

Uma Infra-estrutura Colaborativa de Apoio
ao Desenvolvimento Distribuído Baseado em Componentes

João Paulo F. de Oliveira, Talles Brito, Yuri Morais, Amílcar Soares,
Adriana E. de Oliveira, Sebastião Rabelo Jr, Glêdson Elias

Departamento de Informática
Universidade Federal da Paraíba (UFPB) – João Pessoa, PB – Brasil

{joaopaulo,talles,yuri,amilcar,drill,sebastiao,gledson}@compose.ufpb.br

Abstract. Several organizations have adopted the distributed software
development paradigm as a mean to reduce costs and development time, and also
improve quality of products. As a consequence of geographic distribution of such
organizations, tools and platforms are needed to improve collaboration and to
control the software production process. In such a context, this paper presents a
collaborative infrastructure for supporting component-based distributed
development, which integrates facilities for access control, configuration
management, version control and reuse metrics management.

Resumo. Diversas empresas estão passando a adotar o paradigma de
desenvolvimento distribuído de software, com o objetivo de reduzir os custos e o
tempo de desenvolvimento, bem como melhorar a qualidade dos seus produtos.
Em decorrência da distribuição geográfica dessas empresas, ferramentas e
plataformas são necessárias para melhorar a colaboração e controlar o processo
de produção do software. Neste sentido, este artigo apresenta uma infra-estrutura
colaborativa de apoio ao desenvolvimento distribuído baseado em componentes
de software, que integra facilidades de controle de acesso, gerência de
configuração, controle de versões e gerência de métricas de reuso.

1. Introdução
Tem se tornado cada vez mais oneroso desenvolver software no mesmo espaço físico,
na mesma organização ou até mesmo no mesmo país [1]. Assim, em um ambiente
extremamente competitivo, empresas de Tecnologia da Informação (TI) que desejam
continuar crescendo, ou até mesmo sobrevivendo, necessitam mudar inevitavelmente
seus processos de desenvolvimento de software. No entanto, de acordo com Aoyama
[2], os métodos tradicionais de desenvolvimento de software não permitem que tais
empresas possam atingir os resultados esperados.

 Neste sentido, na engenharia de software, o Desenvolvimento Distribuído de
Software (DDS) e o Desenvolvimento Baseado em Componentes (DBC) destacam-se
como abordagens que têm o potencial de tornar realidade a redução da complexidade,
do tempo e do custo de desenvolvimento, bem como melhorar a qualidade do software
produzido [3] e a possibilidade de obter recursos em âmbito global [4].

 Vale ressaltar que existe uma relação entre as abordagens de DBC e DDS. Esta
relação explicitada na forma de um mercado de software, como definido por Wallnau
[5], onde o produtor fornece componentes de software para diversos consumidores e um
consumidor adquire componentes de diversos produtores, ambos (produtores e
consumidores) dispersos geograficamente. É importante destacar que, nesta relação,
consumidores desempenham o papel de integradores de software, desenvolvendo novos

1869

componentes a partir do reuso e composição de componentes previamente existentes e
desenvolvidos de forma independente por terceiros.

 Entretanto, tanto o DBC quanto o DDS apresentam alguns fatores limitantes. No
DBC, para Crnkovic [6], o desafio está na atual dificuldade de identificar, selecionar,
negociar e recuperar componentes que atendam aos requisitos especificados, e, além
disso, que possuam alto grau de reusabilidade e qualidade. Já no DDS, o principal
desafio é inerente à própria característica da distribuição que dificulta a colaboração e a
cooperação entre departamentos e pequenos grupos de desenvolvedores que trabalham
em conjunto, mas estão localizados em cidades ou países diferentes [7].

 Para Tommarello [8], trabalho com equipes distribuídas é sempre um desafio.
No entanto, esse desafio pode ser reduzido com o uso de ferramentas e ambientes de
groupware para coordenação e comunicação das equipes durante um processo de
desenvolvimento distribuído de software.

 Neste contexto, com o objetivo de superar as limitações expostas tanto para o
DBC quanto para o DDS, este artigo apresenta a implementação de um serviço de
repositório compartilhado e distribuído, que provê facilidades de groupware atuando
como uma infra-estrutura colaborativa de apoio ao desenvolvimento distribuído de
componentes de software. O serviço de repositório provê facilidades e suporte a
modelos de negócios, certificação de componentes, aspectos de segurança (autenticação,
visibilidade e controle de acesso), esquema de nomeação, controle de versões e
informações de reuso.

 O serviço de repositório proposto é dito ser compartilhado, pois vários
produtores podem registrar seus artefatos. Por outro lado, o serviço de repositório é dito
distribuído porque uma implementação aderente pode ser baseada em um conjunto de
entidades geograficamente dispersas que cooperam para prover as funcionalidades do
serviço de repositório.

 Vale ressaltar que o serviço de repositório é projetado de forma a manipular
artefatos de software (assets) em geral, que incluem quaisquer artefatos produzidos ou
reusados no DBC. Exemplos de artefatos são: códigos executáveis, códigos fonte,
especificações de interfaces, documentações, casos de uso, diagramas UML e planos de
teste.

 O restante deste trabalho está organizado da seguinte forma. Na Seção 2, o
serviço de repositório é comparado com alguns trabalhos relacionados. A Seção 3
introduz o framework arquitetural ComponentForge [9], no qual o serviço de repositório
representa a infra-estrutura colaborativa de apoio ao desenvolvimento distribuído de
componentes de software. A Seção 4 apresenta as principais características e
funcionalidades do serviço de repositório que provêem apoio a colaboração e
cooperação. Em seguida, a Seção 5 apresenta o projeto arquitetural do serviço de
repositório e sua implementação. Por fim, a Seção 6 apresenta algumas considerações
finais.

2. Trabalhos Relacionados
 Avaliando as ferramentas e plataformas de DBC, disponíveis na academia e
indústria, torna-se evidente a ausência de um ferramental de groupware para
coordenação e comunicação das equipes durante um processo de desenvolvimento
distribuído de componentes de software. Para evidenciar esta ausência de ferramental de
groupware no contexto de DBC, esta seção apresenta uma breve comparação das
funcionalidades providas pelo serviço de repositório proposto neste artigo com os

1870

principais repositórios disponíveis na literatura e mercado, tais como: SPARS-J [10],
OSCAR [11], CodeBroker [12] e ComponentSource[13].

 A fim de facilitar a análise dos repositórios, resolvemos adotar o Modelo Clover
[14] para classificação do apoio computacional à colaboração. Neste modelo, uma
plataforma de groupware deve fornecer três classes de serviços complementares:
coordenação, produção e comunicação.

 As facilidades de coordenação estão relacionadas com os papéis que cada
usuário pode exercer e como essas atividades são coordenadas de forma a alcançar o
objetivo final. O ComponentSource, o SPARS-J e o CodeBroker adotam mecanismos
para a coordenação de atividades bastante simples, pois não permitem aos usuários
exercerem diferentes papéis com distintas responsabilidades. Em ambos os casos, os
produtores apenas registram seus componentes implementados e prontos, não tendo a
noção de equipes distribuídas que cooperam durante o processo de desenvolvimento de
software.

 De forma similar ao ComponentSource, SPARS-J e CodeBroker, o OSCAR
também não adota mecanismos sofisticados para a coordenação de atividades. Na
literatura, apenas é possível identificar que o OSCAR adota um simples esquema de
histórico (log), que armazena quem acessou, qual artefato foi acessado e qual foi o
propósito do acesso. No entanto, estas informações são apenas usadas para auditoria,
mas não podem ser usadas como mecanismo de controle na definição de diferentes
papéis aos usuários.

 Ao contrário das principais propostas identificadas na literatura e indústria, o
serviço de repositório proposto neste artigo adota mecanismos sofisticados para a
coordenação das atividades, permitindo aos usuários exercerem diferentes papéis com
distintas responsabilidades. O serviço de repositório adota o modelo de controle de
acesso denominado RBAC (Role-Based Access Control) [15], onde os usuários são
classificados em diferentes papéis e diferentes permissões de acesso são associadas a
cada papel desempenhado pelo usuário. Deste modo, de forma simples e de fácil
manutenção, é possível controlar que operações as equipes distribuídas de
desenvolvedores podem executar durante o processo de desenvolvimento de
componentes de software.

 De acordo com Laurillau [14], a segunda classe de serviço requerido por uma
plataforma de groupware está relacionada com facilidades de produção. Neste
contexto, a produção está relacionada com os resultados das atividades desenvolvidas
em grupo ou aos dados compartilhados por múltiplos usuários. No caso específico de
DBC e DDS, a produção está diretamente relacionada às facilidades de gerência de
configuração, controle de versão e certificação dos componentes de software. Além
disso, a produção também diz respeito à quantidade de produtores e consumidores que
podem fazer uso das facilidades da plataforma de groupware, como também à
quantidade de componentes que podem ser manipulados.

 Em relação às facilidades de produção, o CodeBroker, o SPARS-J e o OSCAR
adotam uma base de dados de escala restrita a uma determinada instituição, que impede
a escalabilidade do serviço oferecido, tanto em termos da quantidade de produtores e
consumidores que usam os serviços, quanto na quantidade de componentes
manipulados. Embora o ComponentSource atue provendo componentes de software
comerciais (COTS – Commercial Off-The-Shelf) em escala global e multi-institucional,
o aspecto centralizado de sua arquitetura o torna não escalável em termos da quantidade

1871

de produtores e consumidores que usam os serviços, quanto na quantidade de
componentes manipulados.

 Além disso, o CodeBroker e o SPARS-J também não adotam qualquer
mecanismo de gerência de configuração, controle de versão e certificação dos
componentes. Logo, no CodeBroker e SPARS-J, as facilidades de produção são bastante
limitadas, abrangendo apenas a possibilidade de registrar e recuperar artefatos.
Considerando a gerência de configuração e o controle de versões suportados pelo
OSCAR, pode-se perceber que o mesmo adota abordagens baseadas na integração de
soluções de terceiros e centradas apenas no controle de código fonte, tais como CVS.
Além disso, o OSCAR não trata aspectos relacionados à certificação de componentes.

 Por outro lado, no que se refere às facilidades de produção, o serviço de
repositório proposto neste artigo define mecanismos próprios de gerência de
configuração e controle de versões, capazes de controlar de forma customizada a
evolução dos diferentes tipos de artefatos, ou seja, não apenas código fonte. Além disso,
o serviço de repositório suporta diferentes estratégias de certificação de componentes,
cujos certificados podem ser registrados por diferentes entidades certificadoras que
adotam variados modelos de certificação. Por fim, a natureza compartilhada e
distribuída do serviço de repositório torna a solução escalável em termos do número de
produtores e consumidores participantes, como também da quantidade de componentes
manipulados.

 Por fim, ainda de acordo com Laurillau [14], a terceira classe de serviço
requerido por uma plataforma de groupware está relacionada com facilidades de
comunicação, que trata das relações diretas entre os usuários, como por exemplo, uma
possível troca de mensagens entre desenvolvedores e consumidores. O
ComponentSource, por ser um repositório comercial, oferece chat e fórum para que os
usuários possam obter mais detalhes sobre os artefatos que desejam adquirir. O OSCAR,
SPARS-J e CodeBroker não oferecem nenhum apoio a facilidades de comunicação entre
produtores e consumidores.

 Diferentemente, em relação às facilidades de comunicação, o serviço de
repositório apresentado neste artigo oferece um conjunto de informações de métricas de
reuso associadas aos artefatos registrados. Estas informações contêm os comentários
dos consumidores sobre suas experiências de instalação, configuração e uso de um
determinado artefato, como também as respostas apresentadas pelos desenvolvedores a
tais comentários. Neste sentido, as informações de reuso permitem os produtores e
consumidores compartilharem informações que facilitam a manutenção dos artefatos e
também auxiliam os consumidores na seleção dos mesmos.

3. ComponentForge
Considerando as limitações das propostas atualmente disponíveis, este artigo descreve
as facilidades de groupware suportadas pela implementação de um serviço de
repositório compartilhado e distribuído. Este serviço de repositório proposto atua como
uma infra-estrutura colaborativa de apoio ao desenvolvimento distribuído de
componentes de software. Atuando como um elemento de infra-estrutura, o serviço de
repositório está inserido no contexto de um framework arquitetural de alto nível,
denominado ComponentForge, que provê apoio a processos de desenvolvimento
baseados em reuso de componentes. Esta sessão tem por objetivo descrever
sucintamente os elementos que compõem o framework, contextualizando assim o papel
do serviço de repositório.

1872

 Como ilustrado na Figura 1, o ComponentForge adota uma abordagem de
arquitetura orientada a serviços (SOA – Service-Oriented Architecture), na qual um
conjunto de serviços distribuídos, compartilhados, independentes e fracamente
acoplados comunicam-se e colaboram entre si através de interfaces e protocolos de
comunicação bem definidos.

Repository Service

Certification
Service

Broker
Service

Search
Service

Toolbox

Figura 1. Framework Arquitetural do ComponentForge

 Coletivamente, o conjunto de serviços do framework provê facilidades para
armazenar, indexar, buscar, recuperar, certificar e negociar variados artefatos de
software (assets). Além disso, o ComponentForge inclui facilidades de gerência de
configuração, gerência de métricas de reuso, como também aspectos de segurança
relacionados à autenticação e controle de acesso.

 O serviço de repositório (repository service) é responsável por armazenar,
localizar, recuperar e gerenciar assets. O serviço de repositório é suportado por uma
coleção de entidades cooperantes e distribuídas denominadas containers, que,
conjuntamente, provêem facilidades às demais entidades do framework arquitetural.
Apesar de não estar explícito na Figura 1, o serviço de repositório pode se comunicar
com uma ou mais instâncias de toolbox, certification service, broker service e search
service.

 A certificação de componentes é uma atividade que procura validar as
funcionalidades e os níveis de qualidade dos componentes [16]. O ComponentForge foi
concebido de forma a permitir a coexistência de diversos serviços de certificação
(certification service), possibilitando a existência de múltiplos e complementares
processos de certificação. Estes serviços são responsáveis por certificar não apenas
componentes individuais, mas também as práticas e os processos adotados pelos
produtores.

 Da mesma forma como acontece na produção de softwares em geral, produtores
de componentes reusáveis também podem estar interessados ou não em ter um retorno
financeiro. Logo, podem-se identificar dois tipos de componentes: os componentes sem
modelo de negócio, que podem ser distribuídos para qualquer consumidor sem
restrições, e os componentes com modelo de negócio, cujas formas de negociação são
regidas por contratos especificados nos modelos de negócios, definidos por seus
respectivos produtores. Portanto, componentes podem ser adquiridos sob uma variedade
de modelos de negócios.

 Sendo assim, o serviço de negociação (broker service) tem a função de prover
mecanismos para assegurar que um componente será entregue em conformidade com os
modelos de negócios especificados pelo produtor. Depois que um consumidor atender
todas as condições dos modelos de negócios de um componente, o serviço de
negociação pode acessar o serviço de repositório para recuperar o componente e
entregá-lo ao consumidor. Os produtores de componentes podem desenvolver seus
próprios serviços de negociação ou indicar serviços já existentes para tratar os modelos
de negócios sob os quais seus componentes podem ser negociados.

1873

 Vale ressaltar que, mesmo componentes desenvolvidos sob uma licença de
software livre, também podem ter que satisfazer restrições especificadas em um
determinado modelo de negócio. Neste caso, tais componentes somente podem ser
adquiridos através de um determinado serviço de negociação. Nesta abordagem, por
exemplo, produtores de software livre podem manter, em seus respectivos serviços de
negociação, catálogos de consumidores aptos a recuperar seus componentes ou
consumidores que já realizaram a recuperação de seus componentes.

 Para permitir a busca e a recuperação de componentes armazenados, o
ComponentForge define o serviço de busca (search service). Este serviço consulta o
serviço de repositório e recupera metadados para realizar a indexação. O
ComponentForge explora um modelo de representação de componentes, denominado
X-ARM [17]. Tal abordagem torna a arquitetura mais flexível, pois permite que
diferentes serviços de busca adotem diferentes algoritmos de indexação e linguagens de
consulta. Desta forma, um serviço de busca pode indexar componentes de um
determinado domínio de aplicação específico, e, além disso, prover uma linguagem de
consulta especializada para tal domínio. Por outro lado, outro serviço de busca pode
optar por indexar componentes de forma independente de domínio de aplicação.

 Por fim, o conjunto de ferramentas (toolbox) permite a interação dos usuários
com os demais serviços do ComponentForge. Vale ressaltar que o baixo acoplamento
entre os serviços que compõem o framework facilita a configuração, reuso, manutenção,
evolução e extensão, todos considerados importantes propriedades arquiteturais de
aplicações distribuídas, conforme mencionado por [18].

4. O Serviço de Repositório como uma Infra-estrutura Colaborativa
Colaboração é uma maneira de desenvolver atividades em grupo. Visando a colaboração
no desenvolvimento de componentes de software, nesta seção serão apresentadas as
principais funcionalidades do serviço de repositório, evidenciando aquelas diretamente
relacionadas às atividades colaborativas.

 Para a classificação das funcionalidades do serviço de repositório utilizaremos
novamente o Modelo Clover [14]. Como mencionado, de acordo com este modelo, uma
plataforma de groupware deve prover três classes de serviços: coordenação, produção e
comunicação.

Nas facilidades de coordenação, a estruturação de uma equipe inclui a definição
dos papéis dos usuários, da hierarquia, dos subgrupos e das permissões dos
participantes[19]. A fim de gerenciar quais usuários terão permissão para executar
determinadas operações e quais serviços terão permissões de acesso aos artefatos, o
serviço de repositório possui um sistema de controle de acesso. Além disso, o serviço de
repositório provê um esquema de visibilidade para que o desenvolvedor possa restringir
o acesso a seus artefatos.

No trabalho em grupo, as facilidades de produção estão relacionadas à operação
conjunta dos participantes no espaço compartilhado, visando a realização de tarefas
[19]. Além disso, as facilidades de produção devem permitir que os desenvolvedores
possam manipular, refinar e organizar os artefatos produzidos. Assim, no serviço de
repositório, o controle de versões tem por objetivo permitir que diversos
desenvolvedores possam colaborar na evolução de um mesmo artefato de forma
organizada e sem conflitos. Além disso, o esquema de nomeação proporciona a
recuperação não ambígua de artefatos, facilitando assim a organização da produção de
todo o conteúdo do serviço de repositório.

1874

 Através das facilidades de comunicação, o grupo debate pontos de vista para
alinhar e refinar as idéias [19]. Neste contexto, o serviço de repositório define o que
chamamos de informações de reuso, onde os consumidores podem expor suas
avaliações a respeito dos artefatos recuperados.

 Neste ponto, apenas identificamos as principais funcionalidades do serviço de
repositório que estão diretamente relacionadas às atividades colaborativas. A seguir, as
próximas subseções detalham os conceitos e funcionalidades sobre nomeação, controle
de acesso aos usuários e demais serviços do framework , visibilidade dos artefatos,
controle de versões dos artefatos e informações de reuso.

4.1 Esquema de Nomeação

O serviço de repositório é composto por um conjunto de entidades cooperantes e
distribuídas denominadas containers. A Figura 2 ilustra a visão distribuída e
compartilhada do serviço de repositório, em que o mesmo é uma entidade representativa
do conjunto de facilidades providas pelos containers.

•
br

Container 1 Container 3

br.ufpb
Zona

Domínio

Asset

Serviço

br.ufpb.compose

br.ufpb.compose.spell

Container 2

Serviço de Repositório

com

Figura 2. Árvore de Nomes Hierárquicos

 Assim, considerando a natureza distribuída e compartilhada do serviço de
repositório, as atividades de groupware relacionadas às facilidades de produção dos
artefatos armazenados no serviço de repositório utilizam um esquema que permite a
recuperação não ambígua de artefatos. Em tal esquema, os nomes são organizados em
uma árvore hierárquica onde as folhas são os artefatos armazenados e serviços
oferecidos. Nesta árvore, os nós internos correspondem a dois tipos de entidades (zonas
e domínios).

 Zonas representam produtores de artefatos e suas famílias de produtos e
serviços. A fim de reduzir o esforço de coordenação e possibilitar uma melhor
organização dos artefatos, uma zona também pode ser subdividida em uma estrutura
hierárquica, na qual os nós são denominados domínios, cuja função é agrupar um
conjunto de artefatos para um determinado domínio de aplicação.

 Na composição dos identificadores hierárquicos, os nomes de zonas, domínios,
serviços e artefatos são separados por pontos. Assim, a Figura 2 ilustra uma árvore de
nomes hierárquicos onde br.ufpb refere-se à zona da UFPB, que possui o domínio
br.ufpb.compose, que representa o grupo COMPOSE e este possui um artefato
denominado br.ufpb.compose.spell. Vale ressaltar que a zona raiz do serviço de
repositório é identificada apenas por um ponto.

 Além de definir identificadores globalmente únicos, o esquema hierárquico
proposto também provê transparência de localização, pois os nomes não referenciam a
localização física, mas apenas a organização lógica de produtores, artefatos e serviços.

4.2 Controle de Acesso

O controle de acesso provido pelo serviço de repositório é um mecanismo relacionado
às atividades de groupware associadas às facilidades de coordenação. O controle de

1875

acesso gerencia as operações que podem ser executadas por um usuário, e, também é o
responsável pela definição das permissões de acesso dos serviços aos artefatos, zonas e
domínios.

 Os usuários do serviço de repositório podem executar tarefas distintas. O gerente
de container realiza tarefas administrativas, registrando zonas autorizadas e verificando
dados estatísticos relacionados com o container. Um administrador de zona gerencia
uma determinada zona, criando e removendo domínios, assim como registrando,
removendo e atualizando informações sobre desenvolvedores autorizados. Um
desenvolvedor é responsável por registrar, atualizar e remover artefatos em sua
respectiva zona. Já um consumidor pode procurar e adquirir artefatos previamente
armazenados. Além disso, os serviços de certificação, negociação e busca também
podem acessar as facilidades providas pelo serviço de repositório.

 No contexto de controle de acesso, o serviço de repositório adota um mecanismo
semelhante ao modelo RBAC (Role-Based Access Control) [15], onde as permissões de
acesso são associadas a papéis, que, por sua vez, são atribuídos aos usuários e serviços.
Assim, quando um novo usuário ou serviço é cadastrado, o mesmo é associado a um
conjunto de papéis, e, assim, suas permissões de acesso são automaticamente atribuídas.
Consequentemente, o gerenciamento do controle de acesso torna-se mais simples e
viável.

Permissões de acesso associadas para usuários e serviços são diferentes. No caso
dos usuários, permissões de acesso simplesmente referem-se para operações permitidas.
Entretanto, no caso de serviços, permissões de acesso referem-se a zonas e domínios
permitidos ou bloqueados. A Figura 3 exemplifica tais permissões para serviços. A zona
br.ufpb tem o papel authservice, composto de um conjunto de permissões de acesso que
controlam quais componentes podem ser acessados pelos serviços de busca com.google
e com.yahoo. Neste caso, é importante enfatizar que os serviços com.google e
com.yahoo também devem estar registrados no serviço de repositório.

Search Services
com.google
com.yahoo

br.ufpb

compose

authservice

Roles

Access Permissions
br.ufpb: allow
br.ufpb.compose: deny

Figura 3. Permissões de Acesso para Serviços

Nas permissões de acesso, é possível permitir ou bloquear acesso para
componentes específicos ou todos os componentes dos domínios indicados de uma
maneira recursiva. Na Figura 3, veja que os serviços de busca com.google e com.yahoo
têm permissão para acessar todos os artefatos da zona br.ufpb, recursivamente incluindo
todos os seus domínios abaixo, mas recursivamente excluindo o domínio
br.ufpb.compose e todos abaixo dele.

4.3 Visibilidade Externa

A fim de facilitar o desenvolvimento colaborativo e controlar o acesso aos artefatos por
diferentes equipes distribuídas de desenvolvedores, o serviço de repositório explora o
conceito de visibilidade. Assim, para cada artefato registrado em uma zona ou domínio,
podem ser definidos esquemas que indicam as outras zonas ou domínios cujas equipes

1876

de desenvolvedores são autorizadas ou proibidas de recuperar o artefato. Vale ressaltar
que este esquema só pode ser modificado pelos desenvolvedores que o configuraram.

 A visibilidade é considerada um mecanismo relacionado com as atividades de
groupware associadas às facilidades de coordenação, pois proporciona um melhor
controle dos artefatos de uma zona ou domínio, evitando que artefatos não concluídos
sejam recuperados por outros desenvolvedores não autorizados e até mesmo por
consumidores.

 Quando um desenvolvedor autorizar ou proibir uma determinada zona ou
domínio, esta autorização ou proibição é recursivamente aplicada a todos os domínios
filhos em qualquer nível de profundidade, exceto quando esta autorização ou proibição
é explicitamente negada para algum destes subdomínios.

 Vale ressaltar que se um artefato não possui um esquema de visibilidade
configurado, qualquer consumidor pode recuperar este artefato. Neste caso, apenas
desenvolvedores permitidos no domínio onde o artefato está registrado podem executar
operações envolvendo a manipulação das informações do artefato.

 A Figura 4 ilustra o uso do esquema de visibilidade. Neste caso, o artefato
br.ufpb.compose.spell-1.0 pode ser acessado por todos os desenvolvedores dos
domínios br.domainX e br.domainZ, incluindo aqueles dos seus respectivos
subdomínios de qualquer nível de profundidade, exceto do subdomínio
br.domainX.domainY.

br.ufpb.compose.spell-1.0

br.domainX : allow
br.domainX.domainY : deny

br.domainZ : allow

Figura 4. Esquema de visibilidade

4.4 Controle de Versões

No serviço de repositório, diversos desenvolvedores podem estar manipulando um
mesmo artefato. Desta forma, um mecanismo para controle de versões dos artefatos é
fundamental.

 O serviço de repositório oferece este tipo de apoio durante o processo de
desenvolvimento dos artefatos, permitindo assim, que os desenvolvedores pertencentes
a um mesmo grupo de trabalho e distribuídos geograficamente, participem da produção
de um mesmo artefato simultaneamente. Cada desenvolvedor pode trabalhar em uma
versão base e submeter a sua versão modificada, sem correr o risco de sobrescrever a
versão submetida por outros desenvolvedores. Para tal, o serviço de repositório oferece
um mecanismo de bloqueio de artefatos.

 Quando o desenvolvedor recupera um artefato que servirá como versão base
para o desenvolvimento, o serviço de repositório bloqueia este artefato para que outros
desenvolvedores não possam modificá-lo. Sendo assim, este artefato somente poderá ser
atualizado por outros desenvolvedores depois que o mesmo for desbloqueado pelo
desenvolvedor que o bloqueou. Assim, o registro de uma nova versão de um artefato
automaticamente desbloqueia a versão base deste artefato. Este esquema de proteção
garante o controle de versões para os artefatos que estão em desenvolvimento no serviço
de repositório. O controle de versões adotado é semelhante aos empregados em outros
sistemas de controle de versão comerciais, diferenciando pelo fato de que artefatos não
são somente código, mas qualquer elemento produzido durante o processo de
desenvolvimento.

1877

 No serviço de repositório, é possível que um conjunto de desenvolvedores
trabalhem cooperativamente em uma versão de um artefato sem que seja preciso torná-
la pública aos consumidores. Para tal, os artefatos são marcados como registrados ou
publicados. Um artefato no estado registrado somente pode ser recuperado pelos
desenvolvedores e serviços de busca e certificação autorizados. Por outro lado, um
artefato no estado publicado pode ser recuperado pelos desenvolvedores e todos os
serviços autorizados (serviços de busca, certificação e negociação), como também pelos
consumidores. Para Gerosa [19], este tipo de mecanismo é um importante aspecto que
deve ser disponibilizado por plataformas de groupware.
 Vale ressaltar que o controle de versões provido pelo serviço de repositório
também permite identificar e recuperar um histórico de evolução dos artefatos. Com
isto, edições anteriores podem ser facilmente recuperadas, possibilitando ao usuário do
serviço a comparação de versões.

4.5 Informações de Reuso

Estudos demonstram que a prática de reutilização ainda é muito dependente de
comunicação entre as equipes produtoras e consumidoras de componentes. A
documentação é suficiente para descrever o conhecimento de experiências, mas a
comunicação direta é necessária para resolver diversos problemas e estabelecer relações
de confiança entre os produtores e consumidores de software [20].

 Então, para o desenvolvedor de artefatos é importante receber um retorno dos
consumidores o mais cedo possível. Além disso, a possibilidade de o consumidor opinar
sobre um determinado artefato, pode fazer com que o mesmo se sinta parte do processo
de desenvolvimento do artefato [21].

Com a finalidade de estabelecer um canal de comunicação entre consumidores e
desenvolvedores, o serviço de repositório define o que chamamos de informações de
reuso. Estas consistem de um conjunto de informações referentes ao grau de satisfação
de consumidores que já adquiriram um determinado artefato, seus comentários sobre a
aquisição, área de aplicação do artefato, além de respostas emitidas pelos
desenvolvedores do artefato sobre os comentários do consumidor. Neste contexto, as
informações de reuso consistem em um elemento facilitador da comunicação e da
cooperação entre usuários e desenvolvedores de maneira a aumentar a qualidade dos
artefatos desenvolvidos.

É importante ressaltar que estas informações de reuso ficam a disposição de
futuros consumidores, que podem se valer da experiência relatada por outros
consumidores para ajudar no processo de escolha de um determinado artefato.

5. Projeto e Implementação do Serviço de Repositório
Em conjunto, as interfaces do serviço de repositório definem mais de 800 operações,
que, atualmente, estão implementadas no protótipo piloto. No entanto, devido à
limitação de espaço, as interfaces e o projeto do protótipo não serão descritos. A seguir,
descreveremos a arquitetura definida para o repositório juntamente com a função e
delimitação de cada um de seus serviços. Por fim, uma visão geral sobre a
implementação desta arquitetura será apresentada.

5.1 Projeto Arquitetural

Como mencionado anteriormente, as facilidades do serviço de repositório são providas
pelos containers, que possuem um projeto arquitetural no estilo em camadas, onde cada

1878

uma destas provê um conjunto de componentes, que também adotam a abordagem de
serviços. A Figura 5 ilustra a arquitetura em camadas do container.

C
o
n
t
a
i
n
e
r

Storage Persistence Service

Distribution Directory Service
Security Service

Access

Management Service
Administration Service
Development Service

Consumer Service
Business Service

Certification Service
Discovery Service

Figura 5. Camadas e serviços do container

 A camada de acesso (access layer) permite a interação das ferramentas e dos
outros serviços do ComponentForge com o container e com o serviço de repositório
como um todo. Nesta camada, o serviço de gerenciamento (management service)
oferece um conjunto de interfaces que permite a administração do container, tais como o
registro, ajuste e remoção de zonas. O serviço de administração (administration service)
provê operações para o gerenciamento de zonas e domínios. O serviço do
desenvolvedor (development service) provê operações para o registro, atualização,
remoção e gerenciamento de artefatos. O serviço do consumidor (consumer service)
provê mecanismos para recuperação de artefatos que não adotam modelos de negócios,
enquanto que, o serviço de negociação (business service) permite a recuperação de
artefatos que adotam modelos de negócios. O serviço de certificação (certification
service) trata aspectos da certificação de artefatos. Por fim, o serviço de descoberta
(discovery service) permite a recuperação de artefatos para posterior indexação em
mecanismos de busca.

 A camada de distribuição (distribution layer) trata de aspectos não funcionais do
serviço de repositório, resolvendo questões de distribuição e segurança, tornando
possível a descoberta transparente e a recuperação segura de artefatos armazenados. A
fim de prover tais facilidades, a camada de distribuição oferece o serviço de diretório
(directory service) e o serviço de segurança (security service).

 Os containers também são responsáveis pelo armazenamento físico dos
artefatos, formando uma base de dados distribuída. Dessa forma, cada container possui
a camada de armazenamento (storage layer), que disponibiliza o serviço de persistência
(persistence service). Este serviço é acessado pelos serviços da camada de acesso e de
distribuição, oferecendo meios para armazenar, atualizar e recuperar artefatos.

5.2 Implementação

A Figura 6 apresenta uma visão geral da implementação do serviço de repositório,
identificando as diversas tecnologias envolvidas. Devido ao grande volume de dados
manipulados pelo serviço de repositório, surgiu a necessidade de uma plataforma que
proporcione manutenibilidade, confiabilidade e escalabilidade ao sistema. A
especificação Java Platform Enterprise Edition (Java EE) [22] consegue satisfazer estes
requisitos, pois tem como principal objetivo o desenvolvimento em n-camadas. Para
execução de um sistema Java EE é necessário um servidor de aplicações, e para isso foi
selecionado o JBoss Application Server [23]. Este preenche os requisitos de qualquer

1879

servidor de aplicações poderoso, como clustering, tolerância a falhas, balanceamento de
cargas, caching e está de acordo com as mais recentes especificações do Enterprise
JavaBeans (EJB).

Access

Management Service
Administration Service
Consumer Service
Development Service
Business Service
Certification Service
Discovery Service

Distribution
Directory Service
Security Service

Storage
Persistence Service

Web Services Enterprise Java Beans

Clientes do
Serviço de
Repositório

HTTP/

SOAP/

WS-Security
RMI

MySQL

SQL

JBoss Application Server

Figura 6. Visão geral sobre a implementação do serviço de repositório.

 Um dos requisitos chaves para sistemas colaborativos é que estes sejam
compatíveis e adaptáveis aos variados ambientes de seus usuários [24]. Em função
disso, e, pelo fato do ComponentForge ser baseado em uma arquitetura orientada a
serviços (SOA), decidimos disponibilizar seus serviços via Web Services [25]. Esta
decisão proporciona interoperabilidade, permitindo que instâncias implementadas em
diferentes plataformas e linguagens de programação possam se comunicar simplesmente
expondo suas interfaces. Além disso, Web Services favorece o acesso de diferentes
maneiras, que podem incluir, por exemplo, interfaces do usuário baseadas em
navegadores Web, aplicações desktop e dispositivos móveis.

 Com o uso de Web Services, questões sobre segurança, integridade e
confidencialidade constituem fatores críticos nas trocas de mensagens. Assim, se faz
necessário adotar meios para tratar estas questões, que incluem autenticação,
autorização e criptografia [26]. Para preencher esta lacuna, a OASIS (Organization for
the Advancement of Structured Information Standards) desenvolveu a especificação
WS-Security [27]. Este padrão define uma forma de tratar os vários cenários de
segurança na comunicação baseada em mensagens SOAP. WS-Security define um
único modelo que abstrai serviços de segurança, separando as características funcionais
de segurança do sistema de sua implementação específica [26]. Para realizar o controle
de acesso (Sessão 4.2), o serviço de repositório deve suportar mecanismos de
autenticação dos usuários e integridade das informações. Para tal, a implementação
adota as facilidades providas pelo WS-Security.

 Por fim, em função da natureza compartilhada e distribuída do
ComponentForge, mecanismos para o gerenciamento de dados persistentes e não
persistentes do serviço de repositório são de fundamental importância. Assim, devido ao
serviço de repositório adotar um esquema de cache de resolução de nomes, alguns
dados devem permanecer em memória principal em vez de serem armazenados em
memória persistente, proporcionando um melhor desempenho na resolução de nomes.
Toda a questão de sincronização e transações destes dados é gerenciada pelo próprio
JBoss Application Server, de maneira que ganhamos em produtividade ao eliminar
qualquer tipo de programação propensa a erros.

1880

 Além disto, o ComponentForge manipula e armazena uma grande quantidade de
dados persistentes. Assim, para oferecer suporte a acessos simultâneos e em larga
escala, fez-se necessária a utilização de um SGBD robusto, rápido, multi-threaded e
multi-usuário. Com isso, dentre os principais SGBDs hoje existentes, o MySQL (5.0)
atendeu a esses requisitos [28], além de dar suporte às necessidades do projeto quanto às
questões de armazenamento e acesso concorrente.

6. Considerações Finais
 O Desenvolvimento Distribuído de Software, assim como o Desenvolvimento
Baseado em Componentes, vêm ganhado cada vez mais importância na Engenharia de
Software em função da qualidade dos produtos gerados quando são adotados processos,
técnicas e ferramentas aderentes a tais abordagens de desenvolvimento. A interseção
entre essas duas abordagens oferece um vasto campo para pesquisa, visto a necessidade
cada vez mais latente de ferramentas que dêem apoio a ambas abordagens.

 Consequentemente, a principal contribuição deste artigo é propor um serviço de
repositório que define uma infra-estrutura colaborativa que oferece suporte à
coordenação, comunicação e produção de componentes de software. Por exemplo, o
serviço de repositório provê facilidades de controle de versão, autenticação, controle de
acesso e visibilidade, que são fundamentais para o apoio à colaboração entre equipes
distribuídas de desenvolvimento.

 Além disso, em função da componentização, o serviço de repositório define uma
arquitetura que proporciona manutenibilidade, reuso, composição, extensibilidade,
integração e escalabilidade. Segundo Greenberg [29], o uso de componentes que
encapsulam as complexidades do desenvolvimento de facilidades de groupware é uma
maneira de impulsionar o desenvolvimento desta tecnologia.

 Vale ressaltar que o compartilhamento e a distribuição providos pelo serviço de
repositório, em conjunto, têm o potencial de promover o aumento da quantidade de
componentes disponíveis no repositório. Conforme mencionado por Frakes[30], a
disponibilidade de uma grande quantidade de componentes tem o potencial de
incrementar o reuso de componentes.

 Embora a implementação do serviço de repositório já contemple importantes
requisitos funcionais, outras facilidades devem ainda devem ser incluídas em versões
futuras, tais como histórico de ações (logs), sistema de mensagens síncronas (chat),
apoio ao processo de gerenciamento de projetos, bem como a especificação e
implementação dos demais serviços que compõem o ComponentForge.

7. Referências
[1] Prikladnicki, R.; Marczak, S.; and Audy, J. L. (2006). “MuNDDoS: A Research Group

on Global Software Development”. In International Conference on Global Software
Engineering (ICGSE'06)

[2] Aoyama, M. (1998). “New age of software development: How component-based
software engineering changes the way of software development”. In International
Workshop on Component-Based Software Engineering(CBSE’98)..

[3] Szyperski, Clemens (2002). “Component Software: Beyond Object-Oriented
Programming”. Second Edition, Addison-Wesley.

[4] Herbsleb, J.D., Grinter, R.(1999) “Splitting the organization and integrating the code:
Conway's Law revisited”, In 21th International Conference on Software Engineering
(ICSE’99).

1881

[5] Wallnau, K. C.; Hissam, S. A.; Seacord, R. C.,(2001), “Building Systems from
Commercial Components”, SEI Series in Software Engineering, Addison-Wesley

[6] Crnkovic, Ivica. (2003) “Component-Based Software Engineering–New Challenges in
Software Development”. In Information Technology Interfaces (ITI’03).

[7] Kiel, L. (2003).“Experiences in Distributed Development: A Case Study”, In: Workshop
on Global Software Development at ICSE 2003", Oregon, EUA.

[8] Tommarello, J. D.; Deek, Fadi P. (2002). “Collaborative Software Development: A
Discussion of Problem Solving Models and Groupware Technologies”. In 35th Annual
Hawaii International Conference on System Sciences (HICSS'02)

[9] Oliveira, João Paulo F.; Santos, Michael S.; Elias, Gledson. (2006).
“ComponentForge:Um Framework Arquitetural para Desenvolvimento Distribuído
Baseado em Componentes. VI WDBC. Recife – PE.

[10] Inoue, K.; et al. (2003) “Component Rank: Relative Significance Rank for Software
Component Search”. In 25th International Conference on Software Engineering (ICSE)

[11] Nutter, D.; Boldyreff, C.; Rank, S.(2003) “An Artefact Repository to Support
Distributed Software Engineering”. In: 2nd Workshop on Cooperative Supports for
Distributed Software Engineering Processes.

[12] Ye, Yunwen.(2001) ”Supporting Component-Based Software Development with
Active Component Repository Systems”. PhD thesis, University of Colorado.

[13] Component Source.(2007) http://www.componentsource.com.
[14] Laurillau, Yann; Nigay, Laurence. (2002). “Clover Architecture for Groupware”. In

Computer Supported Cooperative Work (CSCW'02), New Orleans, Louisiana.
[15] Ferraiolo, D. F.; et al.. (2001) “Proposed NIST Standard for Role-Based Access

Control”. ACM Transactions on Information and Systems Security, Vol. 4, No. 3
[16] Lau, K., (2001), “Component Certification and System Prediction: Is there a Role for

Formality?”. In 4th International Workshop on Component-Based Software
Engineering (CBSE’01), Toronto, Canada.

[17] Schuenck, Michael. (2006) “X-ARM: Um Modelo de Representação de Artefatos de
Software”. Dissertação de Mestrado, DIMAp-UFRN, Natal-RN.

[18] Fielding, Roy Thomas. (2000). “Architectural Styles and the Design of Network-based
Software Architectures”. PhD thesis, University of. University of California.

[19] Gerosa, Marco Aurélio. (2006) “Desenvolvimento de groupware componentizado com
base no modelo 3C de colaboração” – Tese (doutorado) – PUC – Rio de Janeiro.

[20] Grinter, R., (2001).From local to global coordination: lessons from software reuse. In:
Proc. of the 2001 International ACM SIGGROUP, Colorado, USA.

[21] Dangelmaier, W., Hamoudia, H. and Klahold, R. (1999) “CIPD – On Workflow-Based
Client Integration” in ACM SIGGROUP Bulletin, Vol 20, pag 20-25.

[22] Sun Microsystems. (2006) “Java™ Platform, Enterprise Edition 5”
http://java.sun.com/javaee/5/docs/API

[23] JBoss Reference Guide(2007) http://docs.jboss.com/jbportal/v2.6/reference-
guide/en/html/

[24] Grundy J., Wang X. and Hosking J. “Building multi-device, component-based, thin-
client groupware: issues and experiences”. In Australian Computer Science
Communications. Australian Computer Society, Inc, Darlinghurst, Australia.(2002)

[25] Stal, M. (2002).“Web Services : Beyond Component Based Computing“.
Communications of the ACM, Vol. 45, Issue 110, pp 71-76.

[26] Hartman, Bret. Flinn , Donald J. Beznosov , Konstantin. Kawamoto , Shirley. (2003)
“Mastering Web Services Security”. Wiley Publishing Inc.

[27] OASIS Standard Specification. (2006). “Web Services Security”. http://docs.oasis-
open.org/wss/v1.1/

[28] MySQL 5.0. (2007). “Reference Manual”. Copyright 1997-2007 MySQL AB.
[29] Greenberg, S. (2007) “Toolkits and Interface Creativity”, Journal of Multimedia Tools

and Applications, Volume 32 , Issue 2, pag 139-159.
[30] Frakes, William. Kang, Kyo.(2005). “Software Reuse Research: Status and Future”.

IEEE Transactions On Software Engineering, Vol.31, Nº 7, July.

1882

