

Exploring the Impact of Video on Inferred Difficulty
Awareness

Jason Carter1, Mauro Carlos Pichiliani2, Prasun Dewan3

1 Cisco Systems-RTP
North Carolina, U.S.A.

2 IBM Research AI
São Paulo, Brasil

3Department of Computer Science – University of North Carolina-Chapel Hill
North Carolina, U.S.A.

jasoncartercs@gmail.com, mpichi@br.ibm.com, dewan@cs.unc.edu

Abstract. This paper explores difficulty awareness, which is motivated by
academic and industrial collaboration scenarios in which unsolicited help is
offered to programmers in difficulty. We performed experiments to determine
how well difficulty can be automatically inferred by mining the interaction log
and/or videos of programmers. Our observations show that video combined
with other logs can be employed to infer difficulty. These results imply that (a)
when collaborators can be seen, either directly or through a video, posture
changes, though idiosyncratic, are important cues for inferring difficulty; (b)
automatically inferred difficulty, using both interaction-logs and postures,
when possible and available, is an even more reliable indication of difficulty;
(c) video can play an important role in providing unsolicited help in both face-
to-face and distributed collaboration.

1. General Information

Awareness technology, like technology supporting direct collaboration, has supported
sharing of collaborator state captured by multiple media. Moreover, awareness
technology, like technology supporting direct collaboration, can attempt to give users
the feeling of “being there” in one location or go “beyond being there” by supporting
forms of sharing not directly provided by face to face interaction.

 One form of awareness supported is whether a remote user is facing difficulty.
An important reason for awareness is to determine if collaborators are in difficulty and
if help is necessary. Making the computer infer difficulty can reduce the amount of
information to be transmitted to a remote helper and/or relieve the helper from manually
determining if collaborators are in difficulty, thereby allowing the helper to discover and
process difficulties of a larger number of users.

 Our initial motivation for this work comes from previous research that shows
that as distance among programmers increases, there are fewer opportunities to offer
help to team members and the productivity of programmers decreases [Herbsleb,
Mockus et al. 2000; Teasley, Covi et al. 2000]. We believe that inferred difficulty

awareness can be used instead of physical or computer-supported awareness of
collaborator’s activities in both industrial and educational environments. Moreover, the
potential helpers can be working exclusively on the task of providing help or interrupt
their task to provide help based on inferred difficulty from cues. In our context difficulty
is based on programming barriers that block, hinders or somehow affect how developers
solve their tasks. For instance, the lack of knowledge about the parameters of a function
is a barrier that we address in this research.

 We have iteratively developed an Eclipse extension that automatically detects
programming difficulty, communicates this information to interested observers, and
allows the observers to offer help taking into consideration the difficulty barrier type,
which include the surmountable and unsurmountable programming task gathered from
user field study. In the study distributed students were offered help with their homework
in response to automatically detected difficulties.

 Given that, by definition, difficulty is a rare event (otherwise the worker and
activity are mismatched), it makes it easier for helpers to find difficulty in collaborator
states, thereby making it easier for them to support a larger number of remote
collaborators in difficulty. Moreover, this work has explored how a state-of-the-art
difficulty-inference algorithm should be changed if rare difficulty events searched
include not only the interaction logs but also the videos of the workers. We choose to
focus only in programming logs and video posture. However, other aspects, such as
automatic emotion, personalities, programming style and context, could also be
employed to improve the detection of difficulty barriers.

 Our work has drawn from previous research in multimodal/multimedia emotion
detection [D'Mello and Kory 2012]. Our results strengthen previous findings [Carter and
Dewan 2018] that show that (a) multimodal effect detection is superior to unimodal
detection, and (b) the predictive power of postures depends on the personality of the
subject.

2. References

D'Mello, S. and Kory, J. (2012) “Consistent but modest: a meta-analysis on unimodal
and multimodal affect detection accuracies from 30 studies”, In: Proceedings of the
14th ACM international conference on Multimodal interaction (ICMI), ACM, New
York, NY, USA.

Herbsleb, J. D., Mockus, A., Finholt, T. A. and Grinter, R. E. (2000) “Distance,
dependencies, and delay in a global collaboration”, In: Proceeding of the 2000 ACM
conference on Computer supported cooperative work, Philadelphia, Pennsylvania,
USA, pp. 319-328.

Teasley, S., Covi, L., Krishnan, M. S. and Olson, J. S. (2000) “How does radical
collocation help a team succeed?”, In: Proceedings of the 2000 ACM conference on
Computer supported cooperative work, Philadelphia, Pennsylvania, USA, pp. 339-
346.

Carter, J. and Dewan, P. (2018) “Contextualizing inferred programming difficulties”, In:
Proceedings of the 3rd International Workshop on Emotion Awareness in Software
Engineering, Gothenburg, Sweden, pp. 32-38.

