objects in unknown cluttered
environments that integrates the learned policy with a mapless local navigator.



* Design of a two-dimensional action space that allows the policy to perform both
precise and efficient planar pushing movements in more constricted spaces.

This work was also published as a peer-reviewed paper:

e Gabriel S. Luz, Douglas G. Macharet. @A DRL Approach for Mapless
Transportation of Arbitrary Objects. Ist Brazilian Conference on Robotics
(CROS), 2025.

2. Literature Review

Early work on planar pushing relied on analytical models based on classical
mechanics [Mason 1986], but their reliance on simplified assumptions and unknown
friction parameters limits real-world accuracy. To address this, researchers shifted to data-
driven methods, including parameter estimation [Kloss et al. 2020], learned dynamics
models [Bauza et al. 2018], and direct policy learning via Deep Reinforcement Learning
(DRL) [Ferrandis et al. 2023]. DRL has proven effective in various manipulation tasks.
Examples include solving a Rubik’s Cube with a robotic hand [OpenAl et al. 2019], high-
accuracy grasping with emergent behaviors [Kalashnikov et al. 2018], and sim-to-real
dexterous manipulation [Lin et al. 2025]. In planar pushing, Zeng et al. [Zeng et al. 2018]
showed DRL can integrate pushing and grasping in cluttered scenes. These works
demonstrate DRL’s potential for handling complex, diverse manipulation scenarios
without manual algorithm design.

A key challenge in DRL-based pushing is obstacle avoidance. Learning both
pushing and avoidance jointly is data-intensive and slow to converge. Yet, classical path
planning algorithms like RRT [LaValle 1998] and PRM [Kavraki et al. 1996] are efficient
and reliable. Our approach separates the tasks: a high-level planner defines a collision-
free route, and a low-level DRL policy pushes the object along it, improving robustness
and data efficiency. This modularity also supports extensions to dynamic or mapless
planning.

Following Mandadi et al. [Mandadi et al. 2023] and Eoh [Eoh 2023], we decouple
planning and pushing, but enhance it by constraining the DRL policy to operate within a
capsule-shaped region. This allows tighter trajectory control, enabling navigation through
narrower passages and closer proximity to obstacles than square-based constraints.
Moreover, we tackle a harder variant of the problem: pushing to a full 3D pose and
handling irregular and concave objects, outperforming prior work [Cong et al. 2022,
Cho et al. 2024]. Our method is the first to push arbitrary-shaped objects to a 3D goal
while avoiding obstacles and navigating through tight spaces.

Table 1 summarizes how our method compares to prior DRL approaches in terms
of obstacle handling, irregular object support, 3D pose goals, real-robot validation, and
generalization.

3. Problem Formulation

Given £ € R? an unknown static cluttered environment. Consider an object O
characterized by a configuration O, , 9, where O,, = (z,y) denotes its position, and
Oy represents the orientation. Let R be a robot represented by its position p = (x,y),
with a kinematic model given by p = u.



Table 1. Comparison of DRL approaches for planar pushing across key factors.
@ = fully addressed; © = partially addressed; O = not addressed.
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Assumption 1. The object is a rigid body of arbitrary shape, and the robot has prior
knowledge of its characteristics.

Assumption 2. The robot has access to the poses of both the object and the goal at every
time step.

Assumption 3. The robot is capable of distinguishing between obstacles in the
environment and the object.

Problem 1 (Planar Pushing Pose Control). A holonomic mobile robot is tasked with
pushing an object O from a starting pose Sy, 9 € R? x [0,27] 1o a goal pose G, €
R? x [0, 27] within an unknown cluttered planar environment E. The success criteria are
met if and only if the following conditions are simultaneously fulfilled before t time steps:

HO%y — G:Jc,yH < € and AQ(OQ, Ge) < €,

where €, and €y are error thresholds, O, € R? is the position of the geometric center
of O, and Oy € [0,27] is the object’s orientation. The task fails if the robot or object
collides with an obstacle or the time limit t is exceeded.

4. Methodology

4.1. Overview

To address the defined problem, we propose a two-fold approach. Firstly, a high-level
navigator, operating without a map, dynamically constructs an obstacle-free path to the
goal. The navigator selects the next subgoal based on the width of the obstacle-free
capsule to it, distance to the goal, and potential information gain. Subsequently, a low-
level DRL policy controls the robot to push the object toward the subgoal within the
designated capsule. This iterative process continues until the object reaches the final goal.
Figure 2 provides an overview of our proposed system.



1- Mapless Navigator picks the next subgoal. 2- RL Policy reaches the subgoal.
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Figure 2. Overview of our mapless transportation approach. Two components
alternate until the final goal is reached. The mapless navigator dynamically
creates an obstacle-free path, based on past and local information, by
selecting the next subgoal. Then, a Neural Network policy controls the
robot to push the object to the subgoal within a capsular region.

4.2. Capsular Region

A capsular region is defined as the set of all points within a distance % from the line
segment connecting the object’s start position S, , to the goal position G ,, where W € R
is the capsule width. As illustrated in Figure 3, this region consists of a rectangular
corridor of width W and two semicircular ends centered at S, , and G, ,. This shape
provides enough room for the robot to maneuver the object in any orientation and allows
complex paths to be approximated by chaining multiple capsules. Additionally, checking
whether the capsule is obstacle-free is simple, as it reduces to interpolating a circle of
diameter W along the path. A limitation, is that /' must be large enough to contain the
object in any orientation, which may be restrictive for highly elongated objects.
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Figure 3. Example of a capsular region with a width 1/ from the starting object
position S to the goal G. The robot is depicted as a blue circle.

4.3. Planar Pushing within a Capsular Region with DRL

To transport an object through a sequence of capsules, the pushing policy must ensure
that both the robot and object remain within the capsular region until reaching each
subgoal. Simply learning to push toward a goal is insufficient, as efficient paths may



leave the region. To address this, we designed a DRL training environment with a custom
reward function that enforces capsule compliance. In each episode, the object and goal
are randomly placed within a rectangular space, and the agent starts near the object.

4.3.1. Action Space

We model the robot as a holonomic circular agent. The policy outputs a continuous action
a = (a,,ap) € [0,1]%, where ay sets the movement direction and a, determines the step
length between predefined bounds [miny,, mazy]. The resulting vector v defines a target
point in the robot’s local frame, and the robot moves toward this point using constant
velocity until it’s reached or a step limit is hit.

4.3.2. Observation Space

Following Ferrandis et al. [Ferrandis et al. 2023], the observation includes only the
object’s pose, not its shape, making the policy shape-specific but simplifying the problem
focus. To support generalization across varying capsule widths W, which are randomly
sampled, the observation includes W as part of a goal-conditioned setup [Liu et al. 2022].
The observation, expressed in the agent’s frame, contains 9 normalized values: the
polar coordinates and orientation of the object, its start position, the goal pose, and the
capsule width. This compact representation allows the agent to adapt to both the object’s
configuration and the varying task constraints.

4.3.3. Reward Function

An episode ends in success when the object reaches the goal pose within set tolerances,
or in failure if the object or robot exits the capsule or the robot strays too far from the
object. A small time penalty encourages efficient trajectories. To guide learning, we
apply potential-based reward shaping [Ng et al. 1999], using two potential functions: one
for reducing the distance to the goal position and another for aligning orientations. The
shaped reward is scaled so its total contribution averages 1.0 per successful episode, with
termination rewards of +1.0 for success and -1.0 for failure. The final reward is the sum
of the termination reward, the potential reward, and a constant time penalty of -0.01.

4.4. Mapless Transportation

The proposed DRL policy can be paired with any planner that builds a path from
connected obstacle-free capsules. To demonstrate its flexibility, we apply it in a mapless
navigation scenario using only local sensing, where the robot builds the path dynamically
and may need to backtrack. Our local planner samples candidate subgoals from a ring
around the object, ranks them using a heuristic score combining viability, information
gain, and proximity to the goal, and selects the best one. The robot uses 360° sensing
(e.g., laser) to detect obstacles. Once a subgoal is set, the DRL policy attempts to reach
it within 30 steps. Orientation is adjusted in 30° increments toward the goal. To handle
tight spaces, if the object can’t reach the subgoal precisely, we initialize the next capsule
from the closest point on the previous capsule’s line segment to ensure continuity.



5. Experiments and Results

We performed simulated experiments to evaluate the pushing policy across different
capsule widths and assess the full mapless transportation system in cluttered environments
of varying complexity. Ten distinct policies were trained and tested, each specialized
in pushing a different object with an arbitrary shape. The results demonstrate that
our approach can robustly handle complex geometries and integrate seamlessly with a
mapless navigation strategy. Video demonstrations are available in the footnote!.

5.1. Planar Pushing within a Capsular Region with DRL

We evaluated the minimum capsule width W required for reliable pushing by training
and testing ten DRL policies, each specialized in pushing a different arbitrarily shaped
object. To enable generalization across widths, we trained each policy with W ~ [8, 15]
and evaluated success rates over varying widths. Training used the SAC algorithm for SM
steps, with reward scaling and periodic evaluation.

Results (Figure 4(a), Table 2) show that capsule-constrained policies achieve over
95% success for W > 10m, allowing transport through passages twice the object’s
diameter. In contrast, unconstrained policies require W > 22 m, i.e., 4.4 times the object’s
size. Training curves (Figure 4(b)) confirm convergence for all objects.
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Figure 4. (a) Success rate (%) for different capsule widths (m) over 1,000 episodes
for each policy. (b) Smoothed success rates plotted over training steps for
each of the 10 policies.

Table 2. Success rate (%) for different capsule widths (m) over 1,000 episodes
for policies trained with and without the capsule restriction. We take the
average result and the 95% confidence interval over the 10 policies.

10m I5m 20m 25m
Capsule 96.7+1.5]99.0+05]99.3+£03|99.4+£0.2
No Capsule | 304 £6.8 | 71.2+£9.6 | 92.1£5.2 | 98.3+0.9

!'Videos of the executions: https://youtu.be/8sixF2if-tc
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5.2. Mapless Transportation

We evaluated the mapless transportation system on five obstacle maps (Figure 5) with
varying complexity. Each policy was tested across 200 trials per map version, with
random start and goal poses. The local navigator uses 360° laser sensing and samples
200 subgoal candidates per step.
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Figure 5. Overall scenarios with 25m passages.

Table 3 shows that the system performs reliably in environments with passages
>25m wide, achieving over 96% success. Performance drops slightly in 20m passages
due to navigation challenges, though the low-level policy can still handle them.

Table 3. Success rate over 200 trials for each combination of map version and
object. We take the average result and the 95% confidence interval over
the 10 objects.

Map 1 Map 2 Map 3 Map 4 Map 5

20m | 86.9£59 | 87.6£5.0 | 825£6.5|91.6£39 | 798 £7.0
25m | 98.1+£14 | 97.2+£22 | 966+£29 | 97.2+£1.4 | 96.0 £ 2.7
30m | 99.1+£0.6 | 98.74+1.1 | 984+1.3 | 982+1.1|979+1.3

Figure 6 illustrates a very challenging case where the robot explored most of the
map, navigating dead-ends and tight turns before succeeding.



Figure 6. A challenging scenario where the robot needed to explore the entire
map before reaching the final goal.

6. Conclusions and Future Work

6.1. Conclusions

Deep Reinforcement Learning (DRL) has shown strong results in object
manipulation [OpenAl et al. 2019, Kalashnikov et al. 2018, Lin et al. 2025], and
prior work [Ferrandis et al. 2023, Zeng et al. 2018, Cho et al. 2024] has demonstrated its
potential for planar pushing. However, most DRL approaches overlook pushing among
obstacles, crucial for real-world tasks—and focus only on simple shapes or 2D goal
positions [Mandadi et al. 2023, Eoh 2023, Dengler et al. 2022].

This work proposes a two-level approach that combines a DRL policy and a
high-level navigator to push arbitrary objects in cluttered, unknown environments. The
DRL policy pushes toward subgoal poses while keeping the object within a capsule-
shaped region, enabling safe and predictable motion. This allows seamless integration
with classical planners to navigate through narrow passages. Simulated experiments
with diverse objects show that our capsule-based policy reliably pushes within regions
just twice the object’s diameter, approaching the theoretical 1.4x lower bound and
outperforming the 4.4x baseline. When combined with a mapless navigator, the
system consistently transports objects in complex environments with dead-ends and tight
corridors.

6.2. Future Work

Future work should address limitations that hinder real-world applicability of the
proposed method. The current policy lacks adaptability to variations in object
and surface properties, which significantly affect pushing dynamics [Yu et al. 2016,
Bauza et al. 2019]. A more general solution would allow zero-shot manipulation of
diverse objects and rapid adaptation to novel scenarios, potentially achievable through
visual/tactile sensing, few-shot learning, and meta-learning. The capsule constraint
also presents limitations, being overconservative and unsuitable for elongated objects.
Allowing the policy to perceive local obstacles could enable more efficient pushing while
maintaining the benefits of task decomposition [Dengler et al. 2022]. Additionally, recent
advances in general manipulation using Diffusion Policies [Chi et al. 2023] and Vision-
Language-Action models [Pertsch et al. 2025] offer promising paths forward. These



models show strong generalization and can handle complex objects and tasks, and could
be combined with DRL for enhanced adaptability and precision.
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