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Abstract. This paper proposes a methodology based on the multi-objective ge-
netic algorithm NSGA-II for the optimized placement of scalar and visual sen-
sors in collaborative monitoring networks designed for urban emergency de-
tection. The solution simultaneously addresses spatial coverage, sensing qua-
lity and redundancy, and network connectivity criteria. Experimental results
indicate that the proposed methodology effectively balances multiple optimiza-
tion objectives, ensuring extensive coverage of the region of interest, appropri-
ate redundancy levels, and robust connectivity to enable effective collaboration
among sensors.

Resumo. Este trabalho propõe uma metodologia baseada no algoritmo
genético multiobjetivo NSGA-II para posicionamento otimizado de sensores es-
calares e visuais em redes colaborativas de monitoramento de emergências ur-
banas. A solução considera, simultaneamente, critérios de cobertura espacial,
qualidade e redundância de sensoriamento, e conectividade em rede. Resulta-
dos experimentais mostraram que a metodologia proposta alcança equilı́brio
satisfatório entre os múltiplos objetivos analisados, garantindo boa cobertura
da área de interesse, nı́veis adequados de redundância e conectividade robusta
para colaboração efetiva entre sensores.

1. Introdução
Emergências urbanas, como incêndios, enchentes e acidentes em vias de tráfego, apre-
sentam risco significativo de perdas humanas e materiais. Devido às caracterı́sticas im-
previsı́veis desses eventos, a rapidez e a precisão na coleta de dados de campo são cru-
ciais para que as autoridades elaborem contramedidas eficientes. A fim de suprir tal de-
manda, Redes de Sensores Sem Fio (RSSF) têm ganhado espaço em aplicações de Inter-
net das Coisas (IoT), oferecendo monitoramento contı́nuo das condições de uma região
[Fei et al. 2017]. Ainda assim, questões como limitações de energia, interferências no
sinal e restrições de cobertura tornam a implantação dessas redes um desafio complexo
[El-Sherif et al. 2018].

A proposta de Sistemas Colaborativos tem ganhado fôlego em pesquisas voltadas
à detecção de emergências urbanas. Em essência, esses sistemas viabilizam a troca e
a consolidação de informações provenientes de dispositivos espalhados em campo, de
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forma descentralizada, para gerar alertas e orientar a tomada de decisão, contribuindo
para uma leitura mais confiável do ambiente [Wu et al. 2020].

No contexto das RSSF, o aspecto colaborativo emerge à medida que cada nó sen-
sor, capaz de coletar parâmetros ambientais (temperatura, umidade, concentração de ga-
ses etc.), troca dados ou metadados com seus vizinhos e/ou com estações de análise.
Assim, possı́veis falhas de leitura ou situações de bloqueio de sinal podem ser compen-
sadas pela informação de outros sensores, enriquecendo a qualidade dos dados agregados
[Chen et al. 2020]. Essa colaboração efetiva demanda, contudo, que os sensores sejam
estrategicamente posicionados — tanto para otimizar a cobertura quanto para garantir
conectividade suficiente a fim de viabilizar a troca de informações.

A partir desse cenário, o presente trabalho propõe uma nova formulação de posici-
onamento que considera o posicionamento colaborativo de sensores, visando maximizar a
detecção de eventos em regiões urbanas e fornecer bases sólidas para respostas ágeis e efi-
cazes. Assim, este trabalho propõe aplicar algoritmos genéticos para posicionar sensores
de forma a criar uma rede de comunicação que potencialize a colaboração entre unidades
de detecção de emergências urbanas, considerando a extensão da área monitorada, a qua-
lidade de sensoriamento e a qualidade da conectividade em rede. É considerado que as
RSSF são compostas tanto por sensores escalares quanto visuais, a fim de gerar mais di-
versidade e conhecimento sobre os dados gerados, reforçando o potencial de colaboração.

O artigo está organizado como segue. Na seção 2, revisamos a literatura relacio-
nada a posicionamento de sensores, cobertura colaborativa de sensores visuais e escalares,
bem como soluções multiobjetivo com algorı́tmos genéticos. Na seção 3, apresentamos a
modelagem proposta para o posicionamento dos sensores. Na seção 4, descrevemos os re-
sultados alcançados em uma avaliação experimental. Finalmente, na seção 5, concluı́mos
o artigo e apontamos as direções para trabalhos futuros.

2. Revisão de Literatura e Trabalhos Relacionados

As emergências urbanas exigem ações ágeis e articuladas, muitas vezes sob alta pressão,
para minimizar danos e proteger a população. Nesse sentido, a detecção antecipada de
situações de risco torna-se prioritária para apoiar as autoridades responsáveis. Pesqui-
sas recentes apontam para uma convergência entre tecnologias de Internet das Coisas
(IoT) e abordagens colaborativas no âmbito do desenvolvimento de plataformas que aliem
métodos confiáveis de captura de dados em campo, com a disseminação e consolidação
colaborativa dessas informações [Coelho et al. 2023].

A arquitetura das Redes de Sensores Sem Fio sustenta grande parte das aplicações
de monitoramento em IoT, atuando como infraestruturas para coleta e transmissão dos
dados. Em ambientes urbanos, essas redes se deparam com fatores que vão desde
obstruções fı́sicas (prédios, muros) até interferências de sinais e alto dinamismo de even-
tos [Fei et al. 2017]. Nesse cenário, o posicionamento dos sensores tem relevância crı́tica,
pois impacta diretamente a cobertura espacial e a qualidade das informações geradas.
Por exemplo, uma cobertura deficiente em áreas de risco pode impedir a detecção de
emergências, da mesma forma que sensores demasiadamente concentrados em um só
ponto podem gerar redundância de dados e desperdiçar recursos energéticos.



2.1. Posicionamento de Sensores e Cobertura Colaborativa
Para garantir que a coleta de dados em campo seja eficiente, estudos de posicionamento
de sensores usualmente consideram (i) a cobertura de área, ou seja, quantos pon-
tos da região de interesse podem ser monitorados; (ii) a qualidade do sensoriamento,
que depende da sensibilidade, do alcance e da redundância dos dispositivos; e (iii) o
acesso à comunicação, fundamental para agregar e distribuir as informações coletadas
[Fei et al. 2017, Binh et al. 2018]. Em cenários urbanos, a presença de edificações e o di-
namismo do tráfego afetam significativamente a transmissão sem fio, tornando essencial
a seleção apropriada dos locais de implantação dos sensores [Benatia et al. 2017].

Com efeito, a colaboração entre nós sensores só se concretiza se houver cami-
nhos de comunicação robustos, capazes de retransmitir alertas e consolidar leituras em
nós de análise. Alguns autores têm proposto otimizar cobertura e a qualidade de senso-
riamento simultaneamente, empregando algoritmos de natureza bioinspirada (por exem-
plo, Cuckoo Search, Particle Swarm Optimization) ou meta-heurı́sticas evolucionárias
como o Non-dominated Sorting Genetic Algorithm II (NSGA-II) [Hanh et al. 2019,
El-Sherif et al. 2018]. Essas abordagens lidam com o caráter multiobjetivo do problema,
explorando soluções que equilibrem a maximização de área coberta e a garantia de
acurácia das informações coletadas. Entretanto, ainda há uma lacuna referente às ga-
rantias de um grau mı́nimo de colaboração entre os sensores.

2.2. Sensores Visuais e Integração com Sensores Escalares
Além dos sensores escalares, que coletam variáveis ambientais, o uso de sensores visuais
(câmeras) agrega riqueza de dados ao processo de detecção de emergências, pois permite
identificar situações que vão além de simples leituras numéricas [Rangel et al. 2019].
Entretanto, a configuração de câmeras apresenta um desafio adicional: determinar não
apenas onde alocá-las, mas também como orientá-las, dado que ângulos de visão e
obstáculos em linha de visada podem excluir regiões importantes do monitoramento
[Jesus et al. 2019]. Nesse sentido, há esforços voltados à integração de sensores esca-
lares e visuais, potencializando o poder de detecção por meio de sobreposição de leituras
distintas.

O caráter colaborativo também se manifesta quando câmeras e sensores de di-
ferentes tipos trocam informações para refinar ou descartar falsos positivos. Um sen-
sor escalar pode indicar possı́vel aumento rápido de temperatura, ao passo que uma
câmera próxima valida ou contradiz tal leitura ao analisar imagens do local. Dessa
forma, o sistema global obtém maior robustez e menor incidência de alarmes injustifi-
cados [Wu et al. 2020].

2.3. Algoritmos Evolutivos e Multiobjetivo no Posicionamento Colaborativo
A fim de otimizar parâmetros como cobertura, conectividade e qualidade de sensoria-
mento de maneira simultânea, algoritmos evolutivos vêm sendo amplamente investigados
[Fei et al. 2017, El-Sherif et al. 2018]. Destaca-se o NSGA-II, utilizado em diversos tra-
balhos por apresentar boa eficiência na busca de soluções de Pareto em problemas multi-
objetivo. Essa técnica parte de uma população inicial de configurações de sensores, avali-
ando em cada geração a adequação de cada indivı́duo (posicionamento) segundo múltiplas
funções de avaliação. Com isso, é possı́vel gerar um conjunto de soluções que equili-
bram esses critérios, e cabe ao especialista ou órgão responsável pela aplicação escolher



a configuração que melhor atenda às prioridades do momento (por exemplo, máxima co-
bertura em detrimento de algum custo, ou máxima confiabilidade de comunicação mesmo
que cubra menos área).

Desse modo, embora diversos trabalhos já tenham investigado algoritmos evolu-
tivos para posicionamento de sensores e abordagens colaborativas em RSSF, a maioria
concentra-se em objetivos especı́ficos (cobertura ou conectividade) ou em configurações
restritas de sensores. Em contraste, a proposta aqui apresentada traz uma metodologia
integrativa que considera, de forma simultânea, o alcance espacial (cobertura de área), a
qualidade de sensoriamento (tanto de sensores escalares quanto visuais), a redundância
necessária para evitar falhas e a qualidade de conectividade que suporta a colaboração
entre nós. Essa combinação de múltiplos critérios potencializa um ambiente colaborativo
robusto para detecção de emergências urbanas, pois explora não apenas a existência de
diferentes tipos de sensores, mas também a maneira como eles podem se comunicar e
complementar mutuamente, elevando a precisão dos alertas e a efetividade da resposta
em cenários crı́ticos.

3. Solução Proposta
Para viabilizar a otimização do posicionamento dos sensores, deve-se conhecer previa-
mente a localização, distribuição e cobertura geográfica das redes de comunicação onde
eles estão inseridos, a fim de definir a estratégia mais adequada para o processo de posici-
onamento. Assim, uma Região de Interesse (RdI) é mapeada pela subdivisão da área total
em pequenas células de tamanho fixo [Bouzid et al. 2020, Costa et al. 2019], denomina-
das Blocos de Área (Area Blocks - AB), com altura (hsAB) e largura (wsAB) fixas.

A Figura 1 ilustra a representação de uma área genérica mapeada por essa abor-
dagem. Toda RdI é delimitada pelo retângulo externo, que é subdividido em ABs
com dimensões wsAB × hsAB. Com essa delimitação e utilizando a estratégia pro-
posta por [Jesus et al. 2023], pode-se definir um conjunto de redes sem fio NT =
{net1, net2, ..., netn} presentes na RdI, sendo (XAPj

, YAPj
) as coordenadas X e Y do

ponto de acesso (access point) da j-ésima rede; Rj o raio de cobertura da j-ésima rede; e
Tj o tipo da j-ésima rede (e.g., WiFi, 4G, LoRa, entre outros).

Bloco de área

X

Y

0

Access Point

Figura 1. Representação da Região de Interesse.

Com essas informações, o i-ésimo AB é considerado coberto pela j-ésima rede se
o ponto central do AB estiver dentro do alcance definido por Rj . Formalmente, a distância
euclidiana entre as coordenadas do ponto de acesso da rede e o ponto central do ABi deve
ser menor que Rj , conforme descrito na Equação 1. É importante destacar que um AB



pode ser coberto por mais de uma rede simultaneamente, o que aumenta a conectividade
na área e possibilita uma comunicação mais robusta [Jesus et al. 2023].

covAB(ABi, netj) =

{
1, d(ABi, netAPj) ≤ Rj

0, c.c
(1)

3.1. Modelagem de qualidade de conectividade
Uma vez posicionadas as redes, pode-se utilizar a métrica Dependable-Quality Connecti-
vity (DPConn) [Jesus et al. 2023] para avaliar a qualidade da conectividade em cada AB.
Essa métrica permite verificar se a disposição das redes atende aos requisitos relacionados
ao tráfego de dados, integridade, autenticidade e tolerância a falhas dos dispositivos de
monitoramento. A definição formal da variável DPConn é apresentada na Equação 2.

DPConn(ABi) =

∑n
j=1 [covAB(ABi, netj).(S.sj + T.tj +R.rj − C.cj)]∑|type|

j=1 [S.sj + T.tj +R.rj − C.cj]
(2)

As seguintes especificações estão relacionadas à Equação 2:
• n - número de redes implantadas;
• |type| - número de diferentes tipos de redes;
• covAB(ABi, netj) - Veja a Equação 1
• S - peso associado ao parâmetro de nı́vel de Segurança;
• T - peso associado ao parâmetro de Throughput;
• R - peso associado ao parâmetro de Confiabilidade;
• C - peso associado ao parâmetro de Custo;
• sj , tj , rj , cj - indicam os nı́veis de Segurança, Throughput, Confiabilidade e Custo,

respectivamente, para a j-ésima rede;

3.2. Modelagem de qualidade de sensoriamento
Em relação ao modelo representativo para os dispositivos de monitoramento, considera-se
que os sensores são escalares ou visuais (câmeras). Assim, é imprescindı́vel considerar
informações como o tipo do dispositivo, raio de sensoriamento, raio de comunicação, mo-
delo de sensoriamento e quantidade, de forma a estabelecer uma representação adequada
para o conjunto de dispositivos que serão posicionados ao longo de uma RdI.

Este trabalho propõe a utilização de um modelo de sensoriamento baseado nos
padrões Binário e Probabilı́stico, apresentado na Equação 3a. Esse modelo apresenta um
decaimento linear a partir de um limiar estabelecido, (ver Figura 2(a)), se aproximando
do comportamento dos sensores lineares. Desta forma, quanto maior a distância eucli-
diana entre um sensor e um ponto especı́fico (ver Equação 3b), menor será a precisão
na detecção de um evento ou no monitoramento de uma variável do ambiente. Ao se
aproximar do alcance máximo (rs) do sensor, essa precisão estará perto de zero.

DP (sri, p) =

 1, d(sri, p) ≤ rl
(rs − d)/(rs − rl), rl < d(sri, p) ≤ rs

0, c.c
(3a)

d(sri, p) =
√

(px − srx)2 + (py − sry)2 (3b)



Com base no alcance rs do dispositivo, a área sob a curva da Figura 2(a) foi
dividida em três sub-áreas definidas como Regiões de Qualidade de Sensoriamento (QS),
sendo elas: qualidade Alta, Média e Baixa, sendo representadas, respectivamente, pelos
valores {1, 2, 3}. A divisão dos intervalos pode ser compreendida através da Figura 2(b)
e pelas Equação 4a e 4b.

1

0

(a) Curva de sensoriamento dos dis-
positivos.

,

1

0

(b) Definição das regiões de quali-
dade de sensoriamento.

Figura 2. Representação do modelo de sensoriamento.

QS(sri, p) =


1, d(sri, p) ≤ rl
2, rl < d(sri, p) ≤ re
3, re < d(sri, p) ≤ rs
0, c.c

(4a)

re = rl +
(rs − rl)

2
(4b)

Essa representação, que caracteriza a precisão ou qualidade com que um disposi-
tivo pode medir ou detectar um evento, pode ser aplicada não apenas a sensores escalares,
mas também às câmeras atuando como sensores visuais. Como ilustrado na Figura 3(a),
a região de cobertura de um sensor escalar apresenta uma estrutura simples e intuitiva,
uma vez que as delimitações dos nı́veis de qualidade de sensoriamento são definidas ex-
clusivamente pelo raio de sensoriamento (rs) e as variáveis rl e re. Em contrapartida, a
modelagem da região de cobertura para as câmeras é mais complexa. Na Figura 3(b),
observa-se que, devido à geometria do campo de visão das câmeras, a modelagem inclui
as variáveis θ e α, que representam, respectivamente, o ângulo de abertura do campo de
visão da câmera, em graus, e sua orientação.

3.3. Funções de Fitness

Após a descrição do modelo representativo para as RdI e para os dispositivos de monitora-
mento, nesta seção são descritas as funções de fitness utilizadas para a maximização dos
critérios de cobertura, alta conectividade e qualidade de sensoriamento de uma RSSF
construı́da a partir de um conjunto de sensores escalares e visuais. Essas funções são
processadas posteriormente pelo algoritmo genético para avaliar a qualidade das soluções
produzidas.



(a) Região de cobertura de
um sensor escalar.

(b) Região de cobertura de
uma câmera.

Figura 3. Região de cobertura dos sensores escalares e visuais.

3.3.1. Cobertura

Ao implantar um conjunto de dispositivos Sr = {sr1, sr2, sr3, . . . , srN} em uma RdI
subdividida em AB, busca-se maximizar a quantidade de blocos monitorados por ao me-
nos um sensor. Para isso, após o posicionamento do conjunto Sr, pode-se calcular a
quantidade de ABs monitorados (ABsensed) em relação ao total (ABtotal). Entretanto, é
necessário levar em consideração um aspecto especı́fico: quando os sensores são posicio-
nados próximos ao limiar ou à borda da RdI, os sensores podem cobrir áreas que não são
relevantes para a aplicação, ou seja, que estão fora da RdI.

Para tratar esse problema, calcula-se o número de AB inválidos e aplica-se uma
penalidade à função de fitness final: Para cada três ABs inválidos, um AB válido é des-
considerado na taxa de cobertura. A partir disso, sendo Si a i-ésima solução gerada pelo
algoritmo genético, a função de otimização f1 avalia a cobertura de área dessas soluções,
conforme descrito na Equação 5. É importante mencionar que o intervalo de f1 corres-
ponde a [0, 1].

f1(Si) =
(ABsensed − ABinvalid

3
)

ABtotal

(5)

3.3.2. Dispositivos em regiões de alta conectividade

A métrica DPConn é utilizada como um parâmetro de qualidade de rede, a fim de garan-
tir que os dispositivos de uma RSSF possuam acesso a um sinal de comunicação robusto,
garantindo maior eficiência e integridade no processo de transmissão e recebimento de da-
dos ao longo do tempo. Portanto, a segunda função de otimização (f2) busca maximizar
a taxa de dispositivos posicionados em regiões de alta conectividade (SrinH), ou seja, em
AB com o nı́vel de conectividade igual a 3, garantindo também que a seguinte expressão
seja atendida: SrinH > SrinM > SrinL. Essa expressão assegura que o menor número
possı́vel de dispositivos seja posicionado em regiões de baixa conectividade (SrinL), en-
quanto a maioria é alocada em regiões de alta conectividade, seguida das regiões de média
conectividade (SrinM ).

A partir disso, temos a formulação de f2 na Equação 6a, sendo o seu intervalo
variando entre [0, 1]. Após a geração da solução Si pelo algoritmo genético, verifica-



se a taxa de dispositivos implantados nas regiões de alta, média e baixa conectividade
em relação ao total pré-estabelecido através do arquivo de configuração. Essas taxas são
representadas, respectivamente, pelas Equações 6b, 6c e 6d.

f2(Si) =

{
SrinH ∗ e−γ∗SrinH , SrinL > SrinH | SrinL > SrinM ,

SrinH , c.c
(6a)

SrinH = SensorNetHigh ÷ Totalsensors (6b)
SrinM = SensorNetMedium ÷ Totalsensors (6c)
SrinL = SensorNetLow ÷ Totalsensors (6d)

3.3.3. Qualidade de Sensoriamento

Além da busca pela maximização da cobertura e do posicionamento dos dispositivos em
região de alta conectividade, também é necessário garantir a qualidade de sensoriamento
ao longo da RdI. De acordo com o modelode sensoriamento proposto, é possı́vel que um
determinado evento esteja ocorrendo em uma área com baixa qualidade de sensoriamento.
Isso implica que, nessa região, a precisão com que o evento é detectado é baixa devido
à distância ou outros aspectos como ruı́dos associados ao ambiente. Por essa razão, é
necessário que se busque maximizar o número de áreas com alta qualidade de sensoria-
mento.

Para alcançar esse objetivo, é realizada a sobreposição das regiões de cobertura
que estão próximas umas das outras. Desta forma, considerou-se que o nı́vel QS do i-
ésimo AB é dado pelo maior nı́vel de qualidade sobreposto a essa área. Portanto, seja
Sr = {sr1, sr2, sr3, . . . , srN} o conjunto de sensores que monitoram o mesmo ABi, o
QS(ABi) é dado pelo maior nı́vel de qualidade imposto por um sensor do conjunto Sr. A
Equação 7 apresenta formalmente essa definição.

QS(ABi) = max(QS(srj, pABi
), QS(srj+1, pABi

), ...., QS(srn, pABi
)) (7)

A partir disso, como pode ser visto nas Equação 8a, 8b e 8c, para cada AB mo-
nitorado verifica-se o seu respectivo nı́vel QS e realiza-se o cálculo da taxa de AB em
cada um dos nı́veis em relação ao total de blocos monitorados. As funções BlocksHS,
BlocksMS e BlocksLS percorrem o registro de blocos monitorados verificando se os
mesmos possuem o nı́vel QS desejado (HS = sensoriamento alto; MS = sensoriamento
médio; LS = sensoriamento baixo).

ABwHS =

∑N
i=1BlocksHS(ABisensed

)

ABsensed

(8a)

ABwMS =

∑N
i=1BlocksMS(ABisensed

)

ABsensed

(8b)

ABwLS =

∑N
i=1BlocksLS(ABisensed

)

ABsensed

(8c)



Depois desse processo, pode-se calcular a função de fitness f3, demonstrada na
Equação 9. Seu intervalo corresponde a [0, 1]. Perceba que f3 possui a mesma estru-
tura da função f2, pois, como originalmente o comportamento de ambas é linear, então
pode-se aproveitar a mesma composição, incluindo a função exponencial para a penali-
dade. Também, assim como em f2, mas agora em relação a f3, deseja-se que a seguinte
expressão seja alcançada: ABwHS > ABwMS > ABwLS . Garantindo que a maioria dos
AB sejam monitorados por regiões de cobertura com alta qualidade de sensoriamento,
seguido pelos AB com média, e por último, com baixa.

f3(Si) =

{
ABwHS ∗ e−γ∗ABwHS , ABwLS > ABwHS | ABwLS > ABwMS,

ABwHS, c.c
(9)

4. Resultados
A partir da modelagem apresentada, decidiu-se utilizar uma abordagem heurı́stica baseada
no uso do algoritmo genético multiobjetivo NSGA-II a fim de realizar o balanceamento
entre os objetivos de interesse que estão expressos através dos critérios de otimização.
Para definir os hiperparâmetros do algoritmo NSGA-II de forma a proporcionar o aumento
do seu desempenho relacionado à geração de soluções ótimas da Fronteira de Pareto, foi
utilizada uma abordagem sistemática conhecida como Grid Search. Essa abordagem con-
siste em definir um conjunto de valores para cada hiperparâmetro e, em seguida, avaliar
a combinação desses diferentes valores a partir dos resultados produzidos pela execução
do algoritmo genético [Yang and Shami 2020]. Foram avaliados diferentes valores para
os seguintes hiperparâmetros: tamanho da população (TP = {100,200}), taxa de cruza-
mento (TC = {70%, 80%, 90%}), taxa de mutação (TM = {10%, 20%, 30%}) e o número
de gerações (NG = {250,500,750}).

Além de variar os hiperparâmetros, também foi decidido incluir na análise do
Grid Search, o uso de dois métodos de cruzamento - Simulated Binary Crossover (SBX) e
Two-Point Crossover - conjuntamente com o método Polynomial Mutation e Seleção por
Torneio, formando assim duas versões de configuração para a execução do NSGA-II. O
cenário de teste para o algoritmo NSGA-II foi simulado gerando uma RdI que apresen-
tasse aspectos ideais de conectividade em uma região urbana, ou seja, uma RdI altamente
conectada (a taxa de área coberta por redes sem fio precisa ser alta) e com redes uniforme-
mente distribuı́das ao longo da RdI. Observe na Figura 4 a RdI idealizada, sendo wscity
= 8000m, hscity = 5000m, wsAB = 15, hsAB = 15, ABtotal = 177.489 e nbC = 171.961-
(96.88%). Na área delimitada, foram implantadas 960 redes do tipo WiFi, 3 do tipo 4G e
28 do tipo LoRa.

Como a execução e análise dos resultados produzidos pelo algoritmo NSGA-II,
finalizou-se o processo de Grid Search, sendo definido que os operadores genéticos Poly-
nomial Mutation, Two-Point Crossover e Seleção por Torneio seriam utilizados em todos
os outros cenários avaliados ao longo desta pesquisa, em conjunto com os seguintes valo-
res de hiperparâmetros: Taxa de Mutação - 0.1; Taxa de Cruzamento - 0.9; Tamanho da
População - 200; Número de Gerações (critério de parada) - 750.

Com o objetivo de avaliar a qualidade do posicionamento efetuado pelo algo-
ritmo NSGA-II a partir dos operadores genéticos e hiperparâmetros escolhidos, foi sele-
cionada uma solução que apresentasse maior equilı́brio entre as três funções de fitness.



Figura 4. Representação da RdI gerada para aplicação da estratégia Grid Search.

Diante disso, foi escolhida a solução gerada com F1(s) = 0.88792, F2(s) = 0.54075
e F3(s) = 0.48324. Como forma de avaliar o posicionamento a partir do processa-
mento da solução escolhida, foram definidos os seguintes aspectos a serem examinados:
disposição dos dispositivos ao longo da RdI; taxa de cobertura; nı́veis de sobreposição das
áreas monitoradas; e nı́veis de qualidade de sensoriamento. Na Figura 5(a), encontra-se a
implantação dos dispositivos de monitoramento sobre a RdI ideal. Os pontos em cor la-
ranja representam os sensores escalares, enquanto os pontos em azul, as câmeras. Nota-se
que o NSGA-II conseguiu dispersar satisfatoriamente os 8000 dispositivos configurados,
abrangendo assim toda a área da RdI.

A partir desse posicionamento, 54.075% dos dispositivos foram implantados em
regiões de alta conectividade, 30.925% em regiões de média e 15% em regiões de baixa
conectividade. Isso mostra que foi garantido que mais da metade dos dispositivos possua
um nı́vel robusto de conectividade de forma a realizar suas tarefas de comunicação com
eficiência, segurança e integridade dos dados.

Levando em consideração que, segundo [Fei et al. 2017], a cobertura de uma
RSSF é o aspecto mais importante a ser avaliado, podemos dizer que, especificamente
para este estudo, o posicionamento efetuado alcançou um bom resultado, pois 89.55% da
área pertencente à RdI está sendo monitorada. Isso pode ser visto na Figura 5(b). As
regiões em cor azul representam áreas que possuem conectividade, seja em nı́vel alto,
médio ou baixo, mas não estão sendo monitoradas por nenhum dispositivo, enquanto as
pequenas regiões em branco nos limiares da RdI são áreas sem conexão e sem monitora-
mento. Também podemos analisar os nı́veis de sobreposição em cada AB da RdI. Veja a
Figura 5(c). Foi verificado que 25.130% dos ABs estão sendo monitorados 1 dispositivo;
28.732% por 2 dispositivos; 22.946% por 3 dispositivos; e 23.192% por mais de 3. Devido
à proximidade das taxas, percebe-se que, sem prejudicar a taxa de cobertura, o NSGA-II
conseguiu alcançar uniformidade para o número de dispositivos cobrindo cada AB.

Analisando através da Figura 5(d) a qualidade de sensoriamento imposta pelo po-
sicionamento dos dispositivos, constatou-se que 48.324% dos ABs apresentaram nı́vel
alto de qualidade, enquanto 33.794% apresentaram nı́vel médio e apenas 17.881% nı́vel
baixo. Isso demonstra que a expressão ABwHS > ABwMS > ABwLS descrita na Seção
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Figura 5. Comparativo dos resultados no Cenário Ideal (Grid Search).

3.3.3 foi alcançada, garantindo que, em grande parte da área monitorada, a detecção de
eventos não seja prejudicada por aspectos como distância, ruı́dos do ambiente, tempe-
raturas extremas ou mesmo o fim da vida útil de um dos dispositivos que monitora em
conjunto com outros, o respectivo bloco.

Após a aplicação do método Grid Search e da análise dos resultados obtidos,
foi possı́vel estabelecer para o algoritmo NSGA-II um conjunto de operadores genéticos
e hiperparâmetros que, diante dessa análise inicial, comprovou ser eficaz na busca por
soluções que atendem satisfatoriamente aos critérios de otimização impostos.

5. Conclusão
A metodologia proposta demonstrou eficácia ao integrar objetivos múltiplos como cober-
tura, conectividade e qualidade de sensoriamento em um processo único e coeso. Dife-
rentemente de abordagens existentes, que frequentemente tratam esses objetivos de forma
isolada ou parcial, a abordagem apresentada permitiu alcançar um equilı́brio satisfatório
entre a maximização da área monitorada, distribuição adequada dos sensores e nı́veis
consistentes de redundância e qualidade nas áreas crı́ticas. Tal abordagem favorece signi-
ficativamente a robustez das redes colaborativas de sensores em contextos urbanos, pro-
movendo uma resposta ágil e eficaz diante de situações emergenciais.

Como trabalhos futuros, pretende-se avaliar o desempenho do método proposto
em cenários urbanos reais, considerando caracterı́sticas dinâmicas e aspectos de mobi-
lidade, interferências e falhas nos dispositivos sensores. Por fim, é relevante investigar
o impacto da inclusão de critérios adicionais como consumo energético e custo finan-
ceiro dos dispositivos, bem como explorar a aplicação de outras técnicas meta-heurı́sticas
para comparação e validação da robustez da metodologia proposta frente a diferentes
configurações e escalas.
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