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Abstract. Generally, approaches to build the security of Smart Home Systems
(SHS) require big amount of data to implement Access Control and Intrusion
Detection Systems, being a vulnerability to inhabitants privacy. Additionally,
most works rely on cloud computing or resources in the cloud to perform secu-
rity tasks, what can be exploited by attackers. This work presents ZASH (Zero-
Aware Smart Home System), an Access Control for SHS. ZASH uses Continuous
Authentication with Zero Trust, supported by real-time context and activity in-
formation, enabled by edge computing and Markov Chain, to prevent and mit-
igate impersonation attacks that aim to invade inhabitants privacy. An experi-
mental evaluation demonstrated the system capability to dynamically adapt to
new inhabitants behaviors withal blocking impersonation attacks.

1. Introduction
The Internet of Things (IoT) is an established paradigm, where many things are

interconnected providing services to the people [Castro et al. 2019]. As things are be-
ing connected, many systems assumed social characteristics intrinsic to human problems.
Thus, Cyber-Physical Social Systems (CPSS) are in emergence [Dong and Ansari 2020],
evolving towards the Internet of Everything (IoE), which includes people, data and things
in an unified process [de Matos et al. 2017]. IoE aims to connect anything that has
Internet-connection, from people, to TVs, cars and sensors. CPSS and IoE are intimately
linked by human factors that bring human knowledge, mental capacity, and sociocultural
elements using things to mix the physical world with cyberspace.

Particularly Smart Homes settings have been growing rapidly and gaining pop-
ularity as there are more internet users, more importance for green energy, for security,
and more smart gadgets available to more people [MarketsAndMarkets 2020]. Further,
recently due to pandemic people mandatorily need to stay at home, increasing its im-
portance in daily life. However, people still fear vulnerabilities that can expose intimate
information and the physical security of themselves and their families. [Lee 2020] ex-
posed that resistance of smart home adoption comes from vulnerabilities in technology,
with fragile security systems, nonexistent or weak laws on digital crimes, unreliable ser-
vice providers and the users themselves, due to misuse or inexperience.

Since Smart Home Systems (SHS) comprehend CPSS, physical security require-
ments in Smart Homes are as high as the informational. Impersonation attacks are
common in SHS, allowing attackers to steal and use authentic identities, compromis-
ing the confidentiality, integrity, authenticity and non-repudiation [Mocrii et al. 2018,
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Junior et al. 2020]. These attacks often involve social engineering, when victims are de-
ceived and their credentials can be stolen, and eavesdropping, when attacker steal infor-
mation on the fly [Humayed et al. 2017]. Then, attacker can use someone’s credential to
gain access to SHS and perform malicious actions to further monitor house activity or
invade the property physically, violating the data and physical privacy of the resident.

Prior works on SHS security focus on Access Control (AC), Continuous
Authentication (CA) and Intrusion Detection System (IDS). Many of them uses
context-based decisions [Ashibani et al. 2019, Ghosh et al. 2019, Sikder et al. 2019]
and behavior-based decisions [Ashibani and Mahmoud 2019, Ghosh et al. 2019,
Amraoui et al. 2020]. Although few of them are suitable to endure impersonation
attacks [Ashibani et al. 2019, Ghosh et al. 2019, Sikder et al. 2019], they present some
issues as dependence of cloud computing and big amount of data to infer information
about environment or user activities, leading to privacy breaches. Another issue is the
dependence of end-user’s devices as they have general purpose, being more exposed to
exploitation. Furthermore, it can lead to vulnerability due to misuse, once inhabitants
interact with SHS by many means, like smart assistants and devices themselves.

This work proposes ZASH (Zero-Aware Smart Home System), a system to pro-
vide AC for a SHS using CA with Zero Trust (ZT) in order to continuously verify users
authenticity, powered by edge computing to dismiss unreliable service providers and ca-
pable of processing request originated from any means. The system is designed with user
levels (e.g., admin, adult, child, visitor), device classes (e.g., critical, non-critical) and ac-
tions (e.g., view, control, manage) in order to mitigate possible undetected impersonation
attack by contributing for devices isolation and actions differentiation. The CA process is
constituted by three phases, being the first the verification among user, devices and actions
using ontologies. The second phase is the verification of context information to check if
they achieve expected trust for a requested action with a specific user level on a device
class. The final phase consists of verifying whether the requested action makes sense
considering a Markov Chain built on all previous activities. We have implemented ZASH
and made an experimental evaluation to demonstrate the system capability to dynamically
adapt to new inhabitants behaviors withal blocking impersonation attacks.

The remaining of the paper is organized as follows: Section 2 presents the related
work. Section 3 describes the ZASH system and its operation. Section 4 describes the
evaluation methodology and results. Section 5 presents conclusion and future works.

2. Related Work
This section reviews techniques to prevent attacker to break into the system, de-

tecting when the attacker has success in the invasion and mitigating presumable damage
from this action. Access to a Smart Home must be restricted to its inhabitants, being
authentication an important phase to identify who is requesting actions and information
from the system. The Smart Home environment is dynamic regarding both devices and
users. CA related works aim at identify users interacting with the system throughout
the whole session rather than relying on a unique authentication in the session start, as
described in [Nakayama et al. 2019, Al-Naji and Zagrouba 2020]. [Kuyucu et al. 2019]
presents the state-of-the-art of strategies to protect security and privacy in Smart Homes.
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[Ashibani et al. 2019] proposed a holistic approach in devices security for Smart
Home. CA uses context information from multiple sources. The results demonstrated low
latency overhead, effects on access decision-making by authentication-assigned weights
and thresholds, and the capacity to handle multiple simultaneous requests without bot-
tlenecking access to smart devices. One of the drawbacks consists in dependency on an
external information (Google Calendar), which may decay reliability in the system, since
this data can be altered or suppressed by an attacker. Moreover, it remains in depen-
dency of end-user’s devices (e.g., smartphone, tablet), considering the interaction inside
a Smart Home can happen using other ways, like voice assistants and with the devices
themselves. It decreases the likelihood of correct usage from users by enforcing them to
use only the smartphone, making the Smart Home vulnerable to misuse. Besides, relying
on the smartphone can lead to violations, since it has a general purpose and is carried in
external environments, for work and leisure, being more exposed to exploitation.

[Ashibani and Mahmoud 2019] submitted a behavior-based CA model for Smart
Home. The goal is to identify users from their apps usage in smartphones to assure the
person trying to control the Smart Home is authentic. This is a suitable option for CA
because app access patterns are continuously provided. However, users cannot depend
on a smartphone to control their Smart Home. Moreover, it depends on track app access
logs creating historical data that can be vulnerable to an attacker, exposing data privacy.
[Amraoui et al. 2020] proposed another behavior-based CA model for controlling a Smart
Home focused in making implicit re-authentication without user interaction. The depen-
dency of high amount of data for reasonable accuracy is a drawback, as it exposes privacy
by collecting and storing users behavior. The dependency of cloud computing is also a
vulnerability that could be exploited by an attacker isolating the home from the Internet.
Furthermore, it does not support different levels of security for users or devices, compro-
mising the services differentiation and resources isolation. Thus, an impersonation attack
would gain unrestricted access regardless the exploited user. In [Ghosh et al. 2019] it
is presented a context-aware behavior-based authorization framework for Smart Homes.
Among the work contributions is a modelling of expected belief on device access request
based on user’s past request patterns and on context of the request. It tries to block insider
attacks by setting a threshold of confidence to execute a request. However, the depen-
dence in historical data, as the other works focused in Anomaly Detection, pose an issue
of cold start, as system would need to be trained before operating [Bakar et al. 2016].

[Sikder et al. 2019] exposed a context-aware Intrusion Detection System (IDS)
that relies on a correlation between user activities and devices. It uses context of sen-
sors, devices and controller devices. Although the work prove to cope with different
home layouts and inhabitants number adaptively, it needs big amount of data to feed
the anomaly detector module for training. Additionally, it depends on cloud computing,
which brings a vulnerability for a Smart Home since an attacker could eavesdrop the net-
work to steal data or cut the Internet means to isolate the house. [Dimitrakos et al. 2020]
proposed UCON+ as an extended Usage Control (UCON) method to include trust eval-
uation to perform continuous authorization. UCON is a framework created to focus on
Digital Rights Management (DRM) and is suitable to monitor continuously the execu-
tion rights of a subject over a resource. UCON+ take into account a Zero Trust Archi-
tecture (ZTA), which requires continuous verification of permissions and authorization
policies. Zero Trust (ZT) is the term for an evolving set of cybersecurity paradigms that
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move defenses from static, network-based perimeters to focus on users, assets, and re-
sources [Scott W. Rose, Oliver Borchert, Stuart Mitchell 2020]. It assumes any entity can
become malicious, regardless of its past authenticity and reliability, being the reason why
trust should be evaluated continuously. Although UCON+ is highly customizable, it is
not suitable for inexperienced users, as a SHS AC should be.

Prior works focused against insider attacks rely on continuous authentication ei-
ther context-based or behavior-based with big amount of data and depending on cloud
computing. Furthermore, they ignore other access ways commonly used nowadays, like
voice assistants, house devices or the device itself. A robust solution is a hybrid context-
aware behavior-based continuous authentication to prevent and mitigate impersonation
attacks, considering many access ways and using edge computing. It should not depend
on external network, be restricted to the local network and minimize message exchange
by storing device states as they interact with the system, thus being less exposed to in-
terceptions and preventing privacy violation. Furthermore, the mix of ontologies, instant
context, and user behavior aims to improve accuracy with minimal performance overhead.

3. The ZASH System for Continuous Authentication in Smart Home

This section presents an overview about the environment characteristics, the con-
cerns of the users and the solution for it, called ZASH (Zero-Aware Smart Home System).
The Smart Homes counts on infrastructure network, enabled by Ethernet, Wi-Fi, Blue-
tooth, Zigbee, etc., and the connection between devices are point-to-point with TCP/IP
protocol. In spite of Smart Home trend became popular in the last years, people are still
highly concerned of their privacy, both related to data and physical world. SHS are not as
secure as they should be regarding invaders, specially during impersonation attacks. Ac-
tual works struggle to prevent, detect and mitigate these attacks. Thus, this issue among
others is avoiding a broader adoption of Smart Homes. The objective of this work is to
focus on the prevention and mitigation of impersonation attacks in a SHS.

Smart Home

Use ID

Steal ID

Eavesdrop

Control

Inhabitants

Figure 1. Impersonation attack in SHS

Impersonation attacks in SHS con-
sists in several steps and consequences.
First, the attacker steal any of inhabi-
tants credentials, usually the one with
more privileges, using social engineer-
ing or eavesdropping attack. The so-
cial engineering can range from simple
techniques as baiting and phishing to
more advanced ones as reverse social en-
gineering and advanced persistent threat
[Krombholz et al. 2015]. Attackers can
alternatively benefit from a man-in-the-
middle attack to access the SHS. After
that, they can monitor the house activity
from inside to plan a physical invasion, steal more privileged information and even con-
trol the home devices to compromise inhabitants safety.

A SHS typically embodies several heterogeneous devices, denoted as
D = {d1, ... , dn}, where n is the number of devices. These devices are connected to
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the SHS in a Virtual Local Area Network (VLAN) and can be a smart object, like a smart
TV; an actuator, like a smart curtain; or just a sensor, like for temperature. ZASH specif-
ically will count on User Levels (UL), denoted as UL = {UL1, ... , ULm} (e.g., visitor,
child, adult, admin — from the least to the most privileged), where m is the number of
UL. The Device Classes (DC), denoted as DC = {DC1, ... , DCk} (e.g., critical, like
smart locks, and non-critical, like smart light bulbs), where k is the number of DC. Fur-
thermore, there are classes of Actions (A) that an user can perform on a device, denoted
as A = {A1, ... , Ap} (e.g., manage, control, view), where p is the number of A.
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Figure 2. The ZASH flow

The ZASH flow is detailed in Fig-
ure 2 and consists in inhabitants per-
forming actions using intermediaries (e.g.,
smartphone, tablet, voice assistant) or in-
teracting directly with device to control
its states. The user request is received in
the objects and then forwarded to the local
server, which decides to authorize or not.
ZASH can also require a proof of iden-
tity from users. The decision flows back
to intermediaries (if used) and finally for
devices to execute or not the action.

3.1. Architecture
The ZASH architecture contains three modules, named Behavior, Collection and

Decision. The Behavior module includes Configuration Assembler, used by root user to
configure system behavior, and Notification Dispatcher, responsible for notifying users
to trigger further actions from them. The Collection module comprises the Device Com-
municator, which includes all devices configuration from the SHS and is responsible for
communicating with them, and Data Provider, that stores latest device states and process
it to support decision. Finally, the core Decision module consists in the Activity Man-
ager, that process activities in the SHS, the Context Manager, responsible for building
instant context information, the Ontology Manager, which includes the rules for the au-
thorization, and the Authorization Controller, in charge of using all provided information
to accept or reject a request.

Authorization
Controller

Data Module Con�guration
Assembler

Noti�cation
Dispatcher

Device
Communicator

Ontology ManagerData Provider Activity Manager Context Manager

Collection Decision Behavior

User

Root

User

User

User

Proof

Figure 3. The ZASH architecture

Ontology Manager: ZASH imposes barriers to attackers using stolen credentials by
counting on different UL, DC and A to guarantee the isolation of devices and differenti-
ation of actions. Root can use Configuration Assembler to manage devices from Device
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Communicator by adding new, altering and deleting existing. Each device included in the
system must be classified with a DC and this will imply on its security level. The Ontol-
ogy Manager intersect A on a DC from a specific UL to verify ontologies defined by root
through the Configuration Assembler. Ontology based modelling is the best technique to
represent knowledge through formalisms [de Matos et al. 2017]. An instance for the rules
of valid ontologies is represented in Figure 4, where each ULi for a specific DCj can per-
form a set of A, named Capabilities (Capij) (Equation 1), and ULi inherits all Capi−1j
from the lower ULi−1 (Equation 2). The Ontology Manager is mainly responsible to deal
with easily detectable attacks and to keep the system safety and security, together with
Context Manager, while the Activity Manager is starting.
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Figure 4. ZASH Ontologies

Capij ⊆ A, ∀i = 1..4,∀j = 1..2 (1)

Capi ⊇ Capi−1, ∀i = 2..4 (2)

Context Manager: The system works with Security Level (s), determined as s ∈ N |
s ≤ 100. Root configures initial s of each DC and UL. They also set additional s for
each of the possible A. The Context Manager combines s of both DC (DCs) with A
(As) and UL (ULs) with A (As) to check which one has the highest value. This value
is used to verify whether instant context information achieves the required s. Instant
context counts on factors, as instantiated in Equation 3 (e.g., request time, access way,
localization, age, group). Each of these context factors receives a s that adds up to be
compared. For example, the time can be classified in common or uncommon, if the
request time occurrence probability is below a threshold. The access way can be requested
(the device itself), house (e.g., voice assistant, tablet) or personal (smartphone). The
localization can be divided in internal or external in reference to the house. The age can
be linked to each user and can be adult, teen, kid. Group can be ranked in together or
alone. [Ashibani et al. 2019] used a similar technique to compare security level access
to devices threshold with confidence level collected from context and demonstrated low
performance overhead, flexible access control and high scalability. The sum (Xs) of the
context factors (C) is represented in the Equation 4 and the subsequent logic to accept
request is expressed in Equation 5. ZASH prompts for a proof of identity if the context
trust is below expected security level in order to assure user authenticity. This proof
need to be a Something You Are challenge, which is less prone to falsification and can be
fingerprint, face recognition, voice recognition, etc., as used in [Dimitrakos et al. 2020].

C = {f1, ... , f5} | fi ≤ 30,∀i = 1..5 (3)

Xs =
∑
f∈C

f, Xs ∈ N | Xs ≤ 100 (4)
Xs ≥ max({DCs +As, ULs +As}) (5)
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Activity Manager: Activities in a SHS are sequential and follow a specific pattern. Ac-
tivity Manager relies on a Markov Chain fed with every successful user request changing
the balance of the transition matrix over time. Each of the UL has its respective Markov
Chain, since they tend to present different patterns. It is associated with UL only in
order to preserve individual users. The Activity Manager starts inactive in the authoriza-
tion module as it depends on some requests to be processed to create a reliable transition
matrix. The cold start problem is mitigated by the other modules. [Sikder et al. 2020]
proves that Markov Chain is the best technique to detect anomaly requests in a context-
aware environment and [Sikder et al. 2019] uses the technique achieving high accuracy
in a SHS with low performance overhead, making it suitable for edge computing. Each
activity (Ayi) carries information about every device state (DSi) in that moment, which
is restricted to binary 0 or 1 data. Ayi is represented in Equation 6, where n is the number
of devices in the SHS. The transition model is represented in Figure 5, where m is the
number of all possible states Ay (Equation 7) and Pij is the probability of going to state
j at time t + 1 from state i at time t as shown in Equation 8. Considering each DSi is
binary, the value of m = 2n. Similarly to the Context Manager, ZASH requires a proof of
identity if the transition probability between two states is below a threshold.

...

Figure 5. ZASH Markov Chain

Ayi = {DS1, ... , DSn}, n ∈ N (6)

Ay = {Ay1, ... , Aym}, m ∈ N (7)

Pij = Pr(Ayj | Ayi), ∀1 ≤ i, j ≤ m (8)

Other Components: Authorization Controller receives action request from Device Com-
municator and checks for Ontology Manager, Context Manager and Activity Manager in
this sequence. The request must pass the three requirements in order to be accepted and
if it fails in one of them, the subsequent ones are not even checked. If the same user
has more than a defined number of rejected requests in a defined interval, Authorization
Controller blocks they and send it to Notification Dispatcher, which will disseminate this
information for all users. Device Communicator is responsible for requesting user proof
of identity when needed. It also receives request from devices and sends changed state
to the Data Provider and request to the Authorization Controller. All devices must be
modified to redirect actions to ZASH and wait for approval. Data Provider keeps all cur-
rent and last device states to feed Activity Manager. Finally, root user configures ZASH
through Configuration Assembler by managing devices, setting ontologies and specifying
thresholds for user blockage and notification with the number of rejected requests and the
verified interval. This module also contains all users and root user can manage by adding
new ones, altering their UL or deleting them.

3.2. Operation

ZASH operates in a local dedicated machine, communicates only inside a VLAN
protected by firewall, which includes only devices and the local server, and is not con-
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nected to the Internet. It can be only configured through a device inside VLAN with a
recently provided proof of identity from a root user. Root user is not the same as admin
UL, as it does not participate in the ZASH authorization schema and is used to log in
the dedicated machine only. Algorithm 1 describes the steps followed by each device
when an action is performed on active devices or state is changed in passive devices. The
Device forms Request information and sends to ZASH (l.3-4), then it receives answer
from ZASH and perform action if authorized (l.6-7). ZASH starts operating after the ini-
tial configuration by the root using Configuration Assembler, which assigns UL for each
user, DC for each device and ontologies rules. Root also configures s for each C, DC,
UL and A. The number of rejected requests allowed by user before blocking and the con-
sidered time interval need to be set by root too. The build interval is also configured by the
root to tell ZASH when the building of the Markov Chain and the time probabilities are
reliable to start operating. As it can be a cumbersome task, alternatively the system should
come with at least two predefined profiles, named hard, with more strict rules as default,
and soft, with less strict parameters. After the initial setup, ZASH is ready to receive
requests, which are automatically redirected from devices using any suitable technology
like Zigbee or Wi-Fi to the central gateway, where the system works.

Algorithm 1 Device awaits ZASH authorization

1: ZashIP ← XXX.XXX.X.X
2: procedure LISTENSTATECHANGE . Triggered when device detects state change
3: Request← Device, User, Context, Action
4: send Request to ZashIP . sends request for authorization
5: procedure LISTENANSWER(Request)
6: if Request.Authorized is True then
7: perform Request.Action

Algorithm 2 Device communication and data provision

1: DeviceCommunicator
2: function EXPLICITAUTHENTICATION(User)
3: Proof ← FindProof(Request.User.Id,Request.Context.AccessWay) . Find proof for user with access way
4: if Proof not found then
5: Proof = InputProof() . Wait for user proof of identity
6: if Proof not matches User then
7: return False . Deny action
8: else
9: store Proof . Store proof to be used for the next T time

10: return True . Grant action
11: function LISTENREQUEST(Request, CurrentDate)
12: ClearProofs(CurrentDate) . Clear stored proofs obtained more than T time ago
13: DataProvider.UpdateCurrentState(Request) . Update current state with requested action
14: Result← True
15: if Device.IsActive then
16: Result← AuthorizationControl.AuthorizeRequest(Request, CurrentDate, ExplicitAuthentication)
17: if Result is True then
18: Request.Authorized← True
19: DataProvider.UpdateLastState() . Update last state to be former current state if granted
20: send Request to Request.Device.IP . Send answer back to device
21: DataProvider
22: procedure UPDATECURRENTSTATE(Request)
23: CurrentState← Copy(LastState)
24: CurrentStateRequest.Device.Id ← InvertState(CurrentStateRequest.Device.Id)
25: procedure UPDATELASTSTATE
26: LastState← CurrentState

The system assumes that any user can interact with any device in the SHS by
any way (e.g., directly, smartphone, tablet), but the requested action will be authorized
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or not by ZASH. Algorithm 2 describes that ZASH receives request from device, where
Device Communicator updates the current device state in Data Provider (l.13) and then
asks Authorization Controller (l.16) for active devices. Finally, it sets current state as last
state if change was granted (l.19) and returns the result to device in order to execute or
ignore requested action (l.20). Device Communicator is also responsible for managing
proof of identity by collecting from the user when needed (l.5), storing the proofs (l.9)
and clearing those over T time (l.12). The proof is stored for the user and access way, so
user is not bothered to prove identity every time using the same access way.

Algorithm 3 Authorization control for user requesting action on device

1: AuthorizationControl
2: function AUTHORIZEREQUEST(Request, CurrentDate, ExplicitAuthentication) . Triggered every request
3: ClearUsers(CurrentDate) . Clear rejects out of interval from all users
4: if Request.User.IsBlocked then
5: return False . Deny action
6: if not V erifyOntology(Request) or
7: not V erifyContext(Request, CurrentDate, ExplicitAuthentication) or
8: not V erifyActivity(Request, CurrentDate, ExplicitAuthentication) then
9: Request.User.Rejected← Request.User.Rejected ∪ {CurrentDate} . Register rejection

10: if |Request.User.Rejected| > ConfigurationAssembler.BlockThreshold then
11: Request.User.IsBlocked← True . Block user if above threshold
12: AlertAllUsers(Request.User) . Alert all users about blockage
13: return False . Deny action
14: return True . Grant action
15: OntologyManager
16: function VERIFYONTOLOGY(Request) . Check ontologies for request
17: Cap← FindCap(Request.User.UserLevel, Request.Device.DeviceClass) . Find capabilities for UL in DC
18: if Request.Action in Cap then
19: return True . Grant action
20: else
21: return False . Deny action
22: ContextManager
23: function VERIFYCONTEXT(Request, CurrentDate, ExplicitAuthentication) . Check context for request
24: CalculateT ime(Request, CurrentDate) . Calculate if request time is common or uncommon
25: CheckBuilding(CurrentDate) . Check if time probability building is over
26: if IsT imeBuilding then
27: Request.Context.T ime← COMMOM . Time is always the highest trust while still building
28: . Calculate security level for A in DC
29: ExpectedDevice← Request.Device.DeviceClass.SecurityLevel +Request.Action.SecurityLevel
30: . Calculate security level for A in UL
31: ExpectedUser ← Request.User.UserLevel.SecurityLevel+Request.Action.SecurityLevel
32: CalculatedTrust← CalculateTrust(Request.Context, Request.User) . Calculate context security level
33: if min(CalculatedTrust, 100) < min(max(ExpectedDevice, ExpectedUser), 100) then
34: if not ExplicitAuthentication(Request.User) then . Require proof of identity
35: return False . Deny action
36: return True . Grant action
37: ActivityManager
38: function VERIFYACTIVITY(Request, CurrentDate, ExplicitAuthentication) . Check activities for request
39: CheckBuilding(CurrentDate) . Check if markov chain building is over
40: CurrentState← DataProvider.CurrentState
41: LastState← DataProvider.LastState
42: if not IsMarkovBuilding then . Always pass if still building
43: if MarkovChain.GetProbability(CurrentState, LastState) < P then . Check if transition above threshold
44: if not ExplicitAuthentication(Request.User) then . Require proof of identity
45: return False . Deny action
46: MarkovChain.BuildTransition(CurrentState, LastState) . Build the transition matrix
47: return True . Grant action

Algorithm 3 details the authorization control that, when more than a defined num-
ber of rejected requests occurs for the same user in a defined time interval, ZASH blocks
the user and notifies all users in the system through their registered personal devices (l.10-
12). It can be only unblocked through the local dedicated machine by the root user. The
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Authorization Controller verifies firstly with the Ontology Manager (l.6), which in turn
checks for the rules set by the root user (l.16-21). Secondly, it verifies with the Context
Manager (l.7) to certify the request has the expected context trust based on the combina-
tion of security level from DCs+As and ULs+As (l.23-36). Finally, it feeds the Activity
Manager (l.8) in order to build the Markov Chain transition matrix and then check if the
change from last state to current state is above a threshold P (l.38-49). If requested action
fails in the Context Manager (l.34) or in the Activity Manager (l.44), Device Communi-
cator will ask for a proof of identity from the user in order to validate the action. A valid
proof will permit the system to learn that the action was correct and the time and states
transition probabilities will be recalculated considering the new valid possibility.

4. Experiment
This section presents the evaluation methodology for analyzing the efficacy of

the ZASH system. We implemented and executed the ZASH system with Python
3.9.5 in Zorin OS 15.3 using SIMADL (Simulated Activities of Daily Living Dataset)
[Alshammari et al. 2018] and can be found at GitHub1. The technology was chosen for
its portability, ease of file manipulation and ease of algorithms writing, providing quick
development and evaluation. The graphics were designed using Draw.io. The dataset,
found at GitHub2, was chosen for simulating activities of daily life and presenting good
amount of data in a well structured form with 29 devices, as presented in Table 1. The
variant d6_2m_0tm.csv (167,211 lines of records after cleaning duplicates, 60 days, 1 line
per second) was used for presenting the biggest amount of records. Devices states are
represented with 0 or 1, being, for example, a door with state 0 closed and 1 opened.

Table 1. Configured devices

Device Device Class Room Type
Wardrobe Non-critical Bedroom Active

TV Non-critical Living Room Active
Oven Critical Kitchen Active

Office Light Critical Office Active
Office Door Lock Critical Office Active

Office Door Non-critical Office Active
Office Carpet Non-critical Office Passive
Office Sensor Non-critical Office Passive

Main Door Lock Critical House Active
Main Door Non-critical House Active

Living Light Non-critical Living Room Active
Living Carpet Non-critical Living Room Passive
Kitchen Light Non-critical Kitchen Active

Kitchen Door Lock Critical Kitchen Active
Kitchen Door Non-critical Kitchen Active

Kitchen Carpet Non-critical Kitchen Passive
Hallway Light Non-critical House Active
Fridge Sensor Critical Kitchen Active
Couch Sensor Non-critical Living Room Passive

Bedroom Light Non-critical Bedroom Active
Bedroom Door Lock Critical Bedroom Active

Bedroom Door Non-critical Bedroom Active
Bedroom Carpet Non-critical Bedroom Passive
Bed Table Lamp Non-critical Bedroom Active

Bed Sensor Non-critical Bedroom Passive
Bathroom Light Non-critical Bathroom Active

Bathroom Door Lock Critical Bathroom Active
Bathroom Door Non-critical Bathroom Active

Bathroom Carpet Non-critical Bathroom Passive

Figure 6. Home design
[Alshammari et al. 2018]

Table 2. Configured users

User 1 User 2 User 3 User 4 User 5
UL Admin Adult Child Child Visitor

Age Adult Adult Teen Kid Adult

1https://github.com/giovannirosa/zash
2https://openshs.github.io/datasets/

https://github.com/giovannirosa/zash
https://openshs.github.io/datasets/


11

Table 3. Configured security layers

User Level Action Device Class
Categories Admin Adult Child Visitor Manage Control View Critical Non-critical

Security Level 70 50 30 0 40 20 0 30 0

Table 4. Configured context factors

Time Localization Age Group Access Way
Cat. Common Uncommon Internal External Adult Teen Kid Together Alone Requested House Personal

SL 20 10 30 10 30 20 10 10 0 30 20 10

There are 8 passive and 21 active devices in the dataset, being a state change in
any active one considered as an user request. The execution flows sequentially through
the records, simulating 2 months. The configured users can be found at Table 2. The home
design, exhibited in Figure 6, includes bedroom, living room, kitchen, bathroom, office
and hallway. The ontologies were configured as shown in Figure 4. The configured secu-
rity layers were as seen in Table 3 and the context factors were set as seen in Table 4. The
values were inspired by [Ashibani et al. 2019] and adjusted by experimentation to bal-
ance security and user experience with less proofs asked. Three threats were considered
in the evaluation: 1) valid users trying to access devices with no permission (violation to
ontology rules); 2) valid users trying to access devices in abnormal conditions (violation
to context trust); and 3) illegitimate users trying to access devices with stolen credentials
(violation to activity pattern). The applied dataset influences the results as the activities
might be different, leading to distinct probabilities in the Markov Chain.

4.1. Metrics
The metrics, shown in Table 5, assess the main characteristics proposed by ZASH.

Ontology Fail (OF ) measure the percentage of requests that failed in Ontology Manager
and required proof of identity to verify authenticity. Similarly, Context Fail (CF ) and Ac-
tivity Fail (AF ) evaluates the same as OF , but for the Context Manager and the Activity
Manager, respectively. The Requests Granted (RG) count the ratio of granted requests
and the Requests Denied (RD) count the ratio of denied requests.

Table 5. Evaluation metrics

Description Equation

Ontology Fail (OF ) is the percentage of requests that failed in ontology eval-
uation (OFreq) out of total requests (Treq). OF =

OFreq

Treq
× 100

Context Fail (CF ) is the percentage of requests that failed in context evalua-
tion (CFreq) out of total requests (Treq). CF =

CFreq

Treq
× 100

Activity Fail (AF ) is the percentage of requests that failed in activity evalua-
tion (AFreq) out of total requests (Treq). AF =

AFreq

Treq
× 100

Requests Granted (RG) is the percentage of granted requests (Greq) out of
total requests (Treq). RG =

Greq

Treq
× 100

Requests Denied (RD) is the percentage of denied requests (Dreq) out of total
requests (Treq). RD =

Dreq

Treq
× 100

4.2. Preliminary Results
The simulation provided three cases to validate the ZASH correctness, as ex-

hibited in Figure 7. The first one (threat 1) is the request that happened at 2016-02-01
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08:01:48, when a child user requested to control the oven (critical device) using a voice
assistant (house access way). ZASH denied the action, because in the configured ontolo-
gies, shown in Figure 4, a child does not have the capability to control a critical device.
The second case (threat 2) occurred at 2016-03-28 08:04:10, when an admin user re-
quested to manage the main door lock (critical device) interacting directly with it. The
expected trust is 100 because the admin ULs (70) add to the manage As (40), considering
the maximum expected trust is 100. However, the calculated trust from the instant con-
text is 90, being requested access way (30), external localization (10), common time (20),
alone (0) and adult (30). Therefore ZASH asks for a proof of identity from the user and
since it is valid, the action is granted. The third case (threat 3) is an impersonation attack
that happened at 2016-03-05 19:30:26, where the attacker stole a personal device from
an adult user and tried to control the main door lock (critical device) from an external
location. The expected trust was 70 from adult ULs (50) plus control As (20). The calcu-
lated trust was also 70 from personal access way (10), external localization (10), common
time (20), alone (0) and adult (30). Although the Context Manager granted the action, the
Activity Manager denied it, because the Pij equal to 6.82% was below the threshold 10%.
The results presented that every impersonation attack is prevented by ZASH, assuming
the attacker cannot provide a valid proof of identity belonging to the stolen user.

1

2

3

4

5
1

2

3

4

5
1

2

3

2016-02-01
08:01:48

2016-03-29
18:00:40

2016-03-05
19:30:26 6,82%

Figure 7. Ensuring ontologies rules, activities consistency and context trust

Table 6. Collected metrics from variations in context and user

Variations OF CF AF Blocked RG RD Proofs Asked
- 0% 1.77% 0.28% No 100% 0% 37

External 0% 100% 0.28% No 100% 0% 216
Adult 0% 0% 0.28% No 100% 0% 6

Child/Visitor 0.16% 0% 0% 2016-02-01 08:05:52 0.28% 99.72% 0

The simulation was also evaluated as a whole by using the metrics. Table 6 dis-
plays the collected metrics from variations in context and user. Simulations were executed
considering a baseline for all requests with the context as personal access way, internal
localization and alone; from the admin UL, being an adult; and the A always as control.
It provided an OF of 0% as all requests passed in Ontology Manager as expected, since
the admin user should have the highest privileges. It produced a CF of 1.77% due to
uncommon request times. All non-blocked variations supplied 0.28% for AF , since it
depends on activities only. Still in the baseline, it gave RG of 100% as all the 37 proofs
asked were valid. The baseline context was executed with external localization, provid-
ing similar results except for the CF , which was 100% as the context trust decayed, and
the 216 proofs asked following the need for authenticity verification. Then, the baseline
varied to adult UL, giving CF of 0%, considering adult UL requires less trust than admin
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UL, and requesting only 6 proofs for the Activity Manager fails. Finally, the baseline ran
for child UL and visitor UL, which resulted in the same metrics for both UL, because
they were blocked by failing 4 times within 24 hours in Ontology Manager at 2016-02-01
08:05:52. ZASH just authorized 0.28% of requests before blocking user and denying all
the other 99.72%. This evaluation assumed attacker could not provide a valid proof of
identity. It is a complex task for the attacker to fake the proof since it is categorized as
Something You Are [Lal et al. 2015]. For now ZASH is evaluating context and behavior,
being a multi factor authorization with Somewhere You Are from localization, Something
You Have from access way and Something You Do by evaluating activities. However, it
could also mix these categories in the proof of identity phase in order to improve security,
by also asking for a Something You Know challenge, for example.

5. Conclusion
This work presented ZASH to secure a SHS against impersonation attacks sup-

ported by Continuous Authentication and Context-Aware Access Control with Zero Trust
paradigm. ZASH endures the Smart Home heterogeneity of technologies and also does
not rely on any external service or cloud computing to provide the home security. It works
in a local server that receives all requests from devices to ensure the ontologies rules, the
context trust and the activities consistency. The system relies on multiple security lay-
ers with user levels, actions and device classes to mitigate any undetected impersonation
attack. ZASH was implemented and evaluated to validate its capacity to prevent and
mitigate impersonation attacks by using instant context information and adapting to in-
habitants behavior continuously. As future works, we will simulate ZASH in a realistic
home network to measure impact on latency and concurrency. The Markov Chain can
be turned into a Hidden Markov Chain using the device states as transitions and the user
activity as emissions, which could make the model more precise. Additionally, the activ-
ities threshold will be investigated to be dynamic depending on the request, similar as in
the context. Ultimately, ZASH could include an auxiliary module to adjust its parameters
automatically using an optimization algorithm on the fly. The system could be tested in a
multi-user scenario and evaluate the user experience to verify its viability and acceptance.
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