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Abstract. Self-protecting systems can reduce response time to known attacks by au-
tomating decision-making processes in security operations. This paper briefly describes
the ATMOSPHERE platform for monitoring and enforcement of trustworthiness in cloud
systems, as well as proposes a way to enhance its Trustworthiness Monitoring & Assess-
ment framework (responsible for analyzing and planning adaptation actions) in order
to instantiate the concept of adaptive security for self-protecting cloud infrastructures
and applications. The paper approaches adaptive security based upon adaptive Web
Application Firewalls, and enhances a software-based, feedback control loop (named
MAPE-K) for monitoring and analysis of security events, as well as the planning and
execution of adaptation actions for securing cloud applications. This is a work in
progress, currently under development, to be integrated to ATMOSPHERE's framework.

1. Introduction

Nowadays, in highly automated software environments that apply continuous deployment, it
is quite common to see insecure applications being deployed into cloud infrastructures, despite the
presence of known vulnerabilities in those applications. In a common scenario, ready-to-deploy
applications may still have known vulnerabilities, which remain in code due to insufficient security
tests or lack of opportunity to correct security issues. Nevertheless, they are still considered good
enough for deployment, from a feature value point of view.

This may happen because, as cloud systems become more interconnected and diverse, and
time-to-market constraints impose tight schedules, software architects are less able to anticipate
and design proper configurations of security features. As such, these issues are left to be dealt with
at run time, delegating design decisions concerning security to production environments, eventually
resulting in easily compromised environments. In this context, adaptive security for self-protecting
cloud system and applications means that security features in cloud systems should be able
to dynamically adapt their behaviour, hardening their security settings according to perceived
changes on vulnerability context and exposure surface of deployed cloud applications. In a
concrete example detailed later, an adaptive Web Application Firewall can detect the deployment
of an application with known vulnerabilities (such as SQL Injection), and dynamically change its
own behavior to initially monitor and then to block malicious inputs for that insecure application.

The main objective of this paper is to discuss the concept of adaptive security for self-protecting
systems in the context of the ATMOSPHERE’s cloud platform. Its main contribution is in
explaining important design decisions and implementation details anticipated so far, aiming at
a viable implementation of this concept. The text is organized as follows. Section 2 contains
background and related work. Section 3 overviews the ATMOSPHERE platform and explains
its framework for Trustworthiness Monitoring and Assessment (TMA), while Section 4 discusses,
with a running example, the approach for adaptive security based upon the TMA framework.
Finally, Section 5 discusses the implementation and Section 6 concludes the text.



2. Background and Related Work

Security in cloud systems [Vacca 2017, Pearson and Yee 2013] involves not only protecting the
infrastructure against attacks, but also hardening applications (if possible, in advance) in order
to make them fault tolerant against direct attacks and infrastructure malfunctioning or compromise.
For instance, sometimes, hardening cloud applications may involve protecting exposed APIs,
adopting security configurations for containers, or even using secure hardware to grant secrecy
and privacy near to the bare metal [Arnautov et al. 2016].

The challenge of dynamically secure applications resides in providing appropriate feedback
loops to developers, administrators, and (adaptive) systems, with appropriate tools and supporting
infrastructures, improving their ability in handling security issues at run time, generally within
short response time. Thus, the missing link that connects automated security controllers and
self-protecting systems is the proper feedback from the environment to assist developers or
deployed systems in making safe and secure choices about security actions at run time.

Adaptive systems [Kephart and Chess 2003, Kephart 2011, Lalanda et al. 2013, IBM 2006,
Brun et al. 2009] can help to solve issues related to delayed design decisions regarding security to
production environments where overwhelmed administrators are traditionally unable to reconfigure
an applications’ design in response to environmental changes. This way, adaptive security systems
can be understood as any solution able to protect systems, users, or data against run time threats
via the enforcement of adjustable defensive strategies [Tziakouris et al. 2018]. These systems
are usually supported by anomaly detectors [Wang et al. 2018], and encompass activities ranging
from data capture, management and analysis, to automated decision making and system operations.

Adaptive systems can adopt the feedback-loop architecture known as MAPE-K [IBM 2006]
(Monitor, Analyzer, Planner, and Executor over a Knowledge base) which, among other features,
makes feedback loops explicit in software systems. MAPE-K’s architecture organizes a control
loop into four components that share a common knowledge base [IBM 2006], as follows:

e Monitor collects, aggregates, filters and reports details (such as metrics) collected, from
managed resources, by probes.

e Analyzer correlates and models recurring events in such a way that it can learn about the
environment and predict future changes.

e Planner constructs action chains needed to achieve a new stable state and uses policies to
guide its work in generating recipes for execution.

e Executor controls the execution of a plan performed by actuators and, sometimes, considers
dynamic updates to running plans.

3. ATMOSPHERE?’s Trustworthiness Monitoring and Assessment Framework

ATMOSPHERE [ATMOSPHERE 2018a] is a 24-month project aiming at the design and
development of an ecosystem comprised of a framework and a platform enabling the
implementation of next-generation trustworthy cloud services on top of an intercontinental hybrid
and federated resource pool. The framework considers a broad spectrum of trustworthiness
properties and their measures, while the platform supports the development, build, deployment,
measurement and evolution of trustworthy cloud resources, data management services and data
processing services, and is demonstrated by sensitive application scenarios for cloud-enabled
secure and trustworthy applications.

The design and implementation of ATMOSPHERE’s framework and platform rely on
lightweight virtualization, hybrid resources and Europe&Brazil federated infrastructures. The
part of ATMOSPHERE’s platform discussed in this paper is the framework for Trustworthiness
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Figure 1. Architecture of TMA based on MAPE-K (from [ATMOSPHERE 2018b]).

Monitoring and Assessment (TMA), which architecture is based upon a MAPE-K’s feedback
control loop. Figure 1 is a UML diagram showing TMA’s architecture, which is internally designed
using micro services and each component represents a MAPE-K functionality. Briefly speaking,
TMA’s Monitor provides a generic interface that can be used by probes installed in different
layers of the system to send data about the collected measurements and events. These data are then
stored at TMA’s Knowledge, and kept to be used later by other TMA’s components. Similarly,
TMA’s Planner exposes an interface that allows for TMA’s Analyzer to notify it about the need
for adaptation, while TMA’s Executor provides an interface through which TMA’s Planner can
submit an adaptation plan to be performed. Finally, actuators provide an interface with predefined
adaptations that can be activated by TMA’s Executor. The three main components sequence
their interaction by notifying other components by a fault tolerant queue (e.g., Apache Kafka).

4. Adaptive Security for Self-Protecting Cloud Infrastructures and Applications

One way to quickly mitigate known security risks of deployed applications is to dynamically
reduce the chance of vulnerability exploitation by shielding insecure applications against those
known vulnerabilities, while gaining time for developers to correct these vulnerabilities in future
deployments. However, in general, dynamic shields are compensatory controls that do not
fully substitute secure coding techniques for avoiding known vulnerabilities, since dynamically
shielding applications consume computational resources (e.g., memory, CPU), impose delays
to application’s communications and, depending on the rigor of attack detection, produce too
many false alarms, possibly overloading response mechanisms.

Traditional Web Application Firewalls (WAFs) are common examples of application shields.
WAFs can monitor application’s HTTP interfaces and block malicious requests or inspect responses
against data leaks according to predefined rules. Modern WAFs apply the concept of virtual
patching, meaning that a WAF’s rule set can be enhanced to protect against specific attacks found
in deployed applications. That patch is said to be virtual because it is applied to the WAF’s context
for the targeted application, but not to the application itself, which remains the same. In general,
ordinary WAFs are not adaptive and virtual patches are performed with human intervention.

Non-adaptive WAFs cannot dynamically adapt to newly deployed applications with known vul-
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Figure 2. An Adaptive Web Application Firewall with a feedback control loop.

nerabilities. That is, ordinary WAFs cannot dynamically change their behaviour by automatically
updating their security settings based on malicious content detected on HTTP requests/responses or
context changes in web containers, such as the deployment of new and probably insecure applica-
tions. On the other hand, the Adaptive WAF is an enhanced WAF able to dynamically modify its
rules to harden protections in front of insecure applications within its security domain, while still
being able to weaken its security settings for monitored applications that had corrected their issues.

Differently from ordinary WAF, the main advantage of adaptive WAF is perceived in highly
automated (e.g., DevOps) environments, where WAFs have to automatically adapt to knowingly
insecure applications deployed into production environments, allowing enough time for developers
to actually patch vulnerabilities automatically detected prior to deployment. In a possible scenario
depicted in Figure 2, an Adaptive WAF can be implemented by integrating an ordinary WAF
and a MAPE-K control loop (such as ATMOSPHERE’s TMA framework) for monitoring and
analyzing security alerts, as well as planning for appropriate actions to be taken to modify (the
rigor of) WAF’s behaviour in response to possible (known) cyber-attacks.

Figure 2 illustrates an Adaptive WAF placed in front of deployed applications, midway between
deployment environment and the Internet. This Adaptive WAF is composed of a WAF component
and a MAPE-K loop. These two components interact by means of probes (signaling alerts to
MAPE-K loop) and actuators (updating WAF’s settings). Also, probes placed at deployment
environment notify MAPE-K about changes on deployed applications and their vulnerabilities.

This work adopts ModSecurity [Trustwave and contributors 2019], an open-source WAF
used by security practitioners in many actual deployments [Folini and Risti¢ 2017], as the WAF
component for Adaptive WAFE. ModSecurity has monitoring features that can be used to implement
sensors to feed probes with alert’s data addressed to TMA’s Monitor. Also, ModSecurity can
interface with probes and actuators through its API and plug-ins. Initially, ModSecurity acts as
a sensor and produces security alerts on potential attacks against applications. Then, ModSecurity
receives control instructions (i.e., commands) from actuators to modify its security settings.

In a running example, when deploying an application with known vulnerabilities (e.g., SQL
Injection) to a web server (e.g., Apache) or an application container (e.g., Tomcat) in production
environment, Adaptive WAF is warned by probes attached to Static Analysis Security Tools
(SAST) that a knowingly insecure application has just been deployed under its security domain.



For instance, this initial warning can be generated by a design-time probe parsing a report
generated by a SAST during the build process, just before an actual deployment. Then, Adaptive
WAF, through its MAPE-K loop, automatically activates its probes and actuators by dynamically
configuring ModSecurity to monitor inputs for that application (according to OWASP’s Core Rule
Set [Project 2019]), looking for malicious content related to SQL Injection in HTTP requests.

Continuing the example, internally, Adaptive WAF behaves as follows. When security alerts
are first fed to TMA’s control loop by Monitor’s probes in the deployment environment, Analyzer
realizes that incoming alerts refer to a solvable issue (e.g, SQL Injection) and decides to listen to
application’s inputs before blocking (instead of blocking requests anyway) and instructs Planner to
adapt ModSecurity settings accordingly. Different plans accomplish different security policies and
configure ModSecurity in different ways, ranging from adding URLs and domains to a monitored
location, to switching from monitoring mode to blocking mode, to turning existing rules on and
off, to actually building and enabling new rules. Planner builds a recipe to modify ModSecurity’s
setup (e.g., install a new context for the targeted application and start listening to its inputs)
and selects the appropriate Executor to perform these actions. Executor uses the plan to activate
actuators that interact with ModSecurity through its API or by modifying configuration files.

Finally, in a simple implementation that concludes the loop, an actuator replaces ModSecurity’s
configuration file by a new one including the needed configuration to listen to application’s inputs,
loading those new settings. In further rounds of MAPE-K’s loop, upon detecting that malicious
input is actually being injected, Adaptive WAF may decide to block malicious requests.

S. Implementation of the Solution

ATMOSPHERE has a fully functional deployment which serves as integration environment for
probes and actuators, as well as a baseline for further enhancements of domain-specific knowledge,
such as the representation of WAF’s alerts and vulnerabilities as models for a MAPE-K cycle. The
current implementation of MAPE-K’s control loop is being used in other contexts, such as privacy,
elasticity and reliability, being able to monitor and analyze incoming telemetry received from
probes, as well as plan for adaptations and execute adaptation actions by means of actuators in
the above mentioned contexts. This is work in progress and an actual implementation of Adaptive
WAF is under development. At the time of writing, sensors and probes were being developed
in order to capture malicious actions shown at security alerts generated by ModSecurity.

For instance, ModSecurity generates audit logs when intercepting possible attacks and generates
alerts to give operators (e.g., sysadmins) forensic information about malicious requests. These
logs contain detailed information (sometimes, in JSON format) about requests, that can be used
by automated decision-making processes, such as: header information, request payload, port
information, response content, audit data, and matched rules. For this, Apache Kaftka Connectors
are being used to listen for changes that occur in the logs generated by ModSecurity, and pull
in those changes automatically. Once the connector is setup, data in text file is imported to a Kafka
Topic as JSON messages. Any further data appended to the text file creates an event. These events
are being listened by the Connector and written to the Kafka Topic. Also, probing and monitoring
can be accomplished from within an application or in a separate thread which listens for events
to come and dispatches them to various registered listeners. Furthermore, as ModSecurity works
both as a probe and as an actuator, is has to be able to keep states between rounds for different
adaptation cycles, similar to a simplified mechanism for session management.

Finally, there are other implementation details to observe in order to correctly use ModSecurity
as part of an Adaptive WAF. First, ModSecurity should be used as a reverse proxy attached to
a web server running exclusively for it. This way, ModSecurity does not compete with running



applications for computational resources in the same web server [Ristic 2005]. Also, while an
ordinary WAF within a web server has to suffer a reset in order to apply an updated rule set,
an Adaptive WAF is restricted to only soft resets on ModSecurity’s web server in order to preserve
availability [Ristic 2005]. A soft reset only reloads configuration files without stopping the web
server. This prevents applications from becoming unavailable during a reset.

6. Concluding Remarks

This text proposes an approach for adaptive security of self-protecting cloud systems and
applications in the context of the ATMOSPHERE framework for trustworthiness of cloud systems.
The concept of Adaptive WAF materializes the abstract notion of adaptive security as a dynamic
shield composed by an ordinary Web Application Firewall integrated to a software-based, feedback
control loop, named MAPE-K cycle. This text contributes to better understand self-protecting
systems and software-based control loops by explaining (with a running example) several design
decisions and implementation details that support a concrete case for adaptive security in the
context of application security for cloud systems. As future work, an actual implementation of
the approach will be released as part of the ATMOSPHERE platform.
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