
Uma comparação técnica das abordagens existentes para
implementação de requisitos colaborativos em aplicações não

colaborativas

Mauro C. Pichiliani1, Celso M. Hirata1

1Divisão de Ciência da Computação – Instituto Tecnológico de Aeronáutica (ITA)
Caixa Postal 12.228-900 - São José dos Campos - SP

{pichilia, hirata}@ita.br

Abstract. Many approaches can be used to facilitate the implementation of
collaborative requirements on non collaborative applications. Each approach
uses different design techniques and has specific objectives and pre-
conditions. During the implementation of collaborative requirements is not
always easy to decide which approach is the most recommended i.e. which
criteria should be used to compare the approaches. Based on the literature
work, this paper presents a set of technical criteria to technically compare the
existing approaches to implement collaborative requirements on non
collaborative applications. With these criteria, the developers can choose the
most suitable approach to implement collaborative requirements on non
collaborative applications.

Resumo. Existem diversas técnicas para facilitar a implementação de
requisitos colaborativos em aplicações não colaborativas. Cada abordagem
usa técnicas de projeto diferentes e possui pré-requisitos e objetivos
específicos. Na implementação dos requisitos colaborativos, nem sempre é
imediato decidir qual é a abordagem mais recomendada i.e. quais devem ser
os critérios comparativos. A partir do estudo bibliográfico, este trabalho
apresenta um conjunto de critérios para comparar tecnicamente as
abordagens existentes. Deste modo, espera-se que a comparação técnica e os
critérios apresentados neste trabalho auxiliem os desenvolvedores na
implementação de requisitos colaborativos em aplicações não colaborativas.

1. Introdução

A implementação de requisitos colaborativos em aplicações não colaborativas possui o
potencial de aumentar significativamente a disponibilidade de aplicações colaborativas
e melhorar a usabilidade dessas aplicações [Xia et al. 2004]. Durante a última década,
vários esforços na área de CSCW (Computer Supported Collaborative Work)
contribuíram para a redução da complexidade necessária para estender e adaptar
aplicações não colaborativas, com o objetivo de apoiar a colaboração.

Atualmente, existe uma variedade de abordagens de extensão e adaptação de
aplicações não colaborativas, contudo, não se dispõe de critérios de comparação das
abordagens disponíveis para implementar requisitos colaborativos em aplicações não
colaborativas. Isto se deve, em parte, à heterogeneidade das abordagens, que variam
desde a utilização de aplicações externas para emular eventos até a substituição de
componentes da aplicação.

1855

Os principais requisitos colaborativos implementados em aplicações
colaborativas são: (i) comunicação, utilizada para trocar idéias, discutir, aprender,
negociar ou para tomar decisões; (ii) coordenação, que organiza o grupo para evitar que
esforços de comunicação e cooperação sejam perdidos e que as tarefas sejam realizadas
na ordem e no tempo correto; (iii) percepção (awareness), que faz com que um
participante fisicamente separado esteja ciente da presença e das ações dos demais
participantes do grupo; e (iv) compartilhamento de informações, encarregado de
prevenir esforços repetitivos e assegurar que todos os participantes do grupo estejam
utilizando a mesma informação.

Critérios técnicos de comparação de abordagens podem auxiliar os
desenvolvedores na escolha da abordagem a ser utilizada, além de fornecer uma
contextualização do uso de cada uma das abordagens. Deste modo, o desenvolvedor
pode compreender melhor qual tipo de abordagem é mais recomendada na
implementação dos requisitos colaborativos desejados, de acordo com seu contexto.

O objetivo deste artigo é apresentar um conjunto de critérios para as abordagens
de implementação de requisitos colaborativos e uma comparação técnica das
abordagens utilizando os critérios de comparação. A partir da comparação de
abordagens apresentada neste trabalho, os desenvolvedores podem analisar a
conveniência de uma determinada abordagem. Tento em vista que a implementação de
requisitos colaborativos apresenta vários desafios, possuir uma comparação técnica de
abordagens facilita o processo de desenvolvimento.

Este artigo está dividido em quatro seções. A Seção 2 descreve as abordagens
utilizadas para a implementação de requisitos colaborativos em aplicações existentes.
Na Seção 3 apresentam-se os critérios comparativos e a comparação técnica
propriamente dita. Por fim, na Seção 4 são apresentadas as conclusões e alguns
comentários finais.

2. Abordagens Existentes

Esta seção descreve as abordagens existentes na literatura para construir aplicações
colaborativas e para transformar aplicações não colaborativas existentes em aplicações
colaborativas. As abordagens descritas nesta seção incluem o uso de toolkits, sistemas
de colaboração transparente, substituição dos componentes da aplicação por
componentes colaborativos, adaptação transparente e mapeamento de componentes.

A estratégia tradicional para a modificação de uma aplicação, isto é, a
modificação da aplicação de forma ad hoc, não será abordada nesta comparação, pois
esta abordagem proporciona pouca ou nenhuma técnica sistemática de desenvolvimento
que possa ser seguida para transformar aplicações não colaborativas existentes em
aplicações colaborativas.

2.1 Toolkits

Numa tentativa de reduzir a complexidade de implementação de sistemas groupware,
vários pesquisadores têm explorado o uso de toolkits. Segundo Ellis et al. [Ellis et al.
1991], sistemas groupware são sistemas baseados em computadores que apóiam grupos
de pessoas engajadas em uma tarefa ou objetivo comum e que provém uma interface
para um ambiente compartilhado.

1856

Um toolkit é definido como um conjunto de componentes predefinidos e
reutilizáveis, com a finalidade de oferecer ferramentas e infra-estrutura suficientes para
permitir que o programador desenvolva sistemas groupware de alta qualidade com
razoável esforço [Greenberg & Roseman 1998].

Os toolkits para a construção de sistemas groupware facilitam a criação de novas
aplicações colaborativas por meio de componentes de grupo e controles de percepção
construídos para serem reutilizáveis, permitindo a criação de poderosas aplicações
colaborativas. Da mesma forma que casas pré-fabricadas podem ser construídas a partir
da montagem de módulos pré-fabricados, o uso de toolkits na construção de software
colaborativo pode tornar a tarefa do desenvolvedor mais simples e, muitas vezes, mais
rápida, uma vez que o trabalho principal consiste apenas na montagem e configuração
dos componentes em vez da criação deles a partir do zero.

Devido a estas características, pode-se dizer que o uso de toolkits para a
construção de sistemas groupware segue, de uma maneira geral, os princípios
envolvidos no Desenvolvimento Baseado em Componentes.

O Desenvolvimento Baseado em Componentes (DBC) têm como objetivo
prover o reuso dos componentes no nível de implementação e aumentar a
interoperabilidade entre as partes do software. Os princípios envolvidos no
Desenvolvimento Baseado em Componentes demandam características específicas dos
componentes, como a capacidade de prover funcionalidades específicas, a baixa
dependência entre componentes e a suscetibilidade a modificações.

Toolkits amplamente utilizados, como o GroupKit [Gutwin & Greenberg 2002],
o COAST (COoperative Application Systems Toolkit) [Schuckmann et al. 1996] e o
MAUI (Multi-User Awareness UI toolkit) [Hill & Gutwin 2004], fornecem frameworks,
ambientes, bibliotecas de funções, componentes e controles para tornar mais rápida e
fácil a construção de novas aplicações colaborativas.

O reuso dos componentes de toolkits pode ajudar o desenvolvimento de novos
softwares colaborativos, entretanto, os componentes fornecidos pelo toolkit não podem
auxiliar a adaptação de uma aplicação não colaborativa existente. Em geral isso
acontece devido à necessidade de implementação de detalhes específicos do toolkit, que
nem sempre são compatíveis com a estrutura da maioria das aplicações existentes.

Um exemplo desta incompatibilidade é a diferença entre a estrutura de uma
aplicação existente a estrutura do toolkit. Além disso, detalhes técnicos como a
linguagem de programação e a arquitetura utilizada na construção dos componentes do
toolkit podem tornar o reuso dos componentes inviável em certas situações. Mesmo nos
casos onde os detalhes técnicos não inviabilizam a utilização do toolkit, a quantidade de
esforço necessário para a reutilização dos componentes pode não compensar.

Apesar dos toolkits não serem muito úteis para ajudar a extensão de um software
existente, eles podem fornecer inspiração e idéias necessárias para implementar
aspectos essenciais de comunicação, colaboração e cooperação em softwares existentes.

2.2 Sistemas de Colaboração Transparente

Os Sistemas de Colaboração Transparente (SCT) fornecem um meio de compartilhar o
uso de aplicações existentes apenas de forma síncrona, onde as interações dos
participantes são simultâneas ou separadas por pequenos períodos de tempo. Estes

1857

sistemas permitem apenas a forma síncrona de interação entre os participantes, pois eles
emulam as entradas e saídas de dados dos usuários da aplicação, fornecendo aos
usuários a impressão de que todos utilizam a mesma interface da aplicação, ao mesmo
tempo e no mesmo local. De acordo com Begole et al. [Begole et al. 1999], o termo
transparente é utilizado por estes sistemas porque o compartilhamento fornecido é
transparente ou desconhecido para a aplicação e seus desenvolvedores. O
compartilhamento, neste contexto, envolve as aplicações legadas com interação
monousuária.

Estes sistemas utilizam o conceito de caixa preta de colaboração transparente,
onde alguma aplicação externa é responsável pelas comunicações e notificações
necessárias para apoiar aspectos básicos da colaboração entre os usuários remotos. Os
mecanismos por trás desses sistemas incluem uma arquitetura centralizada, a captação e
entrega dos dados de entrada dos usuários para múltiplos locais e a transmissão da
interface gráfica da aplicação para todos os participantes. Exemplos de SCT comerciais
incluem o Microsoft Netmeeting [Microsoft 2007], o XTV [Abdel-Wahab & Feit 1991]
e o SharedX [Garnkel et al. 1994].

Colaboração Transparente Inteligente, ou ICT (Intelligent Collaboration
Transparency) [Li & Li 2002], apresenta uma evolução dos SCT, pois eles utilizam uma
infra-estrutura compartilhada entreposta entre aplicações heterogêneas e o sistema
operacional para compartilhar os ambientes gráficos de cada local.

Devido à heterogeneidade das aplicações envolvidas, a simples reprodução dos
eventos de uma aplicação em outras aplicações diferentes não faz sentido. Uma
operação semântica de uma aplicação geralmente é implementada de forma diferente
em outra aplicação, requerendo um mecanismo que, além de compreender as operações
dos usuários, deve traduzir essas operações em seqüência de operações equivalentes a
outras aplicações, antes que elas sejam reproduzidas. Deste modo, o mecanismo deve
ser inteligente o suficiente para traduzir as operações de uma aplicação em uma
seqüência de operações compatíveis em outras aplicações, por meio do conhecimento
semântico das ações realizadas pelos usuários.

Com o uso deste tipo de sistemas, os usuários podem colaborar em uma tarefa
comum, através de suas aplicações favoritas. Contudo, um módulo de
captura/reprodução de eventos específico para cada plataforma deve ser utilizado para
tratar da comunicação e do controle de concorrência, propiciando a interoperabilidade
entre as aplicações.

Uma segunda geração de aplicações baseadas na abordagem do ICT foi
elaborada por Lu et al. [Lu et al 2004], denominada ICT2. A principal diferença entre a
abordagem ICT clássica e a ICT2 é que a última não intercepta e interpreta os eventos
da aplicação. Em vez disso, a ICT2 utiliza uma versão adaptada de um algoritmo que
gera as seqüências de edição entre os diferentes estados dos documentos locais dos
usuários. Para organizar as ações concorrentes dos usuários, uma versão modificada do
algoritmo de transformação operacional é utilizada.

Mangan [Mangan 2006] propõe uma variação da técnica de colaboração
transparente. Esta proposta chama-se Arquitetura de Colaboração Transparente (ACT) e
amplia as arquiteturas transparentes com o acréscimo do conceito de eventos
semânticos. Neste contexto, os eventos descrevem o significado das operações
realizadas pelo usuário da aplicação e são gerados a partir de interpretações dos eventos

1858

de entrada e dos eventos de aplicação das arquiteturas transparentes. Com estes eventos,
é possível alimentar os modelos de percepção que oferecem informações úteis para
mecanismos: de apoio à colaboração assíncrona; de descoberta de perfil de usuário; e de
histórico das experiências dos usuários.

Apesar de apresentar uma alternativa rápida para compartilhar aplicações sem
modificações no código fonte, os SCTs da primeira geração, a ACT e as abordagens
ICT e ITC2 receberam muitas críticas no sentido que elas não suportam a colaboração
adequadamente. O motivo principal dessas críticas envolve o uso ineficiente dos
recursos de rede e a imposição de um estilo de colaboração inflexível e altamente
acoplado que não suporta algumas funcionalidades comuns aos sistemas groupware
como, por exemplo, controle de concorrência, interface WYSIWIS (What You See Is
What I See) relaxada, percepção em grupo e tarefas colaborativas delegadas [Begole et
al. 1999]. Uma interface WYSIWIS relaxada, em particular, propicia aos usuários o
controle sobre aspectos de suas interface individuais permitindo que eles trabalhem de
forma mais natural, sendo considerada uma funcionalidade determinando para a ação de
um groupware.

2.3 Adaptação Transparente

A abordagem chamada Adaptação Transparente foi proposta para ajudar a implementar
a colaboração em aplicações comerciais, quando os desenvolvedores não têm acesso ao
código fonte da aplicação. Esta abordagem é baseada no compartilhamento da aplicação
e no uso de uma Interface de Programa de Aplicação (API) para interceptar as
interações locais do usuário, convertê-las em operações abstratas, manipular estas
operações por técnicas colaborativas e reproduzir as operações modificadas, por meio
da API, nos locais remotos de colaboração [Xia et al. 2004].

O termo transparente é utilizado porque esta abordagem não requer nenhuma
mudança no código fonte da aplicação. Contudo, esta abordagem requer que o
fabricante da aplicação forneça uma API capaz de gerenciar os dados da aplicação e
implementar os mecanismos de colaboração.

Diferentemente dos ambientes de compartilhamento de aplicações, os quais não
requerem nenhum tratamento específico, a abordagem de Adaptação Transparente
requer uma nova camada de software para implementar a arquitetura replicada que
fornecerá o compartilhamento de eventos e dados da aplicação. De acordo com Xia et
al. [Xia et al. 2004], a combinação da arquitetura replicada e da abordagem de
Adaptação Transparente permite vários benefícios como, por exemplo, uma grande
quantidade de interações entre os usuários, um controle de concorrência eficiente e uma
melhor interface WYSIWIS relaxada.

Desta maneira, o código fonte da aplicação não é necessário. Contudo, uma API
completa e que forneça o acesso aos eventos e dados gerados pela aplicação deve ser
fornecida. Mesmo com uma API completa, alguns métodos específicos de controle de
concorrência e dispositivos de presença são impossíveis de implementar na abordagem
de Adaptação Transparente, devido à necessidade da mudança no código fonte da
aplicação para implementar alguns requisitos colaborativos.

1859

2.4 Substituição de Componentes

A abordagem de substituição de alguns componentes de uma aplicação por
componentes colaborativos foi introduzida pelo Flexible JAMM (Java Applets Made
Multi-user) [Begole et al. 1999], sendo conhecida também como Sistema de
Colaboração Transparente Flexível. Na comparação apresentada neste trabalho, esta
abordagem é denominada Substituição de Componentes, pois esta descrição identifica
rapidamente a técnica utilizada na implementação da abordagem.

Esta abordagem permite que os usuários trabalhem juntos de forma colaborativa
ou independente, por meio da substituição dinâmica de certos objetos da interface do
usuário por componentes de interfaces colaborativas [Begole et al. 1999]. Para utilizar
esses componentes colaborativos, a aplicação que recebe os componentes deve possuir
certas características como, por exemplo, a capacidade de migração de processos,
recursos para a substituição de componentes em tempo de execução e a habilidade para
interceptar e reproduzir os eventos gerados pelo usuário.

Os componentes da interface gráfica de usuário que o Flexible JAMM fornece
incluem mecanismos de percepção como barras de rolagem multiusuário, visão radar e
telepointers. Estes componentes propiciam, respectivamente, nomes de usuários em
diferentes barras de rolagem, visão em miniatura da área de trabalho comum e ponteiros
virtuais representando usuários remotos.

A principal limitação desta abordagem reside no fato que os componentes
oferecidos pelo Flexible JAMM suportam apenas o requisito colaborativo percepção,
não apresentando componentes para os requisitos colaborativos comunicação,
coordenação e compartilhamento de informações. Além disso, somente um pequeno
grupo de aplicações existentes possui todos os requisitos necessários para o uso dos
componentes do Flexible JAMM, ou seja, apenas as aplicações que atendam aos
requisitos de migração de processos, substituição de componentes em tempo de
execução e a habilidade para interceptar e reproduzir os eventos podem utilizar os
componentes oferecidos pelo Flexible JAMM. Estas características limitam o uso do
Flexible JAMM a poucas aplicações, evitando que esta abordagem possa ser utilizada
de forma sistemática em softwares de diferentes domínios de conhecimento.

2.5 Mapeamento de Componentes

O Mapeamento de Componentes, proposto por Pichiliani & Hirata [Pichiliani & Hirata
2006], sugere um mapeamento dos principais componentes de aplicações não
colaborativas, que devem estar baseadas no estilo arquitetural MVC (Model-View-
Controller), para componentes de uma aplicação colaborativa com o objetivo de
permitir a colaboração síncrona entre participantes. Usando o mapeamento, aplicações
existentes podem ser estendidas para apoiar a colaboração síncrona durante a elaboração
de tarefas compartilhadas.

De acordo com os autores, o Mapeamento de Componentes permite um
tratamento uniforme de um conjunto de requisitos colaborativos mínimos, em um nível
alto de abstração, com o objetivo de fornecer um ponto de partida para os
desenvolvedores de aplicações, sob o ponto de vista conceitual.

Esta abordagem requer que a aplicação não colaborativa, donde é feito o
Mapeamento de Componentes, estruture seus componentes de acordo com o estilo

1860

arquitetural MVC, que sugere a separação dos componentes que manipulam dados da
aplicação (o modelo), dos componentes de tratamento de dados (o controlador) e
também dos componentes responsáveis interface de visualização (a visão).

Além de requerer a organização dos componentes da aplicação não colaborativa
no estilo arquitetural MVC, o Mapeamento de Componentes implica na modificação do
código fonte da aplicação para alterar o comportamento dos componentes, de acordo
com os requisitos de colaboração especificados. A partir do uso do mapeamento, a
aplicação não colaborativa passa a suportar requisitos colaborativos, compartilhando os
dados através de uma arquitetura híbrida, onde um Servidor de Colaboração é
responsável pela a comunicação dos dados manipulados pelos componentes do Modelo.

A principal desvantagem do Mapeamento de Componentes é a necessidade de
modificação direta do código fonte da aplicação. Esta necessidade envolve diversos
recursos que nem sempre são disponíveis, como o código fonte da aplicação ou um
compilador compatível com a linguagem de programação da aplicação. Deste modo, o
uso desta abordagem se torna inviável em algumas ocasiões. Contudo, pelo fato de se
trabalhar no código fonte, esta abordagem oferece uma grande flexibilidade na
implementação dos requisitos colaborativos.

3. Comparação Técnica de Abordagens

Esta seção descreve os critérios técnicos utilizados para comparar as abordagens
apresentadas na seção anterior. Em seguida, a comparação entre as abordagens que
transformam aplicações não colaborativas existentes em aplicações colaborativas é
apresentada.

3.1 Critérios de Comparação

Uma vez que as abordagens existentes foram apresentadas, é necessário comparar suas
características por meio de critérios técnicos. Diversos critérios podem ser escolhidos
para a comparação, porém os critérios escolhidos nesta comparação entre abordagens
visam auxiliar o desenvolvedor, concentrando-se nas características e nos detalhes
envolvidos no uso das abordagens, obtidas por meio dos trabalhos relacionados e pelo
estudo experimental das abordagens, conduzido pelos autores deste trabalho. Os
critérios de comparação são os seguintes: Código Fonte, Requisito Tecnológico,
Propósito, Arquitetura e Flexibilidade.

Um critério a ser considerado antes da adoção de alguma abordagem leva em
consideração a disponibilidade do código fonte. Este critério está diretamente
relacionado com o modelo de licença que a aplicação segue. Os modelos de licença que
as aplicações seguem, para efeitos de comparação de abordagens, podem ser
classificados, basicamente, em dois tipos: aplicações abertas, isto é, aplicações que
possuem uma licença onde o código fonte é disponibilizado publicamente e que permite
a modificação sem nenhum ônus; e aplicações proprietárias, onde a licença não permite
que o código fonte seja modificado. Na comparação de abordagens apresentada nesta
seção, quatro valores auto-explicativos são especificados para o critério Código Fonte, a
saber: ‘Requer o código fonte (da aplicação)’; ‘Não requer o código fonte (da
aplicação)’; ‘Requer API do sistema operacional’; e ‘Requer API da aplicação’.

Outro critério importante a ser considerado na comparação das abordagens
envolve os requisitos tecnológicos relacionados com a implementação. Estes requisitos

1861

influenciam diretamente o uso da aplicação a partir do momento que a abordagem for
implementada. Por exemplo, a abordagem de toolkits requer uma linguagem de
programação específica para que o toolkit possa ser utilizado, o que pode causar
problemas de portabilidade e integração decorrentes da necessidade deste requisito. O
critério Requisito Tecnológico, utilizado na comparação das abordagens realizada nesta
seção, pode assumir os seguintes valores: ‘Nenhum’, ‘Depende da linguagem de
programação’, ‘Requer camada de software’, ‘Depende da linguagem do componente’ e
‘Requer aplicação no estilo MVC’.

É fundamental compreender o propósito das abordagens antes de considerar sua
utilização. Enquanto algumas abordagens demandam a modificação direta do código
fonte, outras devem ser consideradas apenas para novas aplicações. No critério
Propósito, a abordagem pode possuir o valor “Criar novas aplicações”, para indicar o
contexto de construção de novas aplicações por meio da abordagem, ou o valor
“Promover colaboração”, para indicar que a abordagem é utilizada para promover a
colaboração em uma aplicação já existente. Nota-se que uma abordagem pode conter os
dois valores para este critério, como é o caso da abordagem ‘Substituição de
Componentes’.

A arquitetura da aplicação colaborativa obtida a partir da utilização de qualquer
uma das abordagens apresentadas na Seção 2 é um critério a ser considerado nesta
comparação de abordagens. Suthers [Suthers 2001] apresenta algumas maneiras pelas
quais as aplicações colaborativas de ensino organizam seus componentes na arquitetura
MVC, de acordo com o nível de acoplamento dos componentes, isto é, de acordo com o
nível de dependência entre os componentes. Apesar de focar apenas em aplicações
colaborativas na área de ensino, as arquiteturas apresentadas por Suthers são genéricas a
ponto de poderem ser consideradas para aplicações colaborativas de propósito gerais.

A Figura 1 apresenta os quatro tipos de organização do modelo MVC sugeridos
por Suthers: 1) Arquitetura Centralizada; 2) Arquitetura Replicada; 3) Arquitetura
Distribuída; e 4) Arquitetura Híbrida. Apesar de não ser exaustiva, as arquiteturas
apresentadas por Suthers representam como a maioria dos sistemas, groupware ou não,
são organizados. Caracterizar a arquitetura da abordagem é importante, pois a
arquitetura e os casos de uso orientam o projeto detalhado e a implementação de
aplicações no processo de desenvolvimento orientado a objetos.

Deste modo, o critério Arquitetura indica qual das arquiteturas pode ser utilizada
a partir da escolha da abordagem, assumindo os valores ‘Centralizada’, ‘Replicada’,
‘Distribuída’ e ‘Híbrida’. De forma análoga ao critério Propósito, uma mesma
abordagem pode usar diferentes arquiteturas.

O último critério técnico utilizado na comparação envolve a Flexibilidade das
abordagens para implementar requisitos colaborativos. Este critério indica a capacidade
que as abordagens detêm para satisfazer requisitos. Este critério pode assumir os valores
subjetivos ‘Pouca’, ‘Média’, e ‘Muita’, para indicar que a abordagem apresenta,
respectivamente, pouca, média e muita flexibilidade na implementação de requisitos
colaborativos. Este critério é superficial, cujo objetivo é apenas indicar de forma geral
os diferentes níveis de flexibilidade que cada abordagem proporciona.

1862

Figura 1. Organizações dos componentes do MVC em: a) Arquitetura
Centralizada, b) Arquitetura Replicada, c) Arquitetura Distribuída e d) Arquitetura Híbrida.

Adaptada de [Suthers 2001].
As seguintes abordagens, apresentadas na Seção 2, são comparadas neste

trabalho: a abordagem toolkit, a primeira geração de Sistemas de Colaboração
Transparente (SCT), as abordagens ICT, ICT2 e ACT da segunda geração de SCT, a
abordagem de Adaptação Transparente, a Substituição de Componentes e o
Mapeamento de Componentes. A Tabela 1 apresenta a comparação de abordagens de
acordo com os critérios estabelecidos.

3.2 Discussão da Comparação Técnica de Abordagens

A abordagem ‘Toolkits’ é utilizada para a construção de novas aplicações
colaborativas e não permite a promoção de colaboração entre aplicações já existentes.
Devido a esta característica, esta abordagem não se aplica no caso de implementação de
requisitos colaborativos a partir de uma aplicação não colaborativa. Contudo, para as
situações onde uma nova aplicação colaborativa deve ser construída, a abordagem
‘Toolkits’ deve ser considerada. Como esta abordagem faz uso de componentes prontos
e da arquitetura Centralizada, o desenvolvedor pode criar rapidamente novas aplicações
colaborativas.

Por ser a primeira abordagem apresentada para o desenvolvimento de aplicações
colaborativas, os toolkits se tornaram populares, sendo utilizados para a construção de
diversos protótipos e provas de conceito.

A abordagem ‘SCT - 1º geração’ permite o uso colaborativo de, virtualmente,
qualquer aplicação, pois esta abordagem encasula as aplicações existentes agindo como
uma plataforma operacional. Como nenhuma modificação no código fonte é sugerida
por esta abordagem, o desenvolvedor deve apenas configurar a plataforma operacional

1863

para que ela suporte o uso colaborativo da aplicação. Apesar de permitir o uso
colaborativo de aplicações, Begole et al. [Begole et al. 1999] criticam esta abordagem
afirmando que ela não suporta a colaboração adequadamente, argumentando que esta
abordagem utiliza os recursos de rede de forma ineficiente, impondo um estilo de
colaboração inflexível e altamente acoplado.

Tabela 1. Comparações de abordagens.

Abordagem Código
Fonte

Requisito
Tecnológico Propósito Arquitetura Flexibilidade

Toolkits
Não requer o
código fonte

Depende da
linguagem de
programação

Criar novas
aplicações

Centralizada Muita

SCT - 1º
geração

Não requer o
código fonte

Nenhum
Promover

colaboração
Centralizada Pouca

SCT - 2º
geração (ICT,
ICT2 e ACT)

Requer API
do

sistema
operacional

Requer
camada de
software

Promover
colaboração

Centralizada
ou Distribuída

Pouca

Adaptação
Transparente

Requer API
da aplicação

Requer
camada de
software

Promover
colaboração

Replicada Média

Substituição de
Componentes

Requer o
código fonte
da aplicação

Depende da
linguagem do
componente

Criar novas
aplicações e
Promover

colaboração

Replicada Pouca

Mapeamento
de

Componentes

Requer o
código fonte

dos
componentes
da aplicação

Requer
aplicação no
estilo MVC

Promover
colaboração

Híbrida Muita

A abordagem ‘SCT - 2º geração’ também não sugere modificações no código
fonte da aplicação. Contudo, para utilizar esta abordagem é necessário manipular a API
do sistema operacional, que geralmente é complexa e extensa. Além do conhecimento
necessário para manipular a API do sistema operacional, o desenvolvedor também deve
conhecer as principais operações que o usuário pode realizar na aplicação, além dos
detalhes específicos do cada sistema operacional que a aplicação for executada.

Devido a esta característica, o desenvolvedor se distancia do foco principal, que
é tornar a aplicação colaborativa, ao se aprofundar na programação da API do sistema
operacional. Além disso, o compartilhamento fornecido por esta abordagem se limita à
replicação de eventos, não fornecendo recursos para o desenvolvedor implementar os
demais aspectos funcionais comuns a aplicações colaborativas. Em contrapartida, esta
abordagem é a única que permite a colaboração entre aplicações heterogêneas.

A próxima abordagem listada na Tabela 1, a abordagem ‘Adaptação
Transparente’, possui como requisito tecnológico uma API da aplicação. Este tipo de
requisito limita o uso desta abordagem a aplicações bem documentadas e que possuam
uma API que permita a interceptação e reprodução de eventos, apresentado as mesmas

1864

limitações da segunda geração de sistemas de colaboração transparente. O
desenvolvedor que utilizar esta abordagem deve conhecer profundamente tanto à
aplicação como sua API, uma vez que é por meio desta última que todas as
funcionalidades colaborativas são implementadas.

Em comparação com as abordagens ‘Toolkits’, ‘SCT - 1º geração’, ‘SCT - 2º
geração’, ‘Substituição de Componentes’ e ‘Mapeamento de Componentes’, a principal
vantagem da abordagem ‘Adaptação Transparente’ é a separação da construção de um
groupware da construção de uma camada de software, que propicia as funcionalidades
colaborativas. Portanto, a abordagem ‘Adaptação Transparente’ implica no
desenvolvimento de uma camada de software para capturar e replicar os eventos
gerados pelas aplicações.

Com base na experiência do autor no uso da abordagem ‘Adaptação
Transparente’, a alteração direta do código fonte da aplicação pode requerer menos
recursos do que a utilização da API da aplicação. A aplicação da abordagem ‘Adaptação
Transparente’ apresenta bons resultados, especialmente em aplicações comerciais
complexas, como o editor de texto Word [Xia et al. 2004].

As abordagens ‘Substituição de Componentes’ e ‘Mapeamento de
Componentes’ são as únicas abordagens que sugerem uma modificação direta na
aplicação. Desta maneira, o desenvolvedor tem mais liberdade para implementar os
aspectos colaborativos da maneira que desejar. Contudo, a manipulação direta do
código fonte da aplicação pode acarretar em diversos problemas como, por exemplo, a
inserção de novos defeitos na aplicação.

A abordagem ‘Substituição de Componentes’ sugere a troca de determinados
componentes da aplicação por componentes colaborativos. Seguindo esta abordagem, o
desenvolvedor substitui apenas partes específicas da aplicação para torná-la
colaborativa. Além de demandar a modificação direta da aplicação, uma vez que um
componente existente da aplicação será substituído por outro, esta abordagem é limitada
pela oferta de componentes compatíveis com a tecnologia utilizada pela aplicação.
Outra característica desta abordagem, descrita na Subseção 2.4, indica que apenas os
requisitos relacionados à percepção podem ser implementados por esta abordagem.

A abordagem ‘Substituição de Componentes’ é abordagem que possui muitos
pontos em comum com a abordagem ‘Mapeamento de Componentes’, em relação aos
critérios utilizados nesta comparação. Contudo, o Mapeamento de Componentes se
destaca em relação à Substituição de Componentes por não requerer recursos técnicos
específicos, como uma determinada linguagem de programação ou ambiente de
desenvolvimento, durante a implementação da abordagem. É interessante notar que, em
certas aplicações, as abordagens ‘Substituição de Componentes’ e ‘Mapeamento de
Componente’ podem ser utilizadas em conjunto, especialmente quando o mapeamento
indicar que algum componente não pode ser modificado e deve ser substituído.
Contudo, para que o desenvolvedor utilize estas duas abordagens em conjunto, é
necessário que todos os requisitos de ambas as abordagens sejam satisfeitos.

De acordo com os dados da Tabela 1, o Mapeamento de Componentes deve ser
utilizado no contexto das aplicações que possuem código fonte disponível, ou ao menos
o código fonte dos principais componentes que constituem a aplicação. Devido a este
valor para este critério, a maioria das aplicações candidatas para o uso do Mapeamento
são as aplicações de código livre, onde um grupo de desenvolvedores disponibiliza o

1865

código fonte para livre acesso. Também é importante notar que, em comparação com as
outras abordagens, o Mapeamento de Componentes é o único que requer não apenas a
estruturação da aplicação em componentes, mas também uma organização lógica dos
mesmos, pois o estilo arquitetural MVC é um dos requisitos do mapeamento.

A abordagem ‘Mapeamento de Componentes’ apresenta um requisito adicional
implícito no uso da arquitetura híbrida: a necessidade de um Servidor de Colaboração.
Este Servidor de Colaboração deve ser desenvolvido a partir dos componentes do
Modelo, o que implica em mais esforço de desenvolvimento.

Comparando o critério Disponibilidade do Código Fonte das abordagens ‘SCT -
1º geração' ‘SCT - 2º geração', ‘Adaptação Transparente’, ‘Substituição de
Componentes’ e ‘Mapeamento de Componentes’, pode-se notar que as abordagens se
dividem em dois grupos: o grupo de abordagens que não requer nenhum tipo de
desenvolvimento, caracterizado pelo uso de plataformas operacionais, e o grupo das
abordagens que requerem o desenvolvimento de infra-estrutura para a utilização
colaborativa das aplicações, caracterizado pela necessidade de desenvolvimento.

O critério Requisito Tecnológico indica que as abordagens ‘SCT - 2º geração',
‘Adaptação Transparente’, ‘Substituição de Componentes’ e ‘Mapeamento de
Componentes’ requerem uma API do sistema operacional, uma API da aplicação, o
código fonte da aplicação e o código fonte dos componentes da aplicação,
respectivamente, além de recursos adicionais, com compilador, ferramentas de
desenvolvimento etc. Estes requisitos nem sempre estão disponíveis ao desenvolvedor,
limitando o uso destas abordagens a um conjunto específico de aplicações.

Com relação às arquiteturas utilizadas pelas abordagens da Tabela 1, Suthers
[Suthers 2001] indica que a arquitetura Centralizada utiliza ineficientemente os recursos
de rede, pois esta arquitetura transmite a informação completa de visualização e eventos
da interface pela rede. Ainda segundo Suthers, a arquitetura Replicada possui a
desvantagem de ser naturalmente mais adequada para aplicações WYSIWIS restritas e
não WYSIWIS relaxadas. Já a arquitetura Distribuída é criticada por depender muito da
rede, tornando-se inutilizável quando os serviços de rede estão indisponíveis. Suthers
também critica a arquitetura Híbrida, argumentando que sua implementação é mais
complexa do que as demais.

Sob o ponto de vista da Flexibilidade, as abordagens ‘SCT - 1º geração’ e ‘SCT
- 2º geração’ apresentam pouca capacidade para fornecer requisitos colaborativos, pois
elas não modificam a aplicação. De forma análoga, a abordagem ‘Substituição de
Componentes’ limita-se apenas ao requisito percepção, pois esta abordagem sugere a
substituição apenas dos componentes da interface gráfica.

A abordagem ‘Adaptação Transparente’ recebeu o valor ‘Média’ para o critério
Flexibilidade, pois apesar de não modificar a aplicação, pode-se contar com os recursos
da API para estender algumas partes da aplicação e implementar alguns requisitos
colaborativos. As abordagens ‘Mapeamento de Componentes’ e ‘ Toolkits’ possuem
muita flexibilidade para implementar novos requisitos, devido à sua estratégia de criar
novas aplicações a partir do zero ou modificar diretamente o código fonte.

Todas as abordagens comparadas, com exceção dos toolkits, permitem que
aplicações não colaborativas possam apresentar recursos colaborativos, possibilitando a
reutilização de aplicações existentes em um contexto colaborativo. Esta contribuição é

1866

relevante, pois possibilita associar em uma mesma solução as ferramentas já existentes,
adequadas à tarefa e provavelmente familiares aos participantes, com as funcionalidades
colaborativas necessárias para realizar a tarefa em ambientes distribuídos colaborativos.

4. Conclusões e Comentários Finais

Este artigo apresentou os critérios e uma comparação de abordagens disponíveis para
implementar requisitos colaborativos em aplicações não colaborativas. A partir da
comparação de abordagens apresentada neste trabalho, os desenvolvedores podem
compreender melhor qual tipo de abordagem é mais recomendada, em termos dos
critérios apresentados, na implementação dos requisitos colaborativos desejados,
auxiliando os desenvolvedores na escolha da abordagem a ser utilizada.

As abordagens ‘Toolkits’, ‘SCT - 1º geração’, ‘SCT - 2º geração (ICT, ICT2 e
ACT)’, ‘Adaptação Transparente’, ‘Substituição de Componentes’, e ‘Mapeamento de
Componentes’ foram apresentadas de acordo com o contexto na qual elas devem ser
utilizadas. Os critérios ‘Código Fonte’, ‘Requisito Tecnológico’, ‘Propósito’,
‘Arquitetura’ e ‘Flexibilidade’ foram utilizados para a comparação, de acordo com o
estudo bibliográfico e a experiência prática dos autores no uso das abordagens.

Para uma tomada de decisão efetiva, além dos critérios técnicos, devem-se
considerar também os critérios gerenciais. Um critério gerencial importante que deve
ser incluído na escolha final da abordagem é o esforço de análise, projeto,
implementação e testes, se possível em termos quantitativos, como estimativas de
Homens-Hora, ou eventualmente qualitativos. Esse tipo de critério gerencial tem valores
específicos resultantes de um conjunto de atributos e valores da organização de
desenvolvimento tais como: prontidão e habilidades dos membros da equipe, técnicas,
ferramentas e processos adotados. Apesar dos critérios gerenciais serem importantes na
decisão de qual abordagem adotar, a elaboração desses critérios gerencial foge ao
escopo deste artigo. De qualquer forma, os autores julgam que critérios gerenciais na
prática devam ser considerados na decisão final sobre escolha da abordagem.

Com a comparação apresentada neste trabalho, os desenvolvedores de aplicações
colaborativas podem contar com um apoio para a escolha de uma determinada
abordagem. Tento em vista que a implementação de requisitos colaborativos apresenta
vários desafios, contar com critérios de comparação pode facilitar o processo de adoção
de uma determinada abordagem, incentivando a comunidade de desenvolvedores a
modificar aplicações existentes para suportar funcionalidades colaborativas e,
conseqüentemente, aumentando a quantidade de aplicações colaborativas nos diversos
domínios de conhecimento.

Agradecimentos. Os autores gostariam de agradecer aos revisores anônimos que
contribuíram para a melhoria deste trabalho.

5. Referências

Abdel-Wahab, H., Feit, M. A. (1991) “XTV: A Framework for Sharing X Window
Clients in Remote Synchronous Collaboration”, em: Proceedings of the IEEE
Tricomm, Chapel Hill, Carolina do Norte, E.U.A., p.159-167.

Begole, J. C. A., Rosson, M. B., Shaffer, C. A. (1999) “Flexible collaboration
transparency: supporting worker independence in replicated application sharing

1867

systems”, em: ACM Transactions on Computer-Human Interaction, volume 6,
número 2, Junho de 1999, p.95-132.

Ellis, C., Gibbs, S. J, Rein, G. L. (1991) “Groupware: some issues and experiences”,
em: Communications of the ACM, volume 34, número 1, Janeiro de 1991, p.38-58.

Garnkel, D., Welti B. C., Yip, T. W. (1994) “SharedX: A tool for real-time
collaboration”, em: HP Journal, volume 45, número 2, Abril de 1994, p.23-36.

Greenberg, S., Roseman, M (1998) Groupware toolkits for synchronous work, John
Wiley & Sons, Nova York, primeira edição.

Gutwin, C., Greenberg, S. (2002) “A Descriptive Framework of Workspace Awareness
for Real-Time Groupware”, em: Computer-Supported Cooperative Work, volume 11,
número 3, Julho de 2002, p.411- 446.

Hill, J., Gutwin, C. (2004) “The MAUI Toolkit: Groupware Widgets for Group
Awareness”, em: Computer Supported Cooperative Work, volume 13, números 5-6,
Dezembro de 2004, p.539-571.

Li, D., Li, R. (2002) “Transparent sharing: interoperation of heterogeneous single-user
applications”, em: Proceedings of the 8th ACM Conference on Computer Supported
Cooperative Work (CSCW'02), New Orleans, Lousiana, E.U.A., p.246-255.

Lu, J., Li, R., Li, D. (2004) “A State Difference Based Approach to Sharing Semi-
Heterogeneous Single-User Editors”, em: Proceedings of the Sixth International
Workshop on Collaborative Editing Systems (IWCES6) in CSCW’04, Chicago,
Illinois, E.U.A., 2004.

Mangan, M. A. S. (2006) Uma abordagem para o desenvolvimento de apoio à
percepção em ambientes colaborativos de software Tese (Doutorado em Engenharia
de Sistemas e Computação) - Universidade Federal do Rio de Janeiro, Rio de
Janeiro.

Microsoft. ”NetMeeting Home”, web site acessado em abril/2007:
http://www.microsoft.com/windows/netmeeting/.

Pichiliani, M. C., Hirata, C. M. (2006) “A Guide to map application components to
support multi-user real-time collaboration”, em: Proceedings of the 2nd International
Conference on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCon 2006), Georgia, E.U.A., 2006.

Schuckmann, C., Kirchner, L., Schümmer, J., Haake, J. M. (1996) “Designing object-
oriented synchronous groupware with COAST”, em: Proceedings of the 3rd ACM
Conference on Computer Supported Cooperative Work (CSCW'96), Nova York,
E.U.A., p.30-38.

Suthers D. (2001) “Architectures for Computer Supported Collaborative Learning”, em:
Proceedings of the IEEE International Conference on Advanced Learning
Technologies (ICALT 2001), New Orleans, Lousiana, E.U.A., p.6-8, 2001.

Xia S., Sun D., Sun, C., Chen D., Shen H. (2004) “Leveraging Single-user Applications
for Multi-user Collaboration: the CoWord Approach”, em: Proceedings of the 9th
ACM Conference on Computer Supported Cooperative Work (CSCW'04), Chicago,
Illinois, E.U.A., p.162-171.

1868

