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Abstract. Cryptography is an indispensable tool for achieving security require-
ments such as software security. However, most software developers do not have
enough knowledge regarding the proper use of cryptography and its APIs. This
leads to incorrect use and exploitable vulnerabilities in software applications.
Here, we propose an approach based on machine learning techniques to detect
different kinds of cryptographic misuse in known java source code representa-
tions, achieving an average 52 percentage points improvement with respect to
previous works.

1. Introduction

With the increasing use of technologies and applications with stringent security require-
ments, such as integrity, confidentiality, authenticity, and data availability, cryptography
has become a widely used tool to fulfill these objectives. However, most software de-
velopers responsible for building such applications have limited knowledge on how to
properly use cryptographic primitives. Also, software libraries and application program-
ming interfaces (APIs) offering cryptographic services are not easy to understand and
use, and have limited documentation. All these factors inevitably lead to the incorrect use
of cryptographic schemes and APIs [Lazar et al. 2014], and the introduction of software
vulnerabilities during development [Braga et al. 2017]. Accordingly, and in a somewhat
broader sense, we use the expression cryptography (or cryptographic) misuse to des-
ignate a bad programming practice that creates vulnerabilities and is also associated with
design flaws and unsafe architectural choices [Braga et al. 2017].

In this context, most software companies rely on supporting tools to aid in the
development of applications that use cryptography. Unfortunately, such tools are far
from perfect: studies have shown that they can only detect, on average, 35% of cryp-
tographic misuses with the combination of two or more tools [Dı́az and Bermejo 2013,
Antunes and Vieira 2014, Goseva-Popstojanova and Perhinschi 2015]. Thus, solutions
that effectively help software developers incorporate cryptography in a simple and ef-
fective way in their applications are urgently needed [Nadi et al. 2016].

Static code analysis tools (SCATs) have been used with limited success in detect-
ing cryptography misuses because they usually adopt pattern matching techniques. On
the other hand, machine learning techniques for detecting such misuses, to the best of our
knowledge, are scarcely reported in the literature. Accordingly, in this work, we present
an application of existing machine learning techniques to build binary classifiers for the
detection of cryptography misuse in java source code (which can be adapted to other



programming languages), according to different misuse categories, achieving on average
87% misuse detection. More specifically, we contribute with the following:

• an extension of a feature extraction technique, known as Bag of Graphs, to perform
source code vectorization;
• the construction of machine learning models to detect cryptographic misuse with

no need of massive amounts of data;
• an implementation that outperforms previously evaluated tools for cryptographic

misuse detection by 52 percentage points on average (87% against 35%).

We believe that the use of machine learning in detecting cryptographic misuse is a promis-
ing approach and can be further explored with prompt results.

The remainder of this text is organized as follows. Section 2 introduces basic
concepts and related work, while Section 3 explains the research methodology we used.
Section 4 presents results and findings, which are further discussed in Section 5. Section 6
concludes the paper and points to future work.

2. Background and Related Work
This section gives background and presents related work to our research.

Braga and Dahab analyzed and classified cryptography misuse by collecting soft-
ware developer contributions in related online forums [Braga and Dahab 2016]. In addi-
tion to online forums and literature review, their work was also based on industry initia-
tives. The resulting classification, shown in Table 1, is grouped in three columns: the first,
Groups, aggregates misuses by their level in the software development cycle: architec-
tural, design and coding issues; the second, Categories, specifies a misuse exact nature;
and the third, Sub-types, further details the sub-types of each category. It was also ob-
served that several types of cryptography misuses show up in pairs or triples. Braga and
Dahab extended their work [Braga and Dahab 2017] with a longitudinal study of cryptog-
raphy misuse in online communities, and showed that these are persistent and recurrent.
Later, they built a cryptography misuse dataset and performed a benchmark of several
static analysis tools [Braga et al. 2017, Braga et al. 2019]. They found out that only 35%,
at most, of cryptography misuses contained in source code are detected by the combined
use of the tools, all of which used pattern matching and simple data-flow analysis. Also,
they enhanced their previous cryptographic misuse categorization dividing it into com-
plexity groups.

To the best of our knowledge Fischer et al. [Fischer et al. 2019] are the first at-
tempt at applying machine learning techniques to detect cryptography misuse in source
code. The authors collected several cryptography misuses in Stack Overflow and built a
deep neural network architecture to detect and classify the misuses based on categories
defined by them. This neural network architecture achieved almost perfect classification
metrics. However, the authors only covered simple cases of cryptography misuses which
are already detected with pattern matching techniques used by SCATs.

As machine learning algorithms need numerical representation of data, code em-
bedding (i.e, the transformation of source code into numerical representation) has been
recently proposed. Alon et al. [Alon et al. 2019] built a deep learning neural network,
called code2vec, that learns source code representation based on method calls and tries



Table 1. Classification of cryptography misuse in software. Adapted
from [Braga et al. 2019]

Groups Categories Sub-types
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Weak
Cryptography
(WC)

- Risky or broken encryption
- Proprietary cryptography
- Determin. symm. encryption
- Risky or broken hash/MAC
- Custom implementation

Coding and
Implementation
Bugs (CIB)

- Wrong configs for PBE
- Common coding errors
- Buggy IV generation
- No cryptography
- Leakage of keys

Bad Randomness
Handling (BRH)

- Use of statistic PRNGs
- Predict., low entropy seeds
- Static, fixed seeds
- Reused seeds

G
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D
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n
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Program Design
Flaws (PDF)

- Insecure behavior by default
- Insecure key handling
- Insecure use streamciphers
- Insec. combo enc. w/ auth.
- Insec. combo enc. w/ hash
- Side-channel attacks

Improper
Certificate
Validation (ICV)

- Absent validation of certs
- Insecure SSL/TLS channel
- Incomplete cert. validation
- Absent host/user validation
- Wildcards, self-signed certs

Public-Key
Cryptography
(PKC) issues

- Deterministic encrypt. RSA
- Insecure padding RSA enc.
- Weak configs for RSA enc.
- Insecure padding RSA sign.
- Weak signatures w/ RSA
- Weak signatures w/ ECDSA
- Insecure DH or ECDH
- Insecure elliptic curves

G
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up
3:
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es

IV and Nonce
Management
(IVM) issues

- CBC with non-random IV
- CTR with static counter
- Hard-coded or constant IV
- Reuse nonce in encryption

Poor Key
Management
(PKM)

- Short key, improper key size
- Hard-coded or constant keys
- Hard-coded PBE passwords
- Key reuse in streamciphers
- Use of expired keys
- Issues in key distribution

Crypto
Architecture and
Infrastructure
(CAI) issues

- Issues in crypto agility
- API misunderstanding
- Multiple access points
- Randomness source issues
- PKI and CA issues

to classify such method calls. This is considered the state of the art in source code em-
bedding. However, it represents an instance of source code as a collection of numerical
vectors, one for each method call in the instance. This representation is not suitable to
some classification tasks which require a one-to-one mapping of methods to vectors.

Several works in software engineering apply machine learning to source code
analysis for vulnerability detection, software defect detection and similar tasks. In gen-
eral, these works use an Abstract Syntactic Tree (AST) as source code representation,
instead of text representation, before the source code embedding step. This method re-
sulted more effective than natural language processing. The following are examples of
this approach: the PROPHET [Long and Rinard 2016] system, that uses deep neural net-



Figure 1. Work pipeline

works to detect differences in source code ASTs of different software patches in order to
automatically generate correction patches; an LSTM model [Dam et al. 2018], based on
trees, for the prediction of software defect using embeddings generated from source code
ASTs; and a structure called AST-Ngrams [Shippey et al. 2019], used to build successful
predictive models to detect software faults.

3. Research Methodology
This section describes the bulk of our methodology, step-by-step, summarized in Figure 1.
It starts with the collection and preparation of the data used in our classifiers (in blue), then
onto training and test configuration through feature extraction and misuse classification
(in green), ending with experiments (in yellow). The following subsections detail the four
steps, in order. All source codes developed and data used in this work will be available in
https://gitlab.ic.unicamp.br/ra230218/mlmisusedetection.

3.1. Data Collection and Preparation
For data collection, we used datasets collected by Braga et al. [Braga et al. 2017] and
Fischer et al. [Fischer et al. 2019]. The first one is a synthetic dataset, composed of source
codes that emulate real world applications. The second dataset was created by collecting
various source code snippets from programming forums. Thus, we were able to evaluate
our classifiers in both synthetic (but realistic) data and real-world (but incomplete) data,
resulting in a richer performance analysis. Both datasets are composed of Java source
code that uses the Java Cryptography Architecture (JCA) [Oracle 2020] which is one of
the most widely used cryptography API.

For each dataset, the distribution of instances among categories is presented in
Table 2 and Table 3. In Table 2, column Category is the same as in Table 1; column
Secure refers to the number of source codes in each category that are examples of correct
use of the JCA cryptographic API; column Insecure gives the number of source codes
that are examples of cryptographic misuse; and the last column, Complexity, ranks each
category misuse into three levels of complexity, low, medium and high. In Table 3 we
have analogous columns: Category, which gives the cryptographic misuse categories
used by Fischer et al. [Fischer et al. 2019]; Usage Pattern Definition, which describes
the tasks performed by the corresponding category; Secure and Insecure are analogous
to Table 2, although we were able to use only a portion of the dataset, because it is
composed of incomplete source codes (excerpts of source code that cannot be compiled)
as well, and our technique requires complete (that can be compiled) pieces of code. The
amount of actually used source codes is given by the two columns labeled used, whereas
those labeled full list the full amount of source codes per category of the dataset.

https://gitlab.ic.unicamp.br/ra230218/mlmisusedetection


Table 2. [Braga et al. 2017] dataset instances distribution by misuse category
and misuse complexity.

Category Secure Insecure Complexity
Weak Cryptography (WC) 10 20 Low
Poor Key Management (PKM) 32 19 High
Bad Randomness (BR) 8 12 Low
Program Design Flaws (PDF) 14 23 Medium
Improper Certificate Validation (ICV) 5 15 Medium
Coding and Implementation Bugs (CIB) 16 29 Low
Cryptography Architecture and Infrastructure (CAI) 7 8 High
Public-Key Cryptography (PKC) 58 68 Medium
IV/Nonce Management (IVM) 10 8 High

For source code representation, we decided to use ASTs (Abstract Syntax Trees)
which are tree-shaped representations of tokens generated from expressions and dec-
larations present in source code of a programming language. ASTs contain details
about the structure of the source code and preserve its syntactic and semantic informa-
tion [Mogensen 2017]. To generate an AST from code, we used ANTLR4 [Parr 2013],
which is a parser generator for reading, processing, executing or translating structured
text or binary files. So, for every file present in the [Braga et al. 2017] dataset and in
the [Fischer et al. 2019] dataset, we generated an AST representation and saved it in
.dot file format. This is a commonly used file format for graph visualization and repre-
sentation, which can properly store a graph’s properties and structures.

3.2. Feature Extraction
In machine learning tasks, such as classification, clustering and others, there is the need
to convert non-numerical input (in our case, ASTs) to a numerical representation, since
machine learning algorithms can only handle numerical input. For this, we need a feature
extraction and embedding method that can handle graphs, taking into consideration that
our source code representation is a tree-shaped structure. At the same time, we also need
that our method takes into account the content of ASTs nodes, as they contain text, lexical

Table 3. [Fischer et al. 2019] dataset instances distribution by misuse category.

Category Usage Pattern Description Secure
(used)

Insecure
(used)

Secure
(Full)

Insecure
(Full)

Cipher Initialization of cipher, mode and
padding

712 782 2764 2257

Key Generation of symmetric key 384 325 1390 810
IV Generation of IV 229 285 768 741
Hash Initialization of cryptographic hash

function
215 719 852 2487

TLS Initialization of TLS Protocol 30 721 167 2319
HNV Setting the hostname verifier 53 106 204 293
HNVOR Overriding of hostname verification 6 71 28 180
TM Overriding server certificate verifi-

cation
51 443 73 1013



and structure information of the source code. We decided for the method of Bag of Graphs
(BoG) [Silva et al. 2014]: this is a technique for the feature extraction and embedding of
graphs that preserves the intrinsic structure and relationships present in the graph used as
input [Silva et al. 2018]. It has been successfully used in malware detection in Android
smartphones [Navarro et al. 2018].

We had to extend an existing BoG implementation to our use case. Figure 2 shows,
step-by-step, our BoG implementation. As our digital object (source code) is already rep-
resented as a graph structure (AST), we can skip this part of the algorithm. After that,
we define some nodes of interest (NoIs) that are used to build graphs of interest (GoIs)
needed later on. In general, we used the following types of nodes which are source code
structures present in the Java language definition: literal; variableDeclarator; methodIn-
vocation lfno primary; methodInvocation; assignment; forStatement; basicForStatement;
ifThenStatement; ifThenElseStatement; tryStatement. To adapt this to other programming
languages than java, the only adjustment needed is that you need to generate ASTs with
the corresponding language AST generator. Also the programming languages structures’
names may differ from language to language.

Thereafter, from our nodes of interest, we built graphs of interest. We defined
three types of GoIs:

• NoI source code text;
• Tree with the NoI as its root (AST structures labels and source code text);
• Shortest path from the root of the AST to a NoI.

After extracting GoIs from source code ASTs, we randomly sample a num-
ber of GoIs, since we need a fixed number of GoIs in the next step. We then ap-
ply a clustering step to create a codebook from the randomly sampled GoIs. For

Figure 2. Bag of Graphs steps. Adapted from [Silva et al. 2018]



this, we use K-Means Clustering [Forgy 1965], which is a common clustering algo-
rithm, with random centroids. Following the creation of a codebook, we can bag our
GoIs by computing a histogram of the frequency of each codeword present in a source
code. This histogram is the numerical representation of a source code that can be
fed as input to a machine learning algorithm. All code in this part was written in
Python 3 using the Networkx API [Hagberg et al. 2020] for graph manipulation and
Scikit-Learn [Pedregosa et al. 2011] for K-Means. Also, the steps described in the fol-
lowing sections used the Scikit-Learn machine learning API to perform misuse classifi-
cation.

3.3. Misuse Classification
Before using the numerical representation of our data as input to machine learning clas-
sifiers, we split the dataset into train and test datasets. We chose the 80/20 proportion,
where 80% of the dataset comprised the train dataset, and 20% the test dataset. Note that
there is no intersection between both datasets and the test dataset was used only once in
our experiments, to get the final classification results.

In order to detect and classify misuses, we decided to build a binary classifier
for each type of misuse, because each misuse has a respective good (correct) use, and,
at the same time, misuses fall into different categories. As our datasets have labeled
data, we were able to use a supervised classification approach. So, we trained different
SVM (Support Vector Machine) classifiers for each type of cryptography misuse present
in a dataset. We used a cross-validation approach to train and validate our classifiers,
since our datasets are not big enough to make other approaches suitable. We also used
GridSearchCV [Pedregosa et al. 2020] to search the best parameters of each classifier,
which is a well used hyperparameter-tuning approach in machine learning tasks.

To evaluate our results, we used three widely used classification metrics for ma-
chine learning algorithms: Precision, Recall and F1-Score. We used different metrics
to show the performance of our classifiers under different aspects. They are defined as
follows:

Precision =
tp

tp+ fp
; (1)

Recall =
tp

tp+ fn
; (2)

F1-score = 2 ∗ Precision ∗Recall

Precision+Recall
. (3)

Here, tp is the number of true positives (number of misuses correctly classified as mis-
uses); fp is the number of false positives (number of good code misclassified as misuse)
and fn is the number of false negatives (number of misuses misclassified as good code).

3.4. Experiments
As explained in 3.1, we have two datasets, with two different ways of categorizing cryp-
tography misuse. So, we had to perform two distinct experiments, each with a different
dataset. Both experiments followed the steps outlined in Section 3.2 and Section 3.3 for
feature extraction and classification.



3.4.1. Experiment 1

For Experiment 1, we used the [Braga et al. 2017] dataset, with only 362 instances in
total. This is a small dataset in comparison to the usual sizes in machine learning ex-
periments. Given the limited amount of data, we had to select fewer types of NoIs in
order to make our features less complex. Also, as previously stated, this dataset is com-
posed of manufactured source codes that emulate real world applications, allowing us to
evaluate our classifiers in a synthetic dataset setup. In this experiment, we selected the
following types of NoIs and used our BoG implementation for feature extraction: literal;
variableDeclarator; methodInvocation lfno primary; assignment. So, as the dataset has
nine categories of cryptographic misuses, we built nine different binary classifiers, one
for each type of misuse, and used the GridsearchCV [Pedregosa et al. 2020] to find the
best classifier for each category of cryptographic misuse.

3.4.2. Experiment 2

For Experiment 2 we used the [Fischer et al. 2019] dataset, which is a larger dataset than
that of Experiment 1, but with a different cryptographic misuse categorization. Naturally,
this larger universe of instances, providing more data for both training and testing, gave us
more confidence in the performance of our classifiers. Moreover, this dataset is comprised
of real-world application source codes. We tried different combinations of types of NoIs
(see Section 3.2); however, only the best were considered in the results. Finally, as the
dataset has seven categories of cryptographic misuses, we built seven different binary
classifiers, one for each type of misuse, and repeated the same procedure as in Experiment
1.

4. Results and Findings
This section presents results for the experiments described in the previous section. Results
for Experiment 1 SVM classifiers, which use the [Braga et al. 2017] dataset, are shown
in Figure 3. The results for Experiment 2, which use the [Fischer et al. 2019] dataset, are
shown in Figure 4. Both images show results on test sets.

For Experiment 1, most of the classifiers achieved very good results when com-
pared to [Braga et al. 2017] SCATs (Static Code Analysis Tools) results for F1-score,
Precision and Recall, respectively: Weak Cryptography (86%, 75%, 100%); Poor
Key Management (89%, 80%, 100%); Bad Randomness (100%, 100%, 100%); Im-
proper Certificate Validation (100%, 100%, 100%); and IV/Nonce Management (100%,
100%, 100%). For the remaining four misuse categories, although better than those
in [Braga et al. 2017], our results were not as good: Program Design Flaws (73%, 80%,
67%); Code Implementation Bugs (80%, 75%, 86%); Cryptography Architecture and In-
frastructure (50%, 33.3%, 100%); and Public Key Cryptography (61%, 47%, 88%). We
considered “poor” the results for the latter four categories, because they were the ones
that had more false positives or false negatives given the Insecure/Secure instance distri-
bution. Also, by checking the complexity of each cryptographic misuse in Table 2 and
the previous results, both good and poor results are not well defined in the misuse com-
plexity spectrum shown in Table 2 defined by [Braga and Dahab 2016], with good results
(LOW:2; MEDIUM:1; HIGH: 2) and poor results (LOW:1; MEDIUM:2; HIGH:1). For



Figure 3. Results for Experiment 1

true positives (absolute number of cryptographic misuses detected), not shown in Figure 3,
we have: Weak Cryptography (100%); Poor Key Management (100%); Bad Random-
ness (100%); Improper Certificate Validation (100%); IV/Nonce Management (100%);
Program Design Flaws (66.6%); Code Implementation Bugs (85.7%); Cryptography Ar-
chitecture and Infrastructure (100%) and Public Key Cryptography (87.5%). This repre-
sents an improvement of 55 percentage points compared to SCATs in misuse detection
(90% of the misuses were detected) [Dı́az and Bermejo 2013, Antunes and Vieira 2014,
Goseva-Popstojanova and Perhinschi 2015].

Next, we present examples of classified source codes and illustrate how certain
differences between them are hard to distinguish. All source codes are from the PKC
misuse category. Listing 1 shows source code correctly classified as cryptography misuse
(true positive). Listing 2 shows source code incorrectly classified as good (false negative).
Finally, Listing 3 shows source code incorrectly classified as cryptography misuse (false
positive).

In Listing 1, we have an instance of use of the RSA algorithm with insecure
padding. In this example, the RSA key size used is secure (2048 bits) [Giry 2020]. How-
ever, in line 13, the algorithm does not use any padding, which is is a mandatory feature.
In Listings 2 and 3, the issue is with the method parameter in line 5: in both cases (in-
correctly classified), we are specifying an elliptic curve by its name; in Listing 2, the
elliptic curve ”sect193r1” is insecure. In Listing 3, the elliptic curve specified is secure,
but the machine learning model was not able to detect that difference. Both examples
suffer from the same problem, that of distinguishing this parameter, which is the only
difference between both source codes.

For Experiment 2, results are also shown for F1-score, Precision and Recall, re-
spectively: Cipher (84%, 78%, 92%); Hash (81%, 89%, 74%); HNV (77% 88%, 68%);
HNVOR (93% 93%, 93%); IV (77%, 88%, 68%); Key (79%, 89%, 71%); TLS (94%,
96%, 91%) and TM (96%, 99%, 94%). As such, HNVOR and TLS are the poorest re-
sults we obtained. The rest of the classifiers achieved good results, with Cipher and
TM being the best ones. For true positive numbers, we have: Cipher (92.1%); Hash
(74%); HNV (68.1% ); HNVOR (93.3%); IV (68.2%); Key (71%); TLS (91%) and



Figure 4. Results for Experiment 2.

TM (93.5%). This represents an improvement of 49 percentage points compared to
SCATs in misuse detection (84% of the misuses where detected) [Dı́az and Bermejo 2013,
Antunes and Vieira 2014, Goseva-Popstojanova and Perhinschi 2015]. With this, averag-
ing Experiment 1 and Experiment 2 results, we achieve an improvement of 52 percentage
points compared to SCATs.

1 public final class InsecurePaddingRSA2 {
2
3 public static void main(String args[]) {
4 try {
5 Security.addProvider(new BouncyCastleProvider()); // provedor BC
6 byte[] msgAna = ("Cripto deterministica").getBytes();
7 KeyPairGenerator g = KeyPairGenerator.getInstance("RSA", "BC");
8 g.initialize(2048);
9 KeyPair kp = g.generateKeyPair();

10
11 U.println("Texto claro : " + new String(msgAna));
12
13 Cipher enc = Cipher.getInstance("RSA/None/NoPadding", "BC");
14 enc.init(Cipher.ENCRYPT_MODE, kp.getPublic());
15 Cipher dec = Cipher.getInstance("RSA/None/NoPadding", "BC");
16 dec.init(Cipher.DECRYPT_MODE, kp.getPrivate());
17
18 U.println("Encriptado com: " + enc.getAlgorithm());
19 byte[][] ct = new byte[2][]; // ciphertext
20 for (int i = 0; i < 2; i++) {
21 ct[i] = enc.doFinal(msgAna);
22 byte[] ptBeto = dec.doFinal(ct[i]);
23 U.println("Criptograma : " + U.b2x(ct[i]));
24 }
25
26 } catch (NoSuchAlgorithmException | NoSuchPaddingException |
27 InvalidKeyException | IllegalBlockSizeException |
28 BadPaddingException | NoSuchProviderException e) {
29 System.out.println(e);
30 }
31 }
32 }
33

Listing 1. Example of cryptography misuse classified as misuse



1 public final class InsecureCurve_sect193r1 {
2
3 public static void main(String argv[]) {
4 try {
5 ECGenParameterSpec ecps = new ECGenParameterSpec("sect193r1");
6 U.println("EC parameters "+ecps.getName());
7
8 KeyPairGenerator kpg = KeyPairGenerator.getInstance("EC","SunEC");
9 kpg.initialize(ecps);

10 KeyPair kp = kpg.generateKeyPair();
11
12 } catch (NoSuchAlgorithmException | InvalidAlgorithmParameterException|
13 NoSuchProviderException e) {
14 System.err.println("Error: " + e);
15 }
16 }
17 }
18

Listing 2. Example of cryptography misuse classified as good code

1 public final class SecureCurve_secp384r1 {
2
3 public static void main(String argv[]) {
4 try {
5 ECGenParameterSpec ecps = new ECGenParameterSpec("secp384r1");
6 U.println("EC parameters "+ecps.getName());
7
8 KeyPairGenerator kpg = KeyPairGenerator.getInstance("EC","SunEC");
9 kpg.initialize(ecps);

10 KeyPair kp = kpg.generateKeyPair();
11
12 } catch (NoSuchAlgorithmException | InvalidAlgorithmParameterException|
13 NoSuchProviderException e) {
14 System.err.println("Error: " + e);
15 }
16 }
17 }
18

Listing 3. Example of good code classified as cryptography misuse

5. Discussion of Findings
This section discusses the results presented in the previous Section 4, giving possible
explanations and implications. We are, of course, aware of the limitations of our experi-
ments, such as the amount of data in Experiment 1, class imbalance in datasets and others
that will be further discussed. However, we argue that our experiments show promising
results and interesting implications for future research.

In Experiment 1, for example, we notice that some cryptographic misuse cate-
gories occur in very few instances, thus hindering a proper cross-validation step and lead-
ing to not-so-good results from a machine learning perspective (like in the CAI misuse
case). This occurs because the classifier is not fed enough data to be trained with a suffi-
ciently large number of instances. In addition, some types of data are too complex to be
distinguished based on few instances during the training step, leading to bad results. How-
ever, as stated in Section 4, our results still outperform common SCATs results shown in
[Braga et al. 2017].

Another effect of the small dataset size in Experiment 1 is the overly optimistic
results obtained in the BR, ICV and IVM categories. These categories achieved perfect
results (100%) in all of the three metrics, which cannot be credited to a perfect classifier,
as such a thing does not exist. However, these results indicate that our method can achieve
good results in cryptography misuse detection.

An interesting aspect of Experiment 1 is that our results are spread over the com-
plexity spectrum, i.e, we do not have 100% of good results in just one complexity cat-
egory. This possibly means that our method extracted a variety of source code fea-



tures; however, those features are not specific for distinguishing between code complexity
classes. Instead, they can distinguish code structures and code elements.

For Experiment 2, we see that our results are more “stable”, as we have more
instances in each category of the dataset. HNVOR category was the problem here, as we
had a huge class imbalance (less than 10% of the instances were from the good class),
that led our classifier to have 100% of false positives. However, the remaining categories
presented good results, with the TM category reaching more than 90% in all metrics.
As mentioned in Section 3.1, we could not use the dataset entirely because it contains
incomplete source codes. However, the proportion of total instances per class is very
similar, in most cases, to the proportion we were able to use. Therefore, it is fair to say
that, were we able to use the full dataset, we would have likely obtained similar results,
as we would have more instances to train and test respectively. In addition, our method
does not need the same amount of data as a Deep Learning approach, which can be an
advantage in a scenario where data is scarce.

With the results obtained in both of our experiments, we are confident in saying
that our methodology shows promising (as well as similar) results in both synthetic and
real-world data. Also, we argue that maybe synthetic source code and real world source
are not so different, and we could use synthetic data to improve our datasets in the future,
as in data augmentation, and, consequently, our classifier metrics.

We also realized, in Experiment 1, that most of the false positives and false neg-
atives obtained in our classifiers’ test were caused by the lack of similar source codes
of the test sets in the training sets. As a result, some of the classifiers were not able to
correctly classify some test instances. We experienced around 26% of misclassified code
in Experiment 1, 21% of false positives but only 5% of false negatives. As an example
we have Listing 3 (a false positive) that was the only code in the whole dataset that used
the ”secp384r1” as parameter (an insecure curve).

The final topic we would like to discuss is source code complexity. Here, we spec-
ulate that, in both our experiments, we did not achieve better results because of source
code cyclomatic complexity (intrinsic dependencies within source code instructions, such
as loops and conditionals, and data flow) contained in our data. By using an AST repre-
sentation, it seems that it is not possible to extract all of the necessary information about
cyclomatic complexity, even using AST nodes with loop information and conditionals.

6. Concluding Remarks
We are still far from a definitive solution to cryptography misuse detection. Nevertheless,
the work presented in this paper has a few interesting and desirable features. First, it does
not need a huge amount of training data while still achieving good results when compared
to static analysis tools evaluated in literature. Moreover, although in some cases our
classifiers cannot tell good from bad code, in most cases bad code is classified as bad
code, and this is good from a security perspective. Also, most of the cases exhibit good
balance between precision and recall, which means that our model’s ability in finding
relevant instances (i.e., tell when a piece of code contains a cryptography misuse or not)
is well measured.

For future work, in addition to the AST structure in use, we intend to use alterna-
tive graph representations of source code that allow for more complete cycle information



and data flow information. This will enrich our feature extraction step and can lead to
better classifiers. Also, we would like to enrich our dataset with more synthetic source
codes which emulate a wider range of possibilities of use of cryptographic APIs. With
this, we could evaluate the effect of data augmentation in source code context. Finally, we
plan to build classifiers that can identify more than one misuse per source code, a likely
event in real-world applications.

7. Acknowledgments
We thank CAPES for the financial support, grant number 88887.335984/2019-00. We
thank Unicamp and LASCA (Laboratory of Applied Security and Cryptography) for the
institutional support as well as Doctor Sandra Eliza Fontes de Avila for all support and
good advice.

References
Alon, U., Zilberstein, M., Levy, O., and Yahav, E. (2019). Code2vec: Learning distributed

representations of code. Proc. ACM Program. Lang., 3(POPL):40:1–40:29.

Antunes, N. and Vieira, M. (2014). Assessing and comparing vulnerability detection
tools for web services: Benchmarking approach and examples. IEEE Transactions on
Services Computing, 8(2):269–283.

Braga, A. and Dahab, R. (2016). Mining cryptography misuse in online forums. In 2016
IEEE International Conference on Software Quality, Reliability and Security Compan-
ion (QRS-C), pages 143–150. IEEE.

Braga, A. and Dahab, R. (2017). A longitudinal and retrospective study on how developers
misuse cryptography in online communities. XVII Simpósio Brasileiro em Segurança
da Informação e de Sistemas Computacionais (SBSeg’17), Brası́lia, DF, Brazil.

Braga, A., Dahab, R., Antunes, N., Laranjeiro, N., and Vieira, M. (2017). Practical eval-
uation of static analysis tools for cryptography: Benchmarking method and case study.
In 2017 IEEE 28th International Symposium on Software Reliability Engineering (IS-
SRE), pages 170–181. IEEE.

Braga, A., Dahab, R., Antunes, N., Laranjeiro, N., and Vieira, M. (2019). Understanding
how to use static analysis tools for detecting cryptography misuse in software. IEEE
Transactions on Reliability, 68(4):1384–1403.

Dam, H. K., Pham, T., Ng, S. W., Tran, T., Grundy, J., Ghose, A., Kim, T., and Kim,
C.-J. (2018). A deep tree-based model for software defect prediction. arXiv preprint
arXiv:1802.00921.

Dı́az, G. and Bermejo, J. R. (2013). Static analysis of source code security: Assessment
of tools against samate tests. Information and software technology, 55(8):1462–1476.

Fischer, F., Xiao, H., Kao, C.-Y., Stachelscheid, Y., Johnson, B., Razar, D., Fawkesley, P.,
Buckley, N., Böttinger, K., Muntean, P., et al. (2019). Stack overflow considered help-
ful! deep learning security nudges towards stronger cryptography. In 28th {USENIX}
Security Symposium ({USENIX} Security 19), pages 339–356.

Forgy, E. W. (1965). Cluster analysis of multivariate data: efficiency versus interpretabil-
ity of classifications. biometrics, 21:768–769.



Giry, F. (2020). Keylenght - nist report on cryptographic key length and reccomendation.
URL: https://www.keylength.com/en/4/.

Goseva-Popstojanova, K. and Perhinschi, A. (2015). On the capability of static code anal-
ysis to detect security vulnerabilities. Information and Software Technology, 68:18–33.

Hagberg, A., Schult, D., and Swart, P. (2020). Networkx - network analysis in python.
URL: https://networkx.github.io/.

Lazar, D., Chen, H., Wang, X., and Zeldovich, N. (2014). Why does cryptographic soft-
ware fail?: a case study and open problems. In Proceedings of 5th Asia-Pacific Work-
shop on Systems, page 7. ACM.

Long, F. and Rinard, M. (2016). Automatic patch generation by learning correct code. In
ACM SIGPLAN Notices, volume 51, pages 298–312. ACM.

Mogensen, T. Æ. (2017). Introduction to compiler design. Springer.
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