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2School of Mathematics and Statistics
Carleton University, Ottawa, Canada

3School of Electrical Engineering and Computer Science
University of Ottawa, Ottawa, Canada

dunia.marchiori@posgrad.ufsc.br, ricardo.custodio@ufsc.br,

daniel@math.carleton.ca, lmoura@uottawa.ca

Abstract. In code-based cryptography, deterministic algorithms are used in the
root-finding step of the decryption process. However, probabilistic algorithms
are more time efficient than deterministic ones for large fields. These algorithms
can be useful for long-term security where larger parameters are relevant. Still,
current probabilistic root-finding algorithms suffer from time variations making
them susceptible to timing side-channel attacks. To prevent these attacks, we
propose a countermeasure to a probabilistic root-finding algorithm so that its
execution time does not depend on the degree of the input polynomial but on the
cryptosystem parameters. We compare the performance of our proposed algo-
rithm to other root-finding algorithms already used in code-based cryptography.
In general, our method is faster than the straightforward algorithm in Classic
McEliece. The results also show the range of degrees in larger finite fields where
our proposed algorithm is faster than the Additive Fast Fourier Transform algo-
rithm.

1. Introduction
Shor’s algorithm [Shor 1994] was responsible for a change in what we currently consider
digitally secure. It shows that quantum computers can calculate the factorization of in-
tegers in polynomial time, which is the problem that the security of RSA [Rivest et al.
1978] is based upon, the most common asymmetric algorithm used until now. Shor also
shows a similar result for computing discrete logarithms in polynomial time; the security
of several cryptosystems, including the ones based on elliptic curves [Cohen et al. 2006],
rely on this operation.

Considering the growth in research and development of quantum computers, data
encrypted today may not be secure in the future, when an adversary can have access to a
quantum computer. As a way of preventing that, researchers in the field of post-quantum
cryptography study cryptographic schemes in which their security is based on problems
that are not affected by quantum computation. The proposals in post-quantum cryptogra-
phy include cryptosystems based on hash functions, lattices, and error-correcting codes,
among other areas.



McEliece’s scheme [McEliece 1978] was the first asymmetric cryptosystem based
on error-correcting codes and has resisted attacks for more than 40 years, thus being a
great candidate for a post-quantum cryptosystem. While the security of the cryptosystem
is based on the hardness of generic decoding, an NP-hard problem, the scheme imple-
mentation may not be secure. Side-channel attacks use additional information besides the
original message and the ciphertext during encryption or decryption, and must be avoided.
The extra information can be power consumption statistics or the execution time of the
operations. Side-channel attacks that use time information are called timing side-channel
attacks.

In code-based cryptography, timing side-channel attacks on the decryption pro-
cess mostly focus on retrieving information from the error locator polynomial, especially
in the process of finding its roots, which indicate the errors added to the message. An
attack based on this idea is presented in [Strenzke et al. 2008, Shoufan et al. 2010] and
detailed in Section 2.3. Considering this type of attacks, it is important that the root-
finding algorithms used in a cryptosystem should not present differences in running time
that can be tied to secret elements. In other words, we aim to obtain a method that al-
lows a so-called constant-time implementation, which is an implementation where time
variations are not correlated to secret information [Pornin 2018].

Deterministic algorithms are the most common algorithms used in the root-finding
process in code-based cryptography; they include the exhaustive search and the Additive
Fast Fourier Transform [Gao and Mateer 2010]. Both have constant-time behavior for any
input polynomial, regardless of the input degree. In [Martins et al. 2019] some counter-
measures are proposed for other deterministic algorithms. However, countermeasures for
probabilistic algorithms are not included.

When considering the evolution of quantum computers and long-term security in
code-based cryptosystems, we must consider an increase in field size and polynomial de-
grees. Probabilistic algorithms are more efficient than deterministic algorithms for large
fields. The main drawback in this context is that the execution time of probabilistic algo-
rithms is heavily influenced by the degree of the input polynomial.

In code-based cryptosystems, probabilistic algorithms appear in [Schipani 2012]
and [Sumi et al. 2011], but both studies do not mention timing side-channel attacks
and, therefore, do not discuss how the algorithm can leak information in a code-based
cryptosystem context. Our work is the first to propose and experiment with a constant-
time probabilistic algorithm with the goal of it being considered suitable for a code-based
cryptosystem and resistant to the side-channel attacks mentioned.

Contributions of this paper: The main result of this paper is the proposal of a constant-
time probabilistic algorithm for finding the roots of a polynomial. We compare our pro-
posal with other root-finding algorithms used in code-based cryptography and show pa-
rameters in which the algorithm proposed require fewer CPU cycles than other determin-
istic constant-time algorithms. In general, our method is always faster than an exhaustive
algorithm and, in the given ranges, it is faster than the Additive Fast Fourier Transform
algorithm in larger finite fields.

Structure of this paper: In Section 2, we give a brief description of Goppa codes and
the McEliece cryptosystem, and discuss a timing side-channel attack. In Section 3, we



present the probabilistic algorithm which our proposal is based upon. In Section 4, we
describe our proposal, showing the algorithms and their costs. In Section 5, we give
experiments comparing our proposed algorithm against other algorithms currently used.
Finally, in Section 6 we conclude our work and mention open problems.

2. Preliminaries
In this section, we provide a brief description of Goppa codes [Goppa 1970] and the
McEliece cryptosystem, focusing on aspects that are relevant to our work. A timing side-
channel attack over the decryption process of the McEliece cryptosystem is described,
which our proposal in Section 4 prevents.

2.1. Goppa codes

A Goppa polynomial g(x) is a polynomial of degree t and coefficients over Fqm for m a
positive integer, that is, g(x) =

∑t
j=0 gjx

j , where gj ∈ Fqm . Let L = (α1, . . . , αn) ∈ Fnqm
such that g(αi) 6= 0, 1 ≤ i ≤ n. A Goppa code Γ(L, g) is formed by all vectors c =
(c1, . . . , cn) ∈ Fnq that satisfy the condition

Sc(x) =
n∑
i=1

ci
x− αi

≡ 0 (mod g(x)), (1)

where x− αi is invertible modulo g(x).

Goppa codes are linear codes with parameters consisting of length n, dimension k
and minimum distance d. Here, n is the length of the codewords that is defined by L. The
dimension k satisfies k ≥ n−mt and the minimum distance d satisfies d ≥ t+ 1 [Goppa
1970]. When condition (1) is not satisfied, the received message c′ contains errors, that is,
c′ = c⊕ e, c ∈ Fnq being a codeword and e ∈ Fnq being a vector with weight w(e) ≤ t. To
identify and corrects the errors, the Error Locator Polynomial (ELP) σ(x) plays a central
role. Let Te = {i : ei 6= 0}, the ELP is given by

σ(x) =
∏
i∈Te

(x− αi) ∈ Fqm [x]. (2)

The roots of the error locator polynomial indicate the position of the errors in the
received message. To construct the ELP and correct the errors to retrieve the codeword in
the message, the Patterson decoding algorithm [Patterson 1975] is used.

2.2. McEliece cryptosystem

In this section, we give a brief description of each algorithm that forms the McEliece
cryptosystem: key generation, encryption, and decryption [McEliece 1978].

Key generation: In the original proposal, binary Goppa codes are used to con-
struct the keys. First, a Goppa polynomial g(x) of degree t and coefficients in F2m is
selected. Then, the generator matrix G is defined. After that, two random matrices are
created: an invertible k × k matrix S and an n × n permutation matrix P . Finally, the
matrices are multiplied creating the matrix G′ = SGP that is part of the public key
PK = (G′, t). The private key is formed by SK = (g, L, S,G, P ).



Encryption: In the encryption process, errors are intentionally added to the mes-
sages. An error vector e of length n with weight w(e) = t is randomly selected. Then, a
message M ∈ Fk2 can be encrypted as c = MG′ ⊕ e.

Decryption: The decryption consists of correcting the errors added during the
encryption of the message. Patterson decoding algorithm [Patterson 1975], shown in
Algorithm 1, is used in this process. The syndrome polynomial computed in Step i is
used to determine the error locator polynomial σ(x) in Step iv. The roots of the error
locator polynomial define the error vector e used to recover the original message M by
computing c⊕ e.

Algorithm 1 Patterson Algorithm
Input: a ciphertext c of length n, private key PR = (g, L, S,G, P ).
Output: message M .

i. Compute the syndrome polynomial Sc(x)←
∑n

i=1
ci

x−αi
(mod g(x)).

ii. Compute τ(x)←
√
S(x)−1 + x (mod g(x)).

iii. Find two polynomials a(x) and b(x) so that a(x) ≡ b(x)τ(x) (mod g(x)) with
deg(a) ≤

⌊
t
2

⌋
and deg(b) ≤

⌊
(t−1)

2

⌋
.

iv. Determine the error locator polynomial σ(x)← a2(x) + xb2(x), deg(σ) ≤ t.
v. Define the error vector e from the roots of σ(x) as e ← (σ(α1), . . . , σ(αn)) ⊕

(1, . . . , 1), αi ∈ L.
vi. Compute the plaintext M ← c⊕ e.

vii. Return M .

In Step v. the roots of the ELP can be obtained using different methods. This
root-finding step is the focus of our work. Our main contribution is a constant-time prob-
abilistic algorithm for the problem based on a variant of the seminal work of Berlekamp
[Berlekamp 1970]. We consider and analyze this variant and compare it against an ex-
haustive search that evaluates the polynomial repeatedly, and against the additive Fast
Fourier Transform (FFT). These are some of the most popular algorithms in cryptography
used for this task.

2.3. Timing side-channel attacks

In general, side-channel attacks use additional information besides the original message
and the ciphertext to attack the system. The extra information can be power consumption
statistics or the execution time of the operations. In this work, we focus on the latter.

The timing side-channel attack proposed in [Strenzke et al. 2008, Shoufan et al.
2010] exploits how the time variance between different executions of the evaluation of
the error locator polynomial can reveal the original message. The attack described is for
the root-finding step in the decoding algorithm of a Goppa code. The goal is to retrieve
the original message by obtaining the error vector. This can be possible if the execution
time of the decoding process varies according to the number of roots of the ELP.

The attack explores the difference between the execution time of the root-finding
step of a message that contains t errors and other that contains w errors. If a message



contains less than t errors, the error locator polynomial σ(x) has w < t roots, and if a
message contains more than t errors, the polynomial σ(x) has w > t roots.

As a result of this property, the attack is designed as follows: in possession of a
ciphertext c with t errors, the attacker inverts one bit of c, obtaining c′. Observing the
execution time during the decryption of c′, it is possible to infer if c′ has t − 1 or t + 1
errors. Given that information, when the polynomial σ(x) has t−1 roots, it can result in a
faster execution. Performing this strategy to each bit of c, the attacker can discover which
positions of c contain errors, making it possible to retrieve the original message in c.

A plain implementation of the McEliece cryptosystem is susceptible to an adaptive
chosen-ciphertext attack (CCA2) like the one above. It has been established that this
attack is not prevented by a CCA2 conversion [Strenzke et al. 2008]. Therefore, to
maintain the security of the scheme, the execution time of the root-finding step during the
decryption process must be independent of the degree of the input polynomial.

Our countermeasure to this attack involves artificially raising the degree of the
ELP when it is lower than t. Based on this idea, we propose the first constant-time prob-
abilistic algorithm for finding the roots of a polynomial. This algorithm is provided in
Section 4. A constant-time implementation should prevent non-constant time operations
correlated to the secret. The types of operations to be concerned are branching (con-
ditional jumps), memory accesses, or use of variable-time operations (integer divisions,
shifts and rotations) [Pornin 2018]. These type of operations must not be used in connec-
tion with secret information. An implementation of our proposal can avoid branching and
memory-access leakage and only use basic operations that run in constant time.

In [Martins et al. 2019], proposals are given to avoid timing side-channel attacks
over the root-finding algorithm in the decoding step. The work describes countermeasures
for four methods: exhaustive search, linearized polynomials, Berlekamp Trace Algorithm
(BTA), and the Successive Resultant Algorithm. Our proposal is based on the works of
Berlekamp as is the Berlekamp Trace Algorithm. The proposal for BTA in [Martins et al.
2019] results in a more constant performance when comparing the number of CPU cycles
of multiple executions of the algorithm to find the roots of polynomials of a certain degree
t. It does not address the variation in the number of CPU cycles when receiving an input
of degree t and receiving an input of degree d < t, as we do in this work. Our proposal
focuses on a more constant behavior when comparing the number of CPU cycles it takes
to find the roots of polynomials of different degrees d < t when expecting t errors in the
McEliece cryptosystem.

3. Root-finding algorithms
In this section, we introduce the probabilistic algorithm that our proposal is based upon.
Like the exhaustive method and the Additive Fast Fourier Transform, other methods
used currently are deterministic algorithms. As mentioned, the root-finding algorithm
used during the decryption process must not present variations in execution time that
may leak information related to any secrets. The previously considered methods succeed
in this aspect, whereas an immediate implementation of the classical probabilistic root-
finding algorithms in the literature [Berlekamp 1970,Rabin 1980,Cantor and Zassenhaus
1981, von zur Gathen and Shoup 1992] do not. A key contribution of our work is, by
providing a side-channel resistant version, to bring these well-known asymptotically fast



algorithms to their potential use in code-based post-quantum cryptographic systems such
as the McEliece cryptosystem and its variants.

3.1. A probabilistic root-finding algorithm

As it is well documented, the asymptotically fastest algorithms for factoring polynomials
over finite fields are probabilistic. Indeed, even for middle size polynomial degrees or
finite field orders, these probabilistic methods behave better. For a complete bibliography
(up to the time of publication) in the classical problem of factoring polynomials over finite
fields see the survey [von zur Gathen and Panario 2001].

Our proposed probabilistic method has its root in the fundamental works of
Berlekamp [Berlekamp 1968, Chapter 6; Berlekamp 1967, Berlekamp 1970]. In partic-
ular, the idea of using probabilistic algorithms and traces when finding roots in charac-
teristic 2 are originated in his works. The general factoring strategy is based on three
stages: the squarefree factorization (that removes repeated factors), the distinct-degree
factorization (that partially factors the polynomial into factors of the same degree), and
the equal-degree factorization that finally obtains the irreducible polynomials for each of
the polynomials produced in the second stage. In the case of finding roots of interest here
we just need to run the equal-degree factorization for factors of degree d = 1. Algorithm
2 shows the steps of the equal-degree factorization for a polynomial over Fq, q = 2m, and
common degree of the irreducible factors equal to d = 1. These are the parameters we
are interested in this paper.

Algorithm 2 Equal-degree factorization algorithm for polynomials in F2m and degree
d = 1 for the irreducible factors
Input: d ∈ N, a monic polynomial f ∈ F2m of degree n = rd.
Output: the list of r monic irreducible factors of degree d of f .

i. If deg(f) = d, then return {f}; if deg(f) = 0 return {}.
ii. Pick g ∈ Fq[x]/(f) at random with degree smaller than n.

iii. Compute

h←
m−1∑
i=0

g2
i

.

iv. Compute p1 ← gcd(h, f) and p2 ← f/p1.
v. Recursively factor p1 and p2 and return the union of these two lists of factors.

The execution time of Algorithm 2 can be derived as a special case of the analysis
of the polynomial factorization process formed by the three stages discussed above. The
complete cost analysis is delicate (see [Flajolet et al. 1996, Section 7] and [Flajolet et al.
2001, Section 5]), but the special case of Algorithm 2 simplifies considerably since we
only need the third stage, and only for degree 1; see [Flajolet et al. 2001, Table 1].

A method for factoring polynomials can be easily adapted to compute roots. The
error locator polynomial is composed only by linear factors, so d = 1 in this case. In Step
i, when deg f = d, it means that deg f = 1, that is, f = x − γ, for some γ. Hence, the
roots of the original input polynomial f are the list of coefficients γ.



We recall that the trace of an element α ∈ F2m over F2 is TrF2m/F2(α) = α+α2 +

α22 + · · ·+α2m−1
. Step iii implements the trace computation of α, while Step iv attempts

to improve the factorization towards the complete factorization in roots. These are ideas
from Berlekamp and our starting point.

The random polynomial choice adds a probability of failure to the algorithm since
a random polynomial can potentially result in a trivial factor of the input polynomial. This
probability is 1− (1/2t−1), where t is the polynomial degree [von zur Gathen and Panario
2001]. This shows that the chance of having to retry Steps ii., iii., iv. of Algorithm 2 in
order to obtain a valid factor (root) is very small unless the input polynomial has a very
small degree.

The execution time of Algorithm 2 is extremely tied to the degree of the input
polynomial. In this case, if the original algorithm is used in a code-based cryptosystem,
an attacker can see a difference in the duration of the decryption process when decoding
a word with t errors and one with t′ = t − δ errors, where δ is a positive integer smaller
than t. We propose a countermeasure in Section 4 in order to achieve a constant-time al-
gorithm, so that the variation in the execution time is not related to any secret information,
like the polynomial degree.

4. Constant-time probabilistic root-finding algorithm

In order to prevent the attack mentioned in Section 2.3, an implementation of a root-
finding algorithm in the decryption process must be constant-time. Therefore, counter-
measures for the implementation of the standard equal-degree algorithm were evaluated
so that its execution time is not related to any secret information. This includes avoiding
branching, memory-access and operand leakages.

As commented above, the execution time of the original algorithm detailed in
Algorithm 2 is tied to the degree of the input polynomial. When decoding a word with
t− δ errors, the error locator polynomial is of degree t− δ. The ideal behavior would be
that the root-finding process of a polynomial of degree t and of degree t − δ lasts about
the same time so there are no variations in the duration of the decoding process that an
attacker can exploit.

We propose a countermeasure that, when receiving a polynomial of degree smaller
than expected, fake roots are added to the polynomial so that the algorithm always takes
the time that is expected to. The root-finding algorithm receives the polynomial with fake
roots as input, and after computing all the roots, the fake ones are removed from the set of
roots. This is shown in Algorithm 3. The fake roots added are created with multiples of
step. In Step i., the value of step is defined considering that the maximum value that
a fake root can take is ((t− 1) ∗step)⊕ 1. In our implementation, the coefficient values
are treated as integers. Step ii. is detailed in Algorithm 4 and is responsible for adding
the fake roots to the polynomial. Step iii. is shown in Algorithm 5 and is an adaptation of
Algorithm 2. The removal of the fake roots is done in Step iv.. The list returned in Step
iii. is analysed and the fake roots are substituted by the given element ζ . The returned
list is sorted and all the n original roots are in the first n positions of the list, followed by
t− n positions containing ζ . This is detailed in Algorithm 6.

In order for these processes to occur in constant time, the branches taken and



memory addresses accessed must be independent of any secret inputs, and operations that
can leak information, like integer divisions, must be avoided. The operands of the division
in Step i. in Algorithm 3 are public cryptosystem parameters, so no secret can be leaked
from this operation. Also, in this context, the same amount of operations must be done on
every possible input, regardless of the input degree, since it is secret information. Even
when receiving a polynomial of the expected degree, extra work must be done so every
execution lasts about the same. The expected degree in this context is the number of errors
that the cryptosystem can correct and that is added to the message.

Algorithm 3 Constant-time probabilistic root-finding algorithm(f, ζ)
Input: polynomial f ∈ F2m [x] of degree 1 ≤ n ≤ t, ζ ∈ F2m that is not part of the
support set L of the Goppa code.
Output: a list of roots R of size t, with n roots and t− n zeros.

i. step← ((maximum field element)/t)− 1;
ii. g ← AddRoots(f,step);

iii. R← IterativeRootFinding(g);
iv. R← RemoveRoots(R,t,n,step,ζ);
v. Return R.

The creation and addition of fake roots are shown in Algorithm 4. The goal is to
multiply fake linear factors to f so its degree is increased to t, which is the expected degree
by the cryptosystem parameters. The input polynomial f of degree n is multiplied by
t− n linear factors of the form x− ρ, step⊕ 1 ≤ ρ ≤ ((t− n) ∗ step)⊕ 1, in the first
t − n iterations. Thus, each coefficient ρ will be included in the list of roots by the root-
finding algorithm. In Step iii.c. the value of the fake root is created. The multiplications
of multiples of step are done with integer operations in our implementation. If a root of
the original polynomial is equal to a fake root, the root appears twice in the returned list.

Algorithm 4 Adding fake roots — AddRoots(f,step)

Input: polynomial f ∈ F2m [x] of degree 1 ≤ n ≤ t, the value step of the increment
between each fake root.
Output: a polynomial of degree t.

i. Initialize diff← t−n, fakeRoot← 1, addRoot← 1, added← 0, g ← f .
ii. Pad g with diff zero coefficients to get to t+ 1 coefficients.

iii. For index in [1, t− 1]
a. addRoot← addRoot− not(index− (diff + 1));
b. added← added + addRoot;
c. fakeRoot← 1⊕ (addRoot ∗ (added ∗ step));
d. g ← g ∗ ((addRoot)x− fakeRoot);

iv. Truncate polynomial g to keep t+ 1 coefficients, removing the artificial ones.
v. Return g.

In order to compute similar operations regardless of the degree n of the input
polynomial, t multiplications are made. After multiplying f by t − n linear factors, f is
multiplied n times by 0x+ 1, so the resulting polynomial g is of degree t.



The main cost of Algorithm 4 is composed by the polynomial multiplications and
the addition operations in finite fields for the creation of the value of the fake roots. The
multiplications and additions are done t− 1 times, resulting in

Cadd roots = (t− 1)(Cadd + Cpoly mult) (3)

where Cadd is the cost of the addition of elements in Fqm and Cpoly mult is the cost of the
multiplication between two polynomials.

After this, the root-finding algorithm showed in Algorithm 5 is executed, receiving
the new g of degree t as input. Algorithm 5 is an iterative adaptation of Algorithm 2, that
returns the roots of f instead of its monic factors. These modifications do not change the
final cost of the algorithm. The GCD computation in Step iii.c.3 can be done in constant-
time as described in [Bernstein and Yang 2019].

Algorithm 5 Iterative probabilistic root-finding — IterativeRootFinding(f)
Input: a monic polynomial f ∈ F2m of degree t.
Output: the list of t roots of f .

i. Initialize a stack S and push f .
ii. Initialize a list R of size t.

iii. For index in [1, 2t− 1]
a. Pop a polynomial f1 from the stack.
b. If deg(f1) = 1, then include the constant coefficient of f1 in R, continue.
c. Do:

1. Pick g ∈ Fq[x]/(f1) at random.
2. Compute

h←
m−1∑
i=0

g2
i

(mod f1).

3. Compute p1 ← gcd(h, f1).
While deg(p1) ≤ 0 or deg(p1) = deg(f1).

d. Compute p2 ← f1/p1.
e. Push p1 and p2 to the stack.

iv. Return R.

The removal of the fake roots from the list is shown in Algorithm 6. The goal is
to erase the fake roots in the list R returned by Algorithm 5. The list R1 of size t receives
a copy of the list R and sorts it. Thus, the fake roots in the list will be in increasing
order. Then, the elements from the list R1 are compared with the values of the fake roots
added to the polynomial f . When an element R1[index] is equal to the current value
being searched for and there are still fake roots to be found, it means that the element
R1[index] is a fake root of f . In this case, the value ofR1[index] is set to the maximum
value possible for a coefficient. When an elementR1[index] is different from the current
value of fake roots it means that R1[index] is an original root, so its value is maintained.

The list R1 can contain duplicates when a fake added root is equal to an original
root of f . When a fake root is identified the next fake root value is calculated, meaning
that only one of the duplicates will be removed, so the original root stays on the returned



Algorithm 6 Removing fake roots — RemoveRoots(R,t,n,step,ζ)
Input: a list R of t roots returned by Algorithm 5, including fake roots; the expected de-
gree t; the degree n of the original polynomial; the value step of the increment between
each fake root; the element ζ that is used to indicate the fake roots in R.
Output: a list R1 of t elements, with the n roots of the original polynomial and t − n
elements ζ .

i. Initialize a list R1 of size t and copy R to R1.
ii. Sort R1.

iii. Initialize diff ← t − n, keepCoeff ← 1, numberFakeRoots ← diff,
noFakeRoots← not(diff), maxCoeff← maximum value of a coefficient,
fakeRoot← step⊕ 1.

iv. For index in [0, t− 1]
a. r ← R1[index];
b. eq← not(r ⊕ fakeRoot);
c. keepCoeff← not(not(noFakeRoots) and eq);
d. r ← keepCoeff ∗ r;
e. R1[index]← r ⊕ (not(keepCoeff) ∗ maxCoeff);
f. fakeRoot← (keepCoeff ∗ fakeRoot)⊕

((not keepCoeff)∗(1⊕((diff−numberFakeRoots+2)∗step)));
g. numberFakeRoots← numberFakeRoots− not(keepCoeff);
h. noFakeRoots← not(numberFakeRoots);

v. Sort R1.
vi. Set keepCoeff← 1.

vii. For index in [0, t− 1]
a. r ← R1[index];
b. keepCoeff← keepCoeff− not(index− n);
c. R1[index]← r ⊕ (not(keepCoeff) ∗ (maxCoeff⊕ ζ));

viii. return R1.

list. After all elements of R1 were evaluated and the fake root received the maximum
coefficient value, the list R1 is sorted again. Therefore, all the original roots will be
ordered and in the first n elements of the list. The other t− n elements are the ones with
the maximum value at the end of the list. These elements are fake roots added to the input
polynomial and, consequently, receive the given value ζ in Step vii..

The output is a list of t elements, with n sorted roots in the first n elements fol-
lowed by t − n elements ζ . In a code-based context, the value ζ must be an element that
is not in the support set of the Goppa code, so the error vector created from the returned
list of roots R1 is not generated incorrectly.

Algorithm 6 has its cost based on the sorting algorithm and the addition of coeffi-
cients. The number of iterations is t for each “for” step, resulting in

Cremove roots = 2Csort + t(6Cadd) + Cadd (4)

where Csort is the cost of the used sorting algorithm. The sorting Steps ii. and v. can be
done in constant time using the djbsort constant-time sorting library [Bernstein 2019].



5. Results
In our experiments, we used an Intel® Core™ i5-3317U CPU @ 1.70GHz and the code1

was compiled with GCC version 11.1.0 with the compilation flags “-march=native
-mtune=native -Wall”.

When comparing the number of CPU cycles of our proposed algorithm against
three other algorithms for polynomial root-finding, we note that our proposal is advanta-
geous, even though is not the best for very small fields and degrees. Table 1 shows this for
F213 with the mean and margin of error for an interval of confidence at the 95% level. Each
point was calculated with a sample of 2500 measures. The set size considered in these
executions is n = 6688 and the polynomials are in F213 , that are parameters suggested in
NIST post-quantum proposals. The values show the CPU cycles for each method when
expecting a polynomial of degree t = 128 but receiving as input a polynomial of degree
d = {64, 96, 128}. The exhaustive method and the Additive Fast Fourier Transform al-
gorithm are deterministic algorithms used in the implementation of NIST post-quantum
proposals.

Degree 64 96 128
Algorithm µ ±ε µ ±ε µ ±ε

Exhaustive 82.2004 0.4165 82.1148 0.5214 82.2850 0.3819
Additive FFT 31.2994 0.3006 31.4474 0.2797 31.4957 0.2805
Probabilistic method 25.7721 0.1255 40.2116 0.1953 57.9839 0.1881
Constant-time probabilistic 62.2050 0.1674 62.4064 0.1743 62.6301 0.1624

Table 1. Mean (µ) and margin of error (ε) for an interval with 95% of confidence
of the execution time in 106 cycles of our proposal and other root-finding
methods for polynomials in F213 .

The exhaustive method evaluates n points separately, and even for the small field
considered in these tests (q = 213), its execution is not the most efficient. Its advantage is
that it evaluates n points regardless of the polynomial, so its execution time is not tied to
the polynomial degree. The Additive FFT algorithm performs multipoint evaluation, thus
it is more efficient than the exhaustive method. In small finite fields such as the one used
in these experiments, it has the best performance of all methods analyzed; this changes
for slightly larger fields as we show later.

The values of the original probabilistic algorithm show a significant variation in
execution time, that increases according to the polynomial degree. Our proposed constant-
time probabilistic algorithm shows great results in this aspect, achieving the desired con-
stant time. The improvement, compared to the original numbers, is apparent. It is more
efficient than the exhaustive method even though the finite field is small, reducing the
number of CPU cycles by half. These results are from experiments with a constant-time
sorting method and a constant-time implementation of the GCD algorithm.

Although the degree of the input polynomial does not increase the execution time
of the Additive FFT algorithm, the size of the field does. Therefore, in bigger fields,
Additive FFT may not be the fastest algorithm. Since probabilistic algorithms tend to per-
form well in bigger fields, we measured the execution times of our proposed method and

1https://github.com/DuniaMarchiori/probabilistic-root-finding

https://github.com/DuniaMarchiori/probabilistic-root-finding


Figure 1. Execution time in CPU cycles of our proposal for degrees 2 to 128 with
polynomials in F213 when expecting a polynomial of degree 128.

the Additive FFT algorithm in fields of size q = 2m,m = [13, 16, 18, 20] and identified
the point in which the curves cross. For values before the curves intersect, our proposed
algorithm performs better than Additive FFT, but when the expected degree is higher than
the intersection, the Additive FFT algorithm is a better alternative.

The point of intersection of the number of CPU cycles of our proposed algorithm
and the additive FFT algorithm increases as the field size increases. Considering the value
of the interval for a confidence of 95%, in a field size q = 213, the intersection occurs for
degree 75, indicating that our proposal is faster in the range [1, 74]. In q = 216, our
experiments showed that our proposal is faster in the range [1, 213]. In q = 218, the range
is [1, 383] and in q = 220, it is [1, 848].

Figure 1 shows the box plot of the execution time in CPU cycles of our proposed
algorithm when expecting a polynomial of degree 128 and receiving a polynomial of de-
gree 2 to 128. For each degree, 2500 random polynomials in F213 were used as input. The
measures were taken from a implementation of our proposal with constant-time sorting
and GCD algorithms. In this figure, we observe that the execution time is not tied to the
degree of the input polynomial. When expecting a polynomial of degree t, the degree of
the input polynomial does not impact the execution time of the algorithm. However, the
execution time is increased because of the extra work introduced by adding and removing
roots.

The results show that the constant-time probabilistic algorithm proposed is a vi-
able alternative to be used as a root-finding algorithm in a code-based cryptosystem in
large fields. It does not leak information when applying the timing side-channel attack
mentioned in Section 2.3, and it is faster than the additive Fast Fourier Transform algo-
rithm until large polynomial degrees relative to the chosen finite field size. At the same
time, in code-based cryptography a large number of errors is not necessary to achieve a
sufficient security level, indicating that our proposal may be the best alternative in larger
fields than the ones used in current cryptosystems.



6. Conclusion
In this work, we propose a countermeasure to a probabilistic root-finding algorithm to
prevent the leakage of information due to the variation of execution time according to
different polynomial degrees. Our proposed algorithm shows a constant behavior in our
experiments when expecting an input polynomial of degree t and receiving a polynomial
of degree n ≤ t. The implementation can be done without branching, memory-access
and non-constant operand leakage, resulting in a constant-time method. It is faster than
the exhaustive method used in the proposal [Bernstein et al. 2020] and also faster, in
the specified ranges, than the additive Fast Fourier Transform algorithm. This can be
beneficial for larger fields than the ones used so far in code-based cryptography. While
the additive FFT algorithm may be considered a more complex algorithm, our proposed
algorithm is relatively simpler, and can offer a simple alternative to the exhaustive method,
providing some savings.

6.1. Future work
Future work includes doing a more thorough experimental analysis, using tools that verify
that our implementation remains constant in different computer architectures. We could
also investigate more thoroughly the exact intersection point between our method and the
additive FFT for different field sizes. The addition of optimizations for operations in finite
fields, like vectorization and bitslicing, may improve the execution time of our algorithm.
Finally, other security analyses can be made, like power analysis side-channel attacks.
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