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Abstract. Snowden’s revelations about mass surveillance brought to public at-
tention devastating attacks on cryptographic algorithm implementations. One
of the most prominent subsets of these attacks is called Algorithm Substitution
Attacks (ASA), where a subverted implementation leaks sensitive information.
Recently, it has been proposed to modify TLS implementations to use Post-
Quantum Cryptography (PQC). In this paper, we propose and analyze ASA in
two PQC schemes that can be used in TLS. We attacked the Kyber Key Encapsu-
lation Mechanism (KEM) and Falcon Signature and successfully deployed them
in a TLS implementation. Results show that timing analysis can distinguish our
Falcon subversion, but it is not enough to detect our attacks deployed in TLS.

1. Introduction
Back in 1996, Young and Yung started what is now a research area called Kleptography
[Young and Yung 1996]. Kleptography is characterized by preventing users from eval-
uating cryptographic implementations, usually embedded in specialized hardware. The
authors have managed to create an attack in a scheme where the victim’s implementa-
tion leaks the cryptographic key information in the ciphertext produced. As a result, the
attacker can efficiently recover the key of the victim, which breaks the security of the
cryptographic scheme. Since 1996, several cryptographic schemes were studied regard-
ing these threats. Nowadays, the Algorithm Substitution Attacks (ASA) is a consolidated
form of this type of attack, which can be applied to all forms of cryptography (symmetric
and asymmetric) [Bellare et al. 2015].

In this context, ASA is one of the risks of using cryptographic software and
hardware that can not be carefully audited and validated when ready for use. Un-
fortunately, real cases of these attacks do exist. The Juniper Dual EC incident
[Checkoway et al. 2016] and the Snowden revelations [Perlroth et al. 2021] are the most
notorious examples. In addition, researchers have already shown how to exploit these
vulnerabilities in widely used network protocols, such as the Transport Layer Security
(TLS) [Janovsky et al. 2019]. In general, backdoor-ed implementations allow attackers



to violate the privacy of all users of the protocol. This highlights the necessity of proper
countermeasures and detection mechanisms against such threats. An example of a detec-
tion mechanism is the timing analysis [Teşeleanu 2019].

Before Young and Yung’s work, Peter Shor’s quantum algorithm was published
[Shor 1994]. Differently from the ASA threat, his publication showed a possible threat
to cryptography. Grover’s algorithm [Grover 1996] followed Shor’s work for symmet-
ric schemes. Their algorithms could weaken or even break the current cryptographic
schemes if a quantum computer were available for use. Predicting this threat and its
consequences, researchers started in advance to develop new schemes of cryptography.
These new schemes are called by Post-Quantum Cryptography (PQC). They are designed
to protect not only against so-called classic attacks but also quantum computer attacks. It
should be noted that PQC algorithms executes in classical computers. At this moment,
there is a worldwide effort to propose, evaluate and standardize such algorithms. When
PQC is standardized, there will be a long-term transition, where network protocols, hard-
ware modules, operating systems, and other software will implement PQC schemes for
the security [Mosca 2018].

However, as in traditional cryptography, PQC is also under the threats of ASA.
For instance, NTRU (N-th degree Truncated polynomial Ring Units) is a public-key
scheme that already has a kleptographic vulnerability for attackers [Kwant et al. 2018].
The schemes based on the Learning-With-Errors (LWE) problem also suffer from this
attack [Yang et al. 2020b]. These examples show that there is still a lot to be researched
about detection and countermeasures against ASA, in order to improve the resilience of
the PQC schemes.

In this work, we focus on PQC schemes under the threats of ASA. The objec-
tive is to perform a timing analysis of such attacks. We deployed the proposed attacks
in a Post-Quantum TLS implementation, which uses a Key Exchange such as a Key-
Encapsulation Mechanism (KEM), and a Digital Signature Scheme. Although there ex-
ists a set of countermeasures against ASA, we consider the scenario where users have
no access to audit their cryptographic implementations. This is a realistic scenario, since
there are “black-box” devices such as Smart Cards, Trusted Platform Modules (TPMs),
and closed hardware designs. Most importantly, the complexity of cryptographic imple-
mentations is something that not every developer can audit. In such a scenario, detection
mechanisms can be more effective.

1.1. Contributions
In summary, the contributions of this work are listed below:

• We propose a symmetric ASA in Kyber KEM [Avanzi et al. 2020] and an asym-
metric ASA in Falcon Signature Scheme [Fouque et al. 2020].

• We use timing analysis aiming to detect such attacks; we show that our attack on
Kyber is undetectable in our given scenario.

• We also deployed and measured our attacks in a Post-Quantum TLS implementa-
tion, showing the practicability of such attacks.

We expect that these contributions would help for a secure transition process for
PQC. By evaluating these attacks and their detection in advance, we contribute to the
evolution of the development of such schemes, in addition to the awareness of this threat.



1.2. Text organization

This work is organized as follows. Section 2 gives the necessary background and related
works about PQC, TLS and ASA. In Section 3, we present the attacks that we have de-
veloped and the timing analysis used in this work. Section 4 shows the results of the
evaluations. Lastly, Section 5 gives the conclusions and future work.

2. Preliminaries
We divided this section into three parts. First, we present the concepts related to PQC
schemes. The second part shows the characteristics of ASA and an example scenario.
The last part presents related works.

2.1. Post-Quantum Cryptography (PQC)

Although quantum computers are not yet commercially available, the study of Post-
Quantum Cryptography (PQC) is important. The term PQC refers to the schemes de-
signed under mathematical problems believed to be intractable by non-quantum and quan-
tum attackers. PQC users without quantum computers can expect to be protected against
quantum attackers.

Several PQC algorithms have come under scrutiny and are being considered to
become standards, which would allow for an earlier transition from traditional encryp-
tion schemes (e.g., RSA) to PQC. The best-known standardization process is due to NIST
[NIST 2016], which is already in its third round. In this round, the following key encap-
sulation and authentication algorithms are being evaluated:

• Key Encapsulation Mechanisms (KEMs): Classic McEliece (code-based cryptog-
raphy); Crystals-Kyber, NTRU and Saber (lattice-based cryptography).

• Authentication (Digital Signatures): Crystals-Dilithium and Falcon (lattice-based
cryptography); and Rainbow (multivariate cryptography).

PQC KEM mechanisms are Public-key Encryption schemes defined as a triple
of Probabilistic Polynomial-Time algorithms (KeyGen, Encaps, Decaps), where
KeyGen produces the key pair; Encaps is an encryption of a session key k, producing
a ciphertext; and Decaps decrypts the ciphertext and returns k, if successful. Similarly,
the PQC algorithms used for authentication can be defined as a triple (KeyGen, Sign,
Verify), where a Sign algorithm returns a digital signature for a given message; and
Verify algorithm outputs either “true”, if the signature is valid, or “false” otherwise.

2.2. TLS 1.3 Handshake

Version 1.3 of TLS is defined by RFC 8446 [Rescorla 2018], where the main components
of the protocol are: a Handshake protocol, where an authenticated key exchange method
is executed; a Record protocol for the secure communication; and an Alert protocol for
error and alert messages. After a successful handshake, the record protocol protects the
traffic between the communicating parties, using the derived (symmetric) cryptographic
keys. If an error occurs, the alert protocol is triggered.

The handshake comprises an Authenticated Key Exchange (KEX), where the
parties select the cryptographic parameters and establish shared keying material. TLS
allows Elliptic Curve Diffie-Hellman Ephemeral (ECDHE), Pre-Shared Key (PSK), or
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Figure 1. A TLS 1.3 Handshake

both in the handshake. Everything after the KEX is encrypted. The TLS server
must be authenticated, and optionally, the client. If PSK is not used, a digital certifi-
cate is always used for authentication. The use of PQC algorithms is not defined in
RFC 8446 [Rescorla 2018], but there are evaluations of post-quantum TLS implemen-
tations [Paquin et al. 2020], in addition to the Google and Cloudfare PQC experiments
[Braithwaite 2016, Kwiatkowski et al. 2019].

Figure 1 represents a TLS 1.3 handshake. The (ClientHello) message consists of
the following data: a random nonce, protocol versions, list of symmetric ciphers and hash
pairs supported by the client. In addition, a key share (for ECDHE) and/or pre shared key
(PSK) message extension is sent. At least one of them must be sent (key share or PSK
messages). The TLS server then replies with the ServerHello message. The server sends
its authentication messages: Certificate, CertificateVerify (a digital signature), Certificate
Request (if client authentication is required) and Finished (a Keyed-Hash Message Au-
thentication Code - HMAC). To reduce round trips, properly encrypted data from the
application can be sent at this stage. Additional extensions are encrypted and also sent by
the server. The TLS client responds accordingly, allowing the authenticated symmetric
key to be used in new data exchanges between client and server.

2.3. Algorithm Substitution Attacks (ASA)
Figure 2 presents a simplified ASA example scenario. The starting point of this attack
requires a cryptographic key k and an algorithm A′. Both k and A′ are inserted in the
user’s device or software. In fact, A′ replaces a cryptographic algorithm A, which is
implemented by the user. This replacement (i.e., substitution) embeds a backdoor in the
outputs of the user. The backdoor is encrypted in a way that it is only accessible by
those who possess k. An additional requirement is that the attacker has to capture the
outputs of the user (e.g., a public key, ciphertexts, or digital signatures). The attack is
considered successful when the attacker is able to recover the secret key information from
the encrypted data without being noticed.

This attack relies first on the secrecy of the substitution. Note that, in Figure
2, one user is attacked with the subverted version of the cryptographic algorithm (A′).
However, if the attacker subverts a reference software implementation, every user of this
software is compromised. For example, in the Dual EC incident [Checkoway et al. 2016],
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Figure 2. Algorithm Substitution Attack (ASA) example scenario.

a VPN software implementation was subverted, meaning that an attacker could efficiently
decrypt every VPN connection created with that software. Another example, consid-
ered by some to be a flaw, but by others an ASA, was found in Infineon smart cards
and TPMs allowing an attacker to recover private keys from public keys. The key-
generation algorithm sometimes creates public keys that are vulnerable to Coppersmith’s
attack [Nemec et al. 2017].

In general, the attack can be symmetric or asymmetric, regarding the type of cryp-
tographic key embedded by the attacker. The asymmetric attack means that the attacker
generates a key pair (public, private) and embeds the public key. In the asymmetric set-
ting, the attacker has the advantage that the backdoor can only be accessible by his private
key [Baek et al. 2019]. However, there are scenarios where the symmetric setting can be
sufficient. When the attack is performed in closed-hardware products, it can be difficult to
retrieve the symmetric key. On the other hand, normally, asymmetric attacks are stateful,
meaning that A′ has to keep track of the information leaked in the outputs. In the stateful
setting, the disadvantage is that the attack could be detected with a state reset (see Section
2.4). Therefore, from the attacker’s perspective, stateless attacks are preferable to avoid
detection.

2.4. Related Work

This paper aims to evaluate if we can detect ASA in a Post-Quantum TLS version. We
focused our search on PQC schemes that are finalists in the NIST Round 3 standardiza-
tion process [NIST 2016]. Therefore, we start this section with the ASA attacks already
demonstrated in PQC schemes. Secondly, we look into the general detection mechanisms
for these attacks. We were not able to find any publication addressing the ASA threat in a
Post-Quantum TLS implementation.

Regarding lattice-based schemes, researchers found ASA in NTRU
[Kwant et al. 2018] and in LWE-based schemes, such as NewHope [Yang et al. 2020a].
The main difference is that the authors claim that the attack in NTRU can be efficiently
detectable, but that is not the case of LWE-based cryptosystems [Yang et al. 2020b].
Furthermore, the NTRU attacks are based on a substitution of NTRU encryption, whereas



LWE has attacks based on both key generation and encryption. Regarding other PQC
schemes, we could not find ASA in code-based cryptography (such as Classic McEliece)
nor in multivariate-based cryptography (such as Rainbow) in the literature.

In the literature, there are general and specific detection mechanisms for ASA. In
addition, there are also countermeasures to prevents the ASA, such as a Cryptographic Re-
verse Firewall [Mironov and Stephens-Davidowitz 2015]. However, the countermeasures
often require access to the implementation or rely on a trusted third party. In this paper,
we focus on detection mechanisms because we consider the scenario where the user has
no access or knowledge about the internals of his device or cryptographic implementation.
Otherwise, a detection mechanism could be by software inspection.

A stateful ASA in a randomized scheme can be detected through a state reset.
A state reset is a mechanism that returns the modified algorithm to its initial state. A
simple reboot or a clone of the virtual machine are examples. Since the attack uses a
deterministic subversion key, an analyst can compare two outputs after state resets; if the
outputs are equal, it means that the scheme is subverted [Baek et al. 2019].

A more general detection mechanism is by side-channel analysis, for instance, a
timing analysis. In this analysis, the execution time of both subverted and non-subverted
algorithms are compared. In this scenario, kleptographic attacks can be detected with
timing analysis [Teşeleanu 2019], but that is not the case if the attacker is able to mask
execution times. None of the attacks in the PQC schemes mentioned went through timing
analysis, to the best of our knowledge. Janovsky et al. [Janovsky et al. 2019] used timing
analysis aiming the detection attacks in TLS 1.2 and 1.3, but considering only ECDH
and RSA algorithms. Similarly, Berndt et al. [Berndt et al. 2020] explored ASA in TLS,
but also in Signal and Wireguard protocols. Their works show that timing analysis is not
always successful in detecting a subverted protocol.

3. Methodology
In this paper, we perform a timing analysis of ASA in PQC. We compare the timings of a
subverted implementation against a non-subverted one. Two attacks are proposed: the first
exploits Kyber in the key-generation process and the second exploits Falcon signatures.
We also evaluate the scenario where we integrate the attacks in TLS. We use PQC imple-
mentations provided by the Open Quantum Safe (OQS) project [Stebila and Mosca 2016].

The choice of the attacked algorithms is based on the following: Kyber and
Falcon are finalists in the NIST Standardization process with competitive performance
[Avanzi et al. 2020, Fouque et al. 2020]; we were able to find ASA attacks on both algo-
rithms; and the fact that a PQC TLS requires a Key Exchange mechanism, where Kyber
can be used, and a Signature Scheme, such as Falcon. To the best of our knowledge, these
ASA on Kyber and Falcon were not published before.

We compared the statistics computed for the subverted versions and the non-
subverted versions. The metrics evaluated in this paper are grouped as follows.

• Cryptographic primitives: we measured the execution times (in microseconds) and
CPU cycles. We sampled 1, 000 independent executions and computed the follow-
ing statistics: minimum, first quartile, median, third quartile, and maximum. We
also computed the average time of one million executions;



• TLS Protocol: we focused on the TLS handshake completion time. We
compute the average handshake time of 1, 000 connections. Mininet
[Lantz and O’Connor 2015] was used to simulate network conditions. We var-
ied the network latency (in milliseconds), based on the methodology of Paquin et
al. [Paquin et al. 2020].

All of the experiments were performed in a Linux machine equipped with an Intel
i5-8250U 1.60GHz CPU. We do not employ AVX extensions or other optimizations in
the PQC algorithms. Furthermore, we disabled network services (except for the TLS
evaluation), hyperthreading, and turbo boost technologies to improve timing accuracy.
The source code of our proposed attacks is available for download1.

3.1. Proposed Attack on Kyber
We propose a symmetric ASA in the KYBER KEM.KEYGEN algorithm. The attack
injects information about the private key in the public key. As a result, the attacker can
recover the private key. It is a stateless attack since only one public key is needed to
recover private information.

Algorithm 1 shows the original Kyber KEM key generation algorithm
(KYBER KEM.KEYGEN()), and the subverted version (KYBER KEM.KEYGEN′()) is
presented in Algorithm 2. There is only one modification in Algorithm 2. In the original
algorithm, the byte array z receives a random value (line 2), but on the subverted version,
z receives the 32-byte hash of ρ. The value ρ is available in the public key pk. The 32-byte
hash function is simplified as H. This change was made so the private key is created in a
deterministic approach, but the pseudo-randomness of z is maintained.

Algorithm 1: KYBER KEM.KEYGEN()

1 : (pk, sk′)← KYBER PKE.KEYGEN()

2 : z←$ {0, 1}256

3 : sk ← (sk′||pk||H(pk)||z)
4 : return (pk, sk)

Algorithm 2: KYBER KEM.KEYGEN′()

1 : (pk, sk′)← KYBER PKE.KEYGEN′()

2 : z ← H(ρ)

3 : sk ← (sk′||pk||H(pk)||z)
4 : return (pk, sk)

The Kyber KEM key generation algorithm evokes the Kyber PKE key
generation algorithm, which the original version is detailed in Algorithm 3
(KYBER PKE.KEYGEN()), whereas the subverted version (KYBER PKE.KEYGEN′())
is presented in Algorithm 4. Lines 1–2 in Algorithm 3 are modified. Originally in these
lines, d received a random 32-byte value, that is then applied to a hash function that returns
64-bytes, forming two values, ρ and σ, each of length of 32 bytes.

The subverted algorithm transforms the procedures in lines 1–2 in the original
algorithm to lines 1–4 in Algorithm 4. These lines were modified so the value ρ appended
to the public key pk in line 22 reveals information to the attacker. The information is the
value d, used to compute σ, which, in turn, is used to compute the private key sk.

The modifications in Algorithm 4 are the following. First, the length of the byte
array d is changed to 8 bytes. Then, the 64-byte hash of d is computed by G(d), resulting

1https://github.com/DuniaMarchiori/liboqs

https://github.com/DuniaMarchiori/liboqs


in (x, σ), that are 32-byte each. The byte array σ is used in the construction of the private
key. Having access to the value of d infers that σ can be computed and, consequently,
that the private key can be recovered. Therefore, d is the information that is leaked in this
attack.

Being a symmetric attack, the leaked information is encrypted using a symmetric
key symka that only the attacker has access to. Then, using the Advanced Encryption
Standard (AES) algorithm with the Galois Counter Mode (GCM) mode, d is encrypted,
resulting in a ciphertext, an authentication tag and an initialization vector (IV). AES-
GCM is a good choice here because it produces a ciphertext that fits the required size.
The length of both the tag and IV is 12 bytes each, and the length of the ciphertext is 8
bytes. These values are concatenated to create the value of the 32-byte array ρ, that is
appended to the public key.

The remaining steps in Algorithm 4 are the same as the original algorithm.
Additional details of the Kyber scheme can be found in the official specification
[Avanzi et al. 2020], including the description of the functions NTT and ENCODE12.
In addition, the functions for seed expansion to polynomials following a uniform
and centered binomial distribution were simplified and called SAMPLEUNIFORM and
SAMPLECBD.

The output in Algorithm 2 is the subverted public key pk and the private key sk.
Assuming the subverted public key is published, the subverted value ρ appended to pk
can be accessed. Decrypting the ciphertext using the symmetric key symka, and the IV
and tag contained in ρ, the attacker can recover the random value d, which can be used to
create the private key as detailed in Algorithms 2 and 4.

Algorithm 3: KYBER PKE.KEYGEN()

1 : d←$ {0, 1}256

2 : (ρ, σ)← G(d)

3 : Â ∈ Rk×k
q ← SAMPLEUNIFORM(ρ)

4 : s, e ∈ Rk
q ← SAMPLECBD(σ)

5 : ŝ← NTT(s)

6 : ê← NTT(e)

7 : t̂← Â ◦ ŝ+ ê

8 : pk ← (ENCODE12(t̂ mod +q)||ρ)
9 : sk ← ENCODE12(ŝ mod +q)

10 : return (pk, sk)

Algorithm 4: KYBER PKE.KEYGEN′()

1 : d←$ {0, 1}64

2 : (x, σ)← G(d)

3 : (ciphertext, IV, tag)←
AES256 GCM(d, symka)

4 : ρ← (ciphertext||IV||tag)

5 : Â ∈ Rk×k
q ← SAMPLEUNIFORM(ρ)

6 : s, e ∈ Rk
q ← SAMPLECBD(σ)

7 : ŝ← NTT(s)

8 : ê← NTT(e)

9 : t̂← Â ◦ ŝ+ ê

10 : pk ← (ENCODE12(t̂ mod +q)||ρ)
11 : sk ← ENCODE12(ŝ mod +q)

12 : return (pk, sk)

3.2. Proposed Attack on Falcon
We propose an ASA in the FALCON.SIGN algorithm. The attack leaks the private key
of the user in the resulting signatures. The attacker needs two consecutive signatures to
recover the private key of the victim; therefore it is a stateful attack.



Algorithm 5 shows the details of the original Falcon signing algorithm
(FALCON.SIGN), whereas the subverted version (FALCON.SIGN′) is presented in Algo-
rithm 6. The modifications are presented in lines 1-7. First, the subverted version takes as
input the user’s private key seed sku, with 32-bytes length, which is used to generate the
original sk = (B, T ); the message m to be signed; and the attacker’s public key pka. This
pka is instantiated here as an Elliptical Curve (EC) public key. Secondly, the subversion
exploits the random parameter r of the signature. Instead of a uniformly-random nonce,
r is now computed as an encryption of sku using the attacker’s pka. The encryption is
an Elliptical Curve Integrated Encryption Scheme (ECIES) [Martı́nez et al. 2015]. When
the hard-coded state is 0, sku is encrypted. The parts of the ECIES ciphertext are as-
signed in r, depending on the value of state. The rest of the SIGN algorithm is the same
as the original. We do not change the Falcon operations and functions such as Hash-
to-point computation, Fast Fourier Transformations (simplified here as FFTS), Sampling
and Compression function. Besides, we do not change the public parameters q and n.
Additional details can be found in the Falcon specification [Fouque et al. 2020].

Algorithm 5: FALCON.SIGN(sk, m)

1 : r←$ {0, 1}320

2 : c← HASH(r||m, q, n)
3 : t← FFTS(c)

4 : do

5 : do

6 : z ← FFSAMPLINGn(t, T )

7 : s = (t− z)B̂
8 : while ||s||2 > bβc2

9 : (s1, s2)← INVFFT(s)

10 : s← COMPRESS(s2, 8 · slen − 328)

11 : while (s =⊥)
12 : return σ = (r, s)

Algorithm 6: FALCON.SIGN′(sku, m, pka)

1 : if state = 0 then
2 : buffer ← ECIES(pka, sku)

3 : r ← buffer[0..39]

4 : state← state+ 1

5 : else

6 : r ← buffer[40..79]

7 : state← 0

8 : c← HASH(r||m, q, n)
9 : t← FFTS(c)

10 : do

11 : do

12 : z ← FFSAMPLINGn(t, T )

13 : s = (t− z)B̂
14 : while ||s||2 > bβc2

15 : (s1, s2)← INVFFT(s)

16 : s← COMPRESS(s2, 8 · slen − 328)

17 : while (s =⊥)
18 : return σ = (r, s)

The output given by Algorithm 6 is a subverted signature σ. Assuming that the
user transmits at least two consecutive signatures after the subversion, the attacker can
recover the user’s private key. Having the consecutive signatures, the attacker reconstructs
r from σi, σi+1 and computes sku = ECIES(ska, r), recovering the seed to generate the
private key. Since our modification is strict in r, and the modified r is still pseudo-random,
FALCON.SIGN’ produces valid signatures. Therefore, the signature verification process is



the same as the non-subverted version. ECIES is a good choice for the attacker, due to the
following: it allows an asymmetric attack (differently of the attack on Kyber), in which
no other than the attacker can retrieve the user’s private key, because the attacker’s public
key is the key embedded in the subverted algorithm; and ECIES generates an ephemeral
public key (in the victim) for each signature pairs. This design turns our attack difficult to
detect by means of state resets.

4. Results

In this section, we discuss the results of the two attacks proposed in Section 3. First, we
analyze the execution time of the original and the subverted versions in Section 4.1. Then,
in Section 4.2 we show the results of the subverted primitives in a TLS implementation.

4.1. Timing Analysis

Figure 3 presents the average execution time of million executions of KYBER.KEYGEN
and FALCON.SIGN. All available security levels were tested (512, 768, 1024). Regarding
Kyber, there is no significant difference between the attacked and non-attacked versions.
Our symmetric attack uses AES-NI specialized hardware instructions, which is common
in modern processors. The fast performance can explain why one can not detect the
proposed attack with timing analysis. On the other hand, the slowdown caused by our
asymmetric ASA in Falcon is evident.

Time (us)

kyber512

kyber768

kyber1024

falcon512

falcon1024

0 5000 10000 15000

(Original) Avg. Time (us) (Attacked) Avg. Time (us)

Figure 3. Average execution time of subverted and non-subverted version.

Table 1 gives more insights about the timing analysis of the cryptographic im-
plementations. The results are a compilation of a thousand KYBER.KEYGEN and FAL-
CON.SIGN executions. Each pair of lines allows comparing the subverted version against
the original implementation. The subverted versions are marked with an apostrophe (’).
Again, Kyber versions are indistinguishable under timing analysis. For instance, the quar-
tile intervals (Q1-Q3) overlap in all Kyber pairs. However, Falcon implementations are



Table 1. Timing Analysis of KYBER.KEYGEN and FALCON.SIGN algorithms.

Algorithm Min (µs) Q1 (µs) Q3 (µs) Max (µs)

kyber512 152.643 156.039 157.208 239.651
kyber’512 156.743 157.106 160.585 229.148
kyber768 258.199 264.040 267.651 316.825

kyber’768 260.625 261.193 265.665 432.644
kyber1024 389.906 390.936 400.812 591.818

kyber’1024 393.417 394.423 401.295 590.241
falcon512 5305.085 5357.700 5401.045 6625.238

falcon’512 7338.234 7383.622 7463.104 8611.342
falcon1024 11 560.391 11 664.326 11 691.744 14 222.915

falcon’1024 13 542.865 13 605.375 13 639.466 16 428.984

distinguishable since the results do not overlap between the quartile intervals. Our asym-
metric attack using ECIES is costly because it requires an ephemeral public key gener-
ation, shared secret computation and AES encryption. This computational cost explains
the differences in the execution times.

4.2. Attack on Post-Quantum TLS

We managed to deploy our attack in OpenSSL based on the OQS project
[Stebila and Mosca 2016]. The flow of the messages is explained as follows: the TLS
client executes the subverted KYBER.KEYGEN and send its fresh (and subverted) pub-
lic key in the ClientHello message; upon reception, the TLS Server executes KY-
BER.ENCAPS and the subverted FALCON.SIGN, replying with a subverted signature; the
TLS Client executes KYBER.DECAPS and FALCON.VERIFY, establishing the connec-
tion. The attacker watches the whole communication. The attacker can break TLS con-
fidentiality by recovering the Kyber private key of the client, allowing to decrypt the
ciphertext sent by the server and derive the symmetric keys used in their connection. The
attacker can also break authentication by capturing two consecutive signatures and as-
suming that the TLS implementation stores the Falcon private key seed as mentioned in
the specification. In this case, the attacker is able to impersonate the TLS server (which
breaks HTTPS security).

Figure 4 shows the results of a thousand TLS handshakes. We evaluate our attacks
in the same security parameter (λ) for Kyber and Falcon. When increasing the network
latency in the simulation, we can not distinguish the attacked implementations from the
original ones. This indicates that, under realistic conditions, the attack is imperceptible
using this metric.

5. Conclusions

In this work, we propose two Algorithm Substitution Attacks. One is a symmetric at-
tack in the Kyber KEM and the other one is a asymmetric attack in the Falcon signature
scheme. In our experiments, the proposed attack in Kyber is undetectable, while the one
in Falcon can be detected with a timing analysis. As seen in Table 1, the execution time of
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Figure 4. Handshake Time of the TLS implementations

the subverted versions of Falcon is slower than the original algorithms. Whereas the ex-
ecution time of the subverted versions of Kyber is around the same values as the original
versions.

The slower execution time of the subverted versions of the Falcon signature
schemes were due to the use of ECIES for encryption. However, with the use of ECIES,
the attack is resistant to state resets because a new ephemeral key is created for every
encryption. On the other hand, since the subverted versions of Kyber used AES for en-
cryption, our attack achieved fast performance because it used AES-NI specialized in-
structions. Therefore, the attack is difficult to detect with timing analysis.

We also analyzed the behavior of our subverted algorithms in a Post-Quantum
TLS implementation. Our experiments showed that higher latency values conceal the
execution time variations of the subverted algorithms, resulting in an unnoticeable attack
in these conditions. The impact showed in our scenario is the capability of breaking both
confidentiality and authentication of the TLS connections.

5.1. Open problems

We discussed attacks in only 2 of the 7 finalists in the NIST Round 3 standardization
process in this work. Therefore, these analyses can be done to other post-quantum algo-
rithms. Additional metrics can be included in the analysis, such as power consumption
measurements. Besides, the asymmetric ASA on Falcon proposed here does not provide
a quantum-resistant encryption process to the attacker. There is little work on ASA that
offers post-quantum security for the attacker. In addition, we proposed a symmetric ASA
on Kyber, but an asymmetric one could also be designed.
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Teşeleanu, G. (2019). Threshold kleptographic attacks on discrete logarithm based sig-
natures. In Lange, T. and Dunkelman, O., editors, Progress in Cryptology – LATIN-
CRYPT 2017, pages 401–414, Cham. Springer International Publishing.

Yang, Z., Chen, R., Li, C., Qu, L., and Yang, G. (2020a). On the security of LWE
cryptosystem against subversion attacks. The Computer Journal, 63(4):495–507.

Yang, Z., Xie, T., and Pan, Y. (2020b). Lattice klepto revisited. In Proceedings of the
15th ACM Asia Conference on Computer and Communications Security, ASIA CCS
’20, page 867–873, New York, NY, USA. Association for Computing Machinery.

Young, A. and Yung, M. (1996). The dark side of “black-box” cryptography or: Should
we trust capstone? In Koblitz, N., editor, Advances in Cryptology — CRYPTO ’96,
pages 89–103, Berlin, Heidelberg. Springer Berlin Heidelberg.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
https://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.rfc-editor.org/rfc/rfc8446.txt
http://www.rfc-editor.org/rfc/rfc8446.txt

	Introduction
	Contributions
	Text organization

	Preliminaries
	Post-Quantum Cryptography (PQC)
	TLS 1.3 Handshake
	Algorithm Substitution Attacks (ASA)
	Related Work

	Methodology
	Proposed Attack on Kyber
	Proposed Attack on Falcon

	Results
	Timing Analysis
	Attack on Post-Quantum TLS

	Conclusions
	Open problems


