
Understanding the effects of removing common blocks on
Approximate Matching scores under different scenarios for

digital forensic investigations
Vitor Hugo Galhardo Moia1, Frank Breitinger2, Marco Aurélio Amaral Henriques1

1Department of Computer Engineering and Industrial Automation (DCA)
School of Electrical and Computer Engineering (FEEC)

University of Campinas, Av. Albert Einstein 400, Campinas SP, 13083-852, Brazil

2Cyber Forensics Research and Education Group (UNHcFREG)
Tagliatela College of Engineering, ECECS

University of New Haven, 300 Boston Post Rd., West Haven CT, 06516, USA

[vhgmoia,marco]@dca.fee.unicamp.br, FBreitinger@newhaven.edu

Abstract. Finding similarity in digital forensics investigations can be assisted
with the use of Approximate Matching (AM) functions. These algorithms create
small and compact representations of objects (similar to hashes) which can be
compared to identify similarity. However, often results are biased due to com-
mon blocks (data structures found in many different files regardless of content).
In this paper, we evaluate the precision and recall metrics for AM functions
when removing common blocks. In detail, we analyze how the similarity score
changes and impacts different investigation scenarios. Results show that many
irrelevant matches can be filtered out and that a new interpretation of the score
allows a better similarity detection.

1. Introduction
Approximate Matching (AM) algorithms follow the concept of cryptographic hash func-
tions: They allow to create small and compact representations for objects (a.k.a. digests).
However, they differ from traditional hashing in the sense that small changes in an ob-
ject results in a small change in the digest. Thus, instead of comparing objects, one
can compare two digests in order to identify similarity. This paper focuses on bytewise
AM which operates on the byte-level and is used during digital forensics investigations
[Breitinger et al. 2014]: One application for such functions is known-file identification
during a digital forensic investigation, i.e., an investigator can identify modified versions
of documents, embedded objects, artifacts in network packets, or do malware clustering.

The problem of current AM functions is that too many matches with irrelevant
results (i.e., many false positives) are produced due to common structures found in objects
which was first addressed by [Foster 2012] who called them common blocks. Examples
of such common data are header/footer information, color palettes, font specifications, or
other data structures belonging to particular software vendors.

We extend the work of [Moia et al. 2019] who suggested removing the common
data from the similarity digest when using AM functions to assess objects similarity. Their
results showed significant improvements. In this paper, we evaluate how the removal
of the common blocks affects precision/recall rates of AM. We analyze, for different

scenarios, how the similarity detection is impacted and show that many matches that
occurred due to application-generated content have their score zeroed out when common
blocks are removed. Consequently, the number of matches practitioners has to deal with is
significantly reduced. We also analyzed how the score produced by AM changes and that
many matches with low scores, recommended to be ignored before, are now of interest.

2. Related work
Several AM functions have been proposed over the last years, where the most
prominent ones seem (chronological order): ssdeep [Kornblum 2006], sdhash
[Roussev 2010], mrsh-v2 [Breitinger and Baier 2013], TLSH [Oliver et al. 2013] and
LZJD [Raff and Nicholas 2018]. Since our work utilized sdhash, the next section pro-
vides some extra details about it.

2.1. sdhash

Proposed by [Roussev 2010], sdhash aims at extracting statistically improbable features
of an object to create its digest. A feature in this context is defined as a sequence of β
bytes (64 bytes by default). A sliding window moves through the object byte-by-byte ex-
tracting all features, starting at the first object byte. After the feature extraction process,
the features with minimal/maximal Shannon entropy value are removed and the remain-
ing ones with the lowest entropy scores are chosen to be hashed (SHA-1) and inserted into
bloom filters [Bloom 1970]. Each filter encompasses at most 160 features, and new ones
are created every time a filter reaches its capacity. The final object digest is the concate-
nation of all filters. To compare two sdhash digests, one needs to compare the bloom
filters against each other using Hamming distances, resulting in a normalized score from
0 (dissimilar) to 100 (identical or very similar).

2.2. Similarity classes

Whenever AM functions provide a score > 0 about a comparison of two objects, the
similarity detected can be related to three classes, as defined by [Moia et al. 2019]:

User-generated content (UGC): Data created by users, such as text, pictures, tables, etc.
This can be the most relevant class of similarity.

Template content (TC): Data created by users. It can repeat over many different files.
An example is a company’s document template. Every file created by this com-
pany will contain the same header, footer, and logo picture. This is a form of simi-
larity less relevant but could be useful for practitioners in specific cases. However,
it may also lead to many irrelevant results.

Application-generated content (AGC): Data created by applications. An example is
file-header information with metadata required to access the file. This information
is usually shared among (almost) all files of the same type and, in some cases,
even with files of different types. This class should be avoided in investigations
and hence, is the least relevant to identify object similarity.

2.3. Common blocks

Common blocks are pieces of similar data found in different objects. Since they may re-
peat in many different files, they are not suitable for assessing similarity in some contexts.

[Foster 2012] was the first to call attention to this matter using a hash-based carv-
ing approach. In their work, blocks of fixed-size (512 or 4096 bytes) were hashed and
compared with blocks of a particular file. Since many common blocks repeat over differ-
ent files, it is hard to prove the existence of a given file on a media under analysis only by
some pieces of it. By using a database to filter out the blocks that repeated several times,
Foster removed them and focused on distinct blocks (the ones that occur only once) to per-
form an analysis. In addition, some blocks present a predictable behavior, and by exclud-
ing those with low entropy values (i.e., a block with repetition of the same byte) or having
known n-grams, many common blocks were filtered out. [Garfinkel and McCarrin 2015]
extended the prior work by proposing additional rules, stating that the entropy calculus
was not enough. [Gutierrez-Villarreal 2015] went into a different direction and said that
all proposed rules were redundant and can be replaced by a single one. Their experiments
showed that blocks (4096-byte) with entropy of 10.9 or higher were adequate to remove
many common blocks.

[Moia et al. 2019] replaced the hash-based carving method by the approximate
matching functions to extract the common blocks (referred to as common features). In-
stead of using entropy values to identify the common features, the authors created a
database to store the features of a comprehensive dataset1 with many files of different
types, and those features that repeated more than N times, were considered common and
removed from digests. The authors showed how frequent some features are and how they
are spread across various file types. A significant reduction in the number of (undesirable)
matches was observed in their results. Many of these undesirable matches were due to
template or application-generated content, the similarity classes least attractive in most
digital forensic investigations. In the remaining of this paper, we use the same term (com-
mon features) to refer to common blocks since they are extracted using an AM function.

3. Research direction, design decisions and implementation
[Roussev 2011] found that sdhash matches with scores of < 21 contain many irrelevant
results and recommended to ignore them (except for text files where the author recom-
mended ignoring scores < 5). By removing the common features, we expect that most
of the similar content of two matched files be related to user-generated content, and even
low sdhash scores present relevant matches. This way, a new interpretation of the score
produced by sdhash is necessary.

In contrast to the work of [Moia et al. 2019] that showed how common are the
common features, how they are spread over files, and the impact on the number of matches
when we remove them, this work focuses on the impact of such action on the similarity
score and measures how it affects precision and recall of the algorithms. Besides, the
different classes of similarity will impact on investigations in different ways, according to
the goal of the search. This paper addresses the following research questions:

RQ1 How does the removal of common features impact digital forensics investigations
for the different classes of similarity?

RQ2 How are precision/recall rates affected by the removal of common features?
RQ3 How is the recommended threshold value of 21 for sdhash affected by removing

common features?
1The t5-corpus was utilized which contains 4457 unique files of eight different file types.

3.1. Procedure overview

To answer our research questions and assess how similarity is affected by removing the
common features for the different similarity classes, we simulated a digital forensic inves-
tigation where a seized media is compared to a database of known files. We used sdhash
and NCF sdhash (a modified version of sdhash that uses a database for removing the
common features [Moia et al. 2019]) to compare the two sets (see Sec. 4) against each
other. We considered three different scenarios:

Scenario I: We are interested in finding file matches related to UGC and/or TC. Any
match related to these types is considered true positive; otherwise, false positive.

Scenario II: Here, we are only interested in finding UGC matches, considered as true
positives. Matches related to TC and/or AGC are considered false positives.

Scenario III: This scenario ignores TC matches to remove their impact on investigations.
Matches related to UGC are true positives, and those of AGC are false positives.

To determine the similarity class of a match, we manually investigated all matches
reported by either sdhash or NCF sdhash (score > 0). To perform manual compar-
isons, we either used the appropriate software (e.g., MS office, specific web browser etc.)
and, in case of binary comparisons, we used Bless2.

When the files of a match had no visual similarity, such as common text, pictures,
tables, or other elements created by users, we classified it as application-generated con-
tent (AGC). For template content (TC) matches, files need to have the same layout but
differ in their content. An example is two doc files from the same company where both
have identical font specifications, elements disposition, header/footer with the company
information, logo, etc., but the content is different.

3.2. Terms and metrics used for the evaluation

We present here the terms, definitions, and metrics used in this paper. The metrics
used for the evaluation are based on those used in the field of information retrieval
[Olson and Delen 2008].

Score (s): the score returned by the AM function.
Threshold (t): value used to separate matches from non-matches.
Feature (f): byte sequence extracted from objects to be used in AM functions.
Common feature: f , where |f | > N (i.e., a feature f is considered common if it repeats

more than N times across different files in a given corpus).
Match: a comparison between two files where the score s ≥ t.
True positive (tp): a match of two similar files.
True negative (tn): a non-match of two different files.
False positive (fp): a match of two different files (false match).
False negative (fn): a non-match of two similar files (false non-match).
Precision: the ratio of the number of relevant results retrieved (tp) to the total number of

results retrieved (tp+ fp).
Recall: the ratio of the number of relevant results retrieved (tp) to the total number of

relevant results (tp+ fn).

2https://github.com/bwrsandman/Bless (last accessed 2019-15-05)

https://github.com/bwrsandman/Bless

F1 score: harmonic mean of recall and precision, combining these two metrics into one
that better distinguishes good results (close to 1) from bad ones (close to 0).

Precision =
tp

tp+ fp
Recall =

tp

tp+ fn
F1 = 2× precision× recall

precision+ recall

3.3. Common feature database and NCF sdhash implementation
We used the same database and NCF sdhash implementation as the one presented by
[Moia et al. 2019]. Besides, we adopted the sameN values for NCF sdhash as the paper
did and included an additional one: N > 2. From now on, the following nomenclature
is used to refer to the different settings of NCF sdhash with respect to N : low (N >
{2, 3, 5}), mid (N > {10, 20}), and high (N > {50, 100}) values. The database details
and all tools used in this work can be found in the GitHub page: https://github.
com/regras/cbamf.

4. Experimental results
The t5-corpus3 (4457 objects; 1.78 GiB) was utilized for our experiments which is a
collection of real-world data composed of various file types. We broke the corpus into two
sets: Known data set and Target data set. The first one was used as the digital forensics
investigator database and the second one to simulate a seized media under analysis. The
objects of the Target data set were compared against the investigator’s database to look
for similar files. We limited the target set to 100 objects (76.95 MiB) to simplify the
manual part of the analysis. For each file type, we randomly selected between 5 and 20
objects. Table 1 summarizes both sets.

Table 1. Number of files per type on both data sets (extracted from t5-corpus)

html text pdf doc ppt xls jpg gif
∑

Target data set 20 10 20 20 10 10 5 5 100

Known data set 1073 701 1053 513 358 240 357 62 4357

4.1. Ground truth
Measuring precision and recall rates of the algorithms requires to know the similarity class
of each comparison. Thus, we manually compared the 507 unique matches of sdhash
and NCF sdhash to determine the class (UGC, TC, AGC) of the match. Table 2 summa-
rizes our results.

It is important to note that we were not interested in measuring the accuracy or
detection capabilities of sdhash. Instead, we want to evaluate how the removal of the
common features impacted similarity detection based on AM functions.

4.2. Target data set vs. Known data set
Comparing all files from the Target data set and Known data set required a total of (4357∗
100 =) 435,700 comparisons. Table 3 shows the number of matches for sdhash and
NCF sdhash for different score ranges.

3http://roussev.net/t5/t5.html (last accessed 2019-29-05).

https://github.com/regras/cbamf
https://github.com/regras/cbamf
http://roussev.net/t5/t5.html

Table 2. Number of file matches per similarity class (ground truth)

Similarity class Number of file matches

User-generated content (UGC) 45
Template content (TC) 93
Application-generated content (AGC) 369

Table 3. Number of file matches by score range using sdhash and NCF sdhash
for the sets comparison, discarding common features with occurrences > N .

Score sdhash NCF sdhash for N
2 3 5 10 20 50 100

= 1 92 8 9 18 13 10 19 18
≥ 1 454 78 103 151 171 188 222 265
≥ 10 187 46 75 105 130 143 143 148
≥ 21 131 28 49 69 98 108 111 112
≥ 50 56 9 18 34 40 54 57 57
≥ 90 20 8 8 14 21 20 20 20

= 100 9 3 3 9 9 9 9 9

We can see a significant reduction in the number of matches for NCF sdhash,
especially for low N values. The removal of common features reduced the score of
many matches; some cases were filtered out completely. For instance, some matches
having s = 100 for sdhash had s = 0 for NCF sdhash for N > {2, 3}
(e.g., 002123.html vs. 002096.html a TC match). More details are provided in
Table 4 in which the removal of common features made s decreases as N got lower. Tem-
plate content matches are challenging to detect and remove since they depend on the num-
ber of files sharing the same layout stored in the reference database. In our experiments,
we had only a few instances of each template available, which is the reason why low N
values worked well in removing related features and decreasing the similarity score.

Table 4. The impact of common features removal on the score of some file com-
parisons. All cases reported here are Template Content matches.

Query set
file

Known set
file

Score (0 - 100) for N
sdhash 2 3 5 10 20 50 100

002123.html 002096.html 100 0 0 100 100 100 100 100
000214.html 003083.html 84 2 17 75 84 84 84 84
004338.html 004509.html 81 0 0 0 0 81 80 80
000251.doc 002145.doc 72 0 66 70 71 71 72 72
003751.html 002789.html 62 0 0 0 46 45 61 62
000986.ppt 003662.ppt 11 10 10 10 10 10 10 10
004338.html 000918.html 4 0 0 0 0 4 4 4

Table 5 presents a few examples of matches related to application-generated
content. Some matches having high scores reported by sdhash had a s = 0 for
NCF sdhash (e.g., 002394.doc vs. 004066.doc); the content shared between the
matched files was only related to AGC. In other cases, removing common features just
reduced s (e.g., 001675.pdf vs. 000746.pdf), showing that besides the common
structure data, the objects shared some UGC. A third case shows that some compar-

isons (e.g., 001675.pdf vs. 002203.pdf) had higher scores for NCF sdhash than
sdhash, even tough the files were visually different (no user-generated content)4.

Table 5. The impact of common features removal on the score of some file com-
parisons. All cases reported here are Application-Generated Content matches.

Query set
file

Known set
file

Score (0 - 100) for N
sdhash 2 3 5 10 20 50 100

002394.doc 004066.doc 56 0 0 0 0 0 0 0
003047.pdf 001939.pdf 45 0 0 0 0 0 0 0
001675.pdf 000746.pdf 41 0 21 20 21 20 31 32
000698.doc 004419.doc 38 0 0 0 0 0 0 0
001675.pdf 002203.pdf 24 0 63 66 69 71 55 58
000047.xls 000380.xls 21 21 20 20 22 21 21 21
001239.jpg 002627.jpg 17 0 0 0 0 0 9 13

Removing some undesirable features also made UGC features prevail and increase
the similarity score, as shown in table 6 (e.g., 003049.pdf vs. 003046.pdf). The
disposition of the remaining features may have influenced the score4. Some matches had
about the same scores (e.g., 000380.xls vs. 000397.xls).

Table 6. The impact of common features removal on the score of some file com-
parisons. All cases reported here are User-Generated Content matches.

Query set
file

Known set
file

Score (0 - 100) for N
sdhash 2 3 5 10 20 50 100

002245.html 002238.html 100 100 100 100 100 100 100 100
003299.pdf 003296.pdf 91 95 95 96 98 90 90 90
003049.pdf 003046.pdf 59 92 92 92 93 54 54 54
000380.xls 000397.xls 41 45 41 50 41 41 41 41
001645.doc 001646.doc 23 33 31 32 31 26 24 25
001329.html 001330.html 5 13 13 13 13 13 6 6
004915.html 004914.html 0 18 18 18 18 18 18 18

Remark. [Moia et al. 2019] reported in their experiments that a few scores had minor
changes due to hash collisions since sdhash uses 160-bit SHA-1 as hash function and
NCF sdhash adopts the smaller FNV-1a.

4.3. Impact on similarity score over different scenarios

This section focuses on analyzing matches with s ≤ 21 to measure the impact on
threshold t of removing common features. [Roussev 2011] recommended t = 21 to iden-
tify relevant matches. After removing the common features, our hypothesis is that even
the matches having s < 21 will present significant user-generated content since most
features related to TC and APG were excluded.

4sdhash/NCF sdhash store features into a set of bloom filters (max. of 160 features per filter).
The comparison function evaluates the Hamming distances among the filters from each object, selects the
maximum value and average all results. We believe that removing some features allowed the matching
features to be stored in the same filter (they were more easily stored separately before), increasing s.

Table 7 and 8 show the number of file matches by score (divided by the matching
class). For instance, consider s ≥ 15: sdhash had 156 matches, where 30 were UGC,
47 AGC, and 79 TC. Based on these results, we calculated precision, recall, and F1 score
for the three different scenarios, as presented in the following sections.

Table 7. Number of file matches per score and per class - Part I: sdhash and
NCF sdhash (N > 2, 3, 5).

Score >= File Matches in the form: #matches (UGC - AGC - TC)
sdhash N >2 N >3 N >5

21 131 (29 - 31 - 71) 28 (18 - 6 - 4) 49 (20 - 11 - 18) 69 (25 - 10 - 34)
20 137 (29 - 36 - 72) 31 (19 - 8 - 4) 53 (21 - 13 - 19) 77 (28 - 13 - 36)
19 138 (29 - 37 - 72) 32 (19 - 9 - 4) 55 (21 - 15 - 19) 79 (28 - 15 - 36)
18 141 (29 - 38 - 74) 33 (20 - 9 - 4) 56 (22 - 15 - 19) 82 (29 - 15 - 38)
17 147 (29 - 43 - 75) 36 (21 - 9 - 6) 60 (23 - 15 - 22) 86 (30 - 15 - 41)
16 151 (29 - 45 - 77) 37 (21 - 9 - 7) 63 (24 - 16 - 23) 88 (31 - 16 - 41)
15 156 (30 - 47 - 79) 39 (21 - 9 - 9) 63 (24 - 16 - 23) 89 (31 - 16 - 42)
14 157 (30 - 47 - 80) 40 (21 - 10 - 9) 65 (25 - 16 - 24) 90 (31 - 16 - 43)
13 161 (30 - 50 - 81) 43 (23 - 10 - 10) 67 (26 - 16 - 25) 93 (32 - 18 - 43)
12 170 (31 - 58 - 81) 43 (23 - 10 - 10) 68 (26 - 17 - 25) 96 (32 - 20 - 44)
11 178 (31 - 64 - 83) 43 (23 - 10 - 10) 69 (26 - 18 - 25) 98 (32 - 20 - 46)
10 187 (32 - 72 - 83) 46 (24 - 10 - 12) 75 (28 - 20 - 27) 105 (33 - 25 - 47)
9 197 (32 - 79 - 86) 49 (24 - 12 - 13) 77 (28 - 21 - 28) 110 (33 - 29 - 48)
8 211 (32 - 93 - 86) 52 (25 - 13 - 14) 78 (29 - 21 - 28) 114 (34 - 31 - 49)
7 224 (33 - 104 - 87) 56 (27 - 14 - 15) 82 (30 - 22 - 30) 120 (36 - 33 - 51)
6 242 (35 - 120 - 87) 58 (27 - 16 - 15) 83 (30 - 23 - 30) 124 (36 - 34 - 54)
5 258 (36 - 134 - 88) 59 (28 - 16 - 15) 84 (30 - 23 - 31) 125 (37 - 34 - 54)
4 273 (36 - 148 - 89) 60 (28 - 17 - 15) 87 (30 - 25 - 32) 129 (37 - 37 - 55)
3 304 (36 - 179 - 89) 63 (28 - 18 - 17) 89 (30 - 26 - 33) 129 (37 - 37 - 55)
2 362 (37 - 236 - 89) 70 (30 - 22 - 18) 94 (32 - 29 - 33) 133 (38 - 40 - 55)
1 454 (41 - 321 - 92) 78 (30 - 30 - 18) 103 (33 - 37 - 33) 151 (42 - 52 - 57)
0 507 (45 - 369 - 93) 507 (45 - 369 - 93) 507 (45 - 369 - 93) 507 (45 - 369 - 93)

4.3.1. Scenario I - Removing only AGC

In this scenario, all NCF sdhash versions had better results than sdhash for t ≤ 21
considering precision (see Fig. 1). The best setting was N > 20 with many undesired
matches being removed and many templates considered as tp due to the small number
of files sharing the same layout. sdhash had the worst results, where the decrease of t
had a negative impact due to a large number of fp matches. On the other hand, removing
the common features resulted in many undesirable matches being ignored, having a less
significant impact on NCF sdhash (except for N > 100) when decreasing t.

Considering now the Recall metric (Fig. 2), no algorithm found all similar
matches. sdhash and NCF sdhash with N > 20, 50, 100 had the best results. For
this metric, we had a bad influence of templates for NCF sdhash with low N settings.
Many template matches were removed from results due to the limited number of models
in the database. As N increased, the features related to templates were not considered
common anymore, and the matches became relevant again. For N > 3, we found only
33/93 template matches, while for N > 20 we had 91/93 (t = 1).

Table 8. Number of file matches per score and per class - Part II: NCF sdhash
(N > 10, 20, 50, 100).

Score >= File Matches in the form: #matches (UGC - AGC - TC)
N >10 N >20 N >50 N >100

21 98 (26 - 13 - 59) 108 (26 - 11 - 71) 111 (26 - 13 - 72) 112 (26 - 15 - 71)
20 102 (27 - 14 - 61) 113 (26 - 14 - 73) 114 (26 - 15 - 73) 114 (26 - 16 - 72)
19 105 (28 - 16 - 61) 115 (27 - 15 - 73) 115 (27 - 15 - 73) 116 (27 - 16 - 73)
18 106 (29 - 16 - 61) 117 (28 - 16 - 73) 119 (28 - 17 - 74) 118 (28 - 17 - 73)
17 110 (30 - 16 - 64) 122 (29 - 17 - 76) 123 (29 - 18 - 76) 122 (29 - 17 - 76)
16 114 (31 - 18 - 65) 125 (31 - 18 - 76) 124 (30 - 18 - 76) 123 (30 - 17 - 76)
15 115 (31 - 19 - 65) 127 (31 - 19 - 77) 125 (30 - 19 - 76) 125 (30 - 19 - 76)
14 116 (31 - 19 - 66) 128 (31 - 19 - 78) 127 (30 - 19 - 78) 128 (30 - 20 - 78)
13 118 (33 - 19 - 66) 129 (32 - 19 - 78) 128 (30 - 19 - 79) 133 (31 - 23 - 79)
12 122 (33 - 22 - 67) 134 (33 - 22 - 79) 132 (30 - 22 - 80) 139 (31 - 28 - 80)
11 124 (33 - 23 - 68) 137 (33 - 23 - 81) 137 (31 - 25 - 81) 142 (31 - 30 - 81)
10 130 (33 - 27 - 70) 143 (33 - 28 - 82) 143 (31 - 29 - 83) 148 (31 - 35 - 82)
9 135 (34 - 30 - 71) 147 (34 - 30 - 83) 147 (32 - 31 - 84) 155 (32 - 40 - 83)
8 138 (34 - 33 - 71) 151 (34 - 32 - 85) 151 (32 - 33 - 86) 162 (33 - 44 - 85)
7 142 (36 - 34 - 72) 158 (36 - 35 - 87) 161 (35 - 37 - 89) 173 (35 - 50 - 88)
6 144 (36 - 35 - 73) 159 (36 - 35 - 88) 165 (36 - 40 - 89) 181 (36 - 57 - 88)
5 146 (37 - 36 - 73) 163 (37 - 38 - 88) 172 (37 - 46 - 89) 188 (36 - 64 - 88)
4 148 (37 - 38 - 73) 166 (37 - 40 - 89) 176 (37 - 49 - 90) 212 (37 - 86 - 89)
3 151 (37 - 41 - 73) 169 (38 - 42 - 89) 190 (38 - 62 - 90) 231 (38 - 104 - 89)
2 158 (38 - 46 - 74) 178 (39 - 50 - 89) 203 (39 - 74 - 90) 247 (39 - 119 - 89)
1 171 (41 - 55 - 75) 188 (42 - 55 - 91) 222 (42 - 89 - 91) 265 (42 - 133 - 90)
0 507 (45 - 369 - 93) 507 (45 - 369 - 93) 507 (45 - 369 - 93) 507 (45 - 369 - 93)

Fig. 3 shows the results for the F1 score. We had the best combination between
precision and recall forN > 20. We could see that sdhash results degraded significantly
for threshold t < 21 due to the high number of false positives (bad precision). On the
other hand, low t values increased the performance of NCF sdhash (with low and mid
N values). However, mid N values are the ones recommended when template matches
are relevant for investigations. Besides, using t > 0 showed to be beneficial and should
be taken into consideration when working with NCF sdhash.

4.3.2. Scenario II - Searching for UGC only

For the second scenario, we are interested in finding only UGC matches. Fig. 4 shows our
results regarding precision. Notice that low N values stood out in this experiment since
they were responsible for removing many template matches - the lower the N , the better
the precision. sdhash had the worst results since it detected many TC matches as rele-
vant, once it does not distinguish the class of similarity. All algorithms had low precision
values mostly due to templates, which were harder to remove even for NCF sdhash (see
tables 7 and 8). In most cases, decreasing to t = 1 had a small impact on precision.

The recall rates are shown in Fig. 5. The worst results were obtained for low N
values, in which we could not identify a few similar files with too many changes (differ-
ences). Besides, we found a particular case where six comparisons of html files were

Figure 1. Scenario I: Preci-
sion vs. score results

Figure 2. Scenario I: Re-
call vs. score results

Figure 3. Scenario I: F1 vs. score
results

Figure 4. Scenario II: Preci-
sion vs. score results

between identical objects in our database. This way, all features related to them became
common for some NCF sdhash settings; N > 2 and N > 3 produced s = 0, while
sdhash and others had s = 100. As t decreased, we had similar results for sdhash
and other NCF sdhash settings. For recall, it is worth to accept small scores since many
additional matches were found; most cases reached more than 90% at t = 1, while for the
recommended t = 21, they had about 60%.

Given the F1 score results (Fig. 6), we can conclude that for scenarios where
templates matches are not relevant, low N values are recommended for its good balance
between precision and recall. sdhash had the worst results which degraded significantly
for t < 21. For NCF sdhash with low/mid N settings, it is worth looking for matches
with t ≥ 1 since even low values tend to present relevant matches.

4.3.3. Scenario III - No template matches

The third scenario does not consider template matches and seeks to analyze how they
influenced precision and recall rates. NCF sdhash was superior regarding precision
(Fig. 7). Normally, the lower the N , the better the precision. Low N values in
NCF sdhash are more prone to remove AGC (see tables 7 and 8) since many features
repeating in a few files are considered common. An example is a match of two pdf files
where sdhash and some NCF sdhash settings detected as similar, but the files were

Figure 5. Scenario II: Re-
call vs. score results

Figure 6. Scenario II: F1 vs. score
results

different. By usingN > 2 orN > 3, we could remove many features shared by those files
and with a few other ones (e.g., a feature related to a font specification) and have s = 0.
As we decrease t, sdhash results dropped from 50% to 10%, a significant degradation
on its performance. Lower values of N presented a less aggressive degradation on these
precision results due to the small number of false positives compared to sdhash.

For recall (Fig. 8), we had the same results as scenario II since in both cases we
ignored TC matches. Finally, the results of F1 score (Fig. 9) for decreasing t showed a
poor performance of sdhash again, while all settings of NCF sdhash with low/mid N
values had similar/better results. For these settings, no significant degradation was noticed
for low t values, and considering them as relevant results can be beneficial.

Figure 7. Scenario III: Preci-
sion vs. score results

Figure 8. Scenario III: Re-
call vs. score results

5. Discussion
Based on the experiments described in the previous section, we here discuss the lessons
learned, specifically, the correlation of removing common features and the similarity score
with respect to the different scenarios.

RQ1. How does the removal of common features impact digital forensics
investigations for the different classes of similarity?
By removing the common features, many AGC matches were filtered out. TC matches
were a problem for lowN -values in NCF sdhash, as well as finding a few UGC matches

Figure 9. Scenario III: F1 vs. score results

of high degree of complexity (too many modifications on the files content). Mid/high-
values of N in NCF sdhash had similar or better results than sdhash in all cases.

With respect to template matches, we had many instances of a few files sharing
the same layout in our database. Low N -values in NCF sdhash removed many of these
matches from the results but also kept some of them. Consequently, scenario I and II
were impacted negatively, where we could neither identify nor remove all TC matches
effectively. We can confirm this assumption by observing the increase in recall (sce-
nario I vs. scenario III) and precision (scenario II vs. scenario III). In the first case, recall
dropped significantly since many templates were removed, while in the second case, some
TC matches that we could not remove from the results were detected as fp.

NCF sdhash with low N settings (except for N > 5) also underperformed in
the detection of a few matches between files with too many modifications (differences).
Besides, some identical files found in the database contributed for degradation in results
(see Sec. 4.3.2). sdhash and all settings with N > 5 had more than 91.00% of recall.
NCF sdhash using N > 2 and N > 3 had 66.67% and 73.33%, respectively. The
reason for higher recall rates of sdhash and most versions of NCF sdhash is due to
the common features. By removing them, some instances had s = 0 since the number
of features related to UGC were too small or nonexistent. In such cases, the match may
happened because common features were still present in the similarity assessment.

In short, sdhash tended to detect many matches related to template/application-
generated content and NCF sdhash with low N -values is inadequate for template detec-
tion or comparisons with a high level of complexity, which do not rely on the common
features. Although mid/high values of N could perform well for template detection in
this particular data set, future work is necessary to separate this sort of match since it is
hard to know the number of files sharing the same template in a large set.

RQ2. How are precision/recall rates affected by the removal of common features?

In general, removing the common features increased precision, and for low N values,
decreased recall. sdhash performed the worst regarding precision in all scenarios due to
the presence of the common features. NCF sdhash had the best results for lowN values,
except for scenario I, where mid-values of N had the best results for detecting many TC
matches. For recall, mid/high-values of N had similar/better results than sdhash. Low

N -values for NCF sdhash performed worse, especially for scenario I where many TC
matches were missed. Given the F1 score (balance between precision and recall), we can
see that sdhash performance dropped significantly in all scenarios with the decrease of
t. On the other hand, low/mid N values of NCF sdhash presented the best results as t
dropped to 1.

In our experiments, usingN > 20 had better results than higherN values (N > 50
or N > 100) for all cases. We believe that no further benefit is achieved for higher values
of N . The number of tp was about the same with a significant reduction in the number
of fp. Besides, when considering template similarity as a relevant result (scenario I),
N > 20 should also be the one adopted given its better precision/recall rates.

RQ3. How is the recommended threshold value of 21 for sdhash affected by
removing common features?
Our experiments revealed that many matches were left out by using t = 21 for sdhash.
From the 45 UGC matches, only 29 were found. Using t = 1 allowed us to increase the
number of UGC to 41 at the cost of many additional AGC matches (321/369). TC were
also benefited from using lower t values (92/93). Although recall increased, precision
dropped significantly for the threshold reduction. Besides, F1 score showed that it is not
worth using t < 21 for sdhash due to the significant degradation in its performance.

On the other hand, NCF sdhash showed improvements when choosing lower
threshold values. The best performances of all settings were with N > 20, where many
UGC and TC were found (42/45 and 91/93, respectively) at a small cost of AGC matches
(55/369) compared to sdhash. F1 score values showed minor improvements when using
low t values. For this reason, we believe that low thresholds should be considered for
digital forensic investigations given that many relevant matches were found. For N > 2,
the best F1 value was using t = 2 (scenario I) and t = 5 (scenarios II and III), while for
N > 20 we had t = 6 (scenario I), t = 12 (scenario II), and t = 13 (scenario III).

Remark: The accuracy, defined as (tp+ tn)/(tp+ tn+fp+fn), is not presented here,
since sdhash and all NCF sdhash versions had similar values (> 99.00%) due to the
enormous number of true negatives pointed out by both algorithms.

6. Conclusions & Future work
In this paper, we analyzed the impact of excluding the common features from digests cre-
ated with approximate matching (AM) functions. Our results showed that many matches
only happened due to the common features, and by their removal, we achieved a signif-
icant reduction in the number of matches. This practice can also benefit precision/recall
rates, where different settings will aid each metric differently based on the goal of the
investigation. We also analyzed the impact on the threshold score of AM and verified
that all scores produced relevant matches for a small cost in the number of false positives.
Future work consists of analyzing other data sets to confirm if the N -values used in this
work can be adopted universally. Also, we would like to study other possible ways of
identifying template content similarity.

7. Acknowledgment
This work is partially supported by CAPES FORTE Project (23038.007604/2014-69).

References
[Bloom 1970] Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable

errors. Commun. ACM, 13(7):422–426.

[Breitinger and Baier 2013] Breitinger, F. and Baier, H. (2013). Similarity Preserving Hash-
ing: Eligible Properties and a New Algorithm MRSH-v2, pages 167–182. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[Breitinger et al. 2014] Breitinger, F., Guttman, B., McCarrin, M., Roussev, V., and White,
D. (2014). Approximate matching: definition and terminology. NIST Special Publica-
tion, 800:168.

[Foster 2012] Foster, K. (2012). Using distinct sectors in media sampling and full media
analysis to detect presence of documents from a corpus. Technical report, Naval Post-
graduate School Monterey (CA).

[Garfinkel and McCarrin 2015] Garfinkel, S. L. and McCarrin, M. (2015). Hash-based carv-
ing: Searching media for complete files and file fragments with sector hashing and
hashdb. Digital Investigation, 14:S95–S105.

[Gutierrez-Villarreal 2015] Gutierrez-Villarreal, F. J. (2015). Improving sector hash carving
with rule-based and entropy-based non-probative block filters. Technical report, Naval
Postgraduate School Monterey (CA).

[Kornblum 2006] Kornblum, J. (2006). Identifying almost identical files using context trig-
gered piecewise hashing. Digital investigation, 3:91–97.

[Moia et al. 2019] Moia, V. H. G., Breitinger, F., and Henriques, M. A. A. (2019). The
impact of excluding common blocks for approximate matching. pages 1–11. TO BE
PUBLISHED.

[Oliver et al. 2013] Oliver, J., Cheng, C., and Chen, Y. (2013). TLSH–a locality sensitive
hash. In Cybercrime and Trustworthy Computing Workshop (CTC), 2013 Fourth, pages
7–13. IEEE.

[Olson and Delen 2008] Olson, D. L. and Delen, D. (2008). Advanced data mining tech-
niques. Springer Science & Business Media.

[Raff and Nicholas 2018] Raff, E. and Nicholas, C. (2018). Lempel-ziv jaccard distance, an
effective alternative to ssdeep and sdhash. Digital Investigation, 24:34–49.

[Roussev 2010] Roussev, V. (2010). Data fingerprinting with similarity digests. In IFIP
International Conf. on Digital Forensics, pages 207–226. Springer.

[Roussev 2011] Roussev, V. (2011). An evaluation of forensic similarity hashes. Digital
investigation, 8:34–41.

	Introduction
	Related work
	sdhash
	Similarity classes
	Common blocks

	Research direction, design decisions and implementation
	Procedure overview
	Terms and metrics used for the evaluation
	Common feature database and NCF_sdhash implementation

	Experimental results
	Ground truth
	Target data set vs. Known data set
	Impact on similarity score over different scenarios
	Scenario I - Removing only AGC
	Scenario II - Searching for UGC only
	Scenario III - No template matches

	Discussion
	Conclusions & Future work
	Acknowledgment

