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Abstract. The stream cipher ChaCha has received a lot of attention and recently
is being used as a new cipher suite in TLS 1.3, as a random number genera-
tor for operating systems (Linux, FreeBSD, OpenBSD, NetBSD, and DragonFly
BSD), a proposed standardization in RFC 7634 for use IKE and IPsec, and by
the WireGuard VPN protocol. Because of that, it is very important to under-
stand and study the security of this algorithm. Previous works showed that it
is possible to break up to 7 of the 20 rounds of ChaCha. In this paper, we
show that a simple modification in the algorithm, namely changing the rotation
distances in the Quarter Round Function, makes ChaCha more secure against
all the most effective known attacks without any loss in performance. In fact,
we show that with these changes, it is only possible to break up to 6 rounds of
ChaCha. Therefore, it would be no longer possible to break 7 rounds of ChaCha
with the best-known attacks.

1. Introduction

In 2008, Bernstein proposed the stream cipher Salsa20 [Bernstein 2008b] as a contender
to the eStream competition. Later, Bernstein proposed some modifications to Salsa20 to
improve diffusion and security, creating a new stream cipher, which he called ChaCha20
[Bernstein 2008a]. Although Salsa20 was one of the winners of the eStream competition,
ChaCha20 has received much more attention through the years. Nowadays, we see the
usage of this cipher in several projects and applications.

ChaCha, along Poly1305 [Bernstein 2005], is in one of the cipher suits of the new
TLS 1.3 [Langley et al. 2016], which is actually used by Google on both Chrome and
Android. ChaCha is used not only in TLS but in many other protocols such as SSH,
Noise, and S/MIME 4.0. In addition, the RFC 7634 proposes the use of ChaCha in IKE
and IPsec. ChaCha is used not only for encryption but also as a random number generator,
for example, in any operating system running Linux kernel 4.8 or newer [Torvalds 2016].
Additionally, ChaCha is used in several applications, for example, WireGuard (VPN),
Keepass (password manager), and Veracrypt (disk encryption). See [IANIX 2020] for a
huge list of applications, protocols, and libraries using ChaCha20.
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Since ChaCha is so heavily used, it is very important to fully un-
derstand its security. Indeed, the cryptanalysis of ChaCha is well un-
derstood and several authors studied its security [Aumasson et al. 2008,
Hernandez-Castro et al. 2008, Crowley 2006, Fischer et al. 2006, Ishiguro et al. 2011,
Maitra 2016, Maitra et al. 2015, Mouha and Preneel 2013, Choudhuri and Maitra 2016,
Shi et al. 2012, Tsunoo et al. 2007, Dey and Sarkar 2017, Dey et al. 2019, Ding 2019,
Coutinho and Neto 2020].

In this work, we study the most important attacks against ChaCha and show that
it is possible to improve its security by changing the rotation distances in the Quarter
Round Function (QRF). In fact, to this day, the best attack against ChaCha works on only
7 rounds of the 20 provided by the algorithm. However, using the proposed modification,
we show that the security is enhanced, limiting the best attack to succeed on only 6 rounds.

This work is organized as follows: in Section 2, we define the notation used in the
paper and define the ChaCha algorithm. In Section 3, we review the best attacks available
against ChaCha. In Section 4, we provide an intensive analysis of the security of the
algorithm for all combinations of rotation distances showing that it is possible to improve
the security of ChaCha. In Section 5, we provide a security comparison of the original
ChaCha, and its new proposed version. Finally, in Section 6, we present the conclusions.

2. Specifications and Preliminaries

In this section, we define the notation that we will use throughout the paper in Table 1.
Afterwards, we define the algorithm ChaCha.

Bernstein proposed the stream cipher Salsa [Bernstein 2008b] to the eStream com-
petition and later Bernstein proposed ChaCha [Bernstein 2008a] as an improvement of
Salsa. ChaCha consists of a series of ARX (addition, rotation, and XOR) operations
on 32-bit words, being highly efficient in software and hardware. Salsa operates on a
state of 64 bytes, organized as a 4 × 4 matrix with 32-bit integers, initialized with a
256-bit key k0, k1, ..., k7, a 64-bit nonce v0, v1 and a 64-bit counter t0, t1 (we may also
refer to the nonce and counter words as the initialization vector – IV), and 4 constants
c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32 and c3 = 0x6b206574. For
ChaCha, we have the following initial state matrix:

X(0) =


x

(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

 =


c0 c1 c2 c3

k0 k1 k2 k3

k4 k5 k6 k7

t0 t1 v0 v1

 . (1)

The state matrix is modified in each round by a Quarter Round Function (QRF),
namedQRr1,r2,r3,r4(a, b, c, d), which receives and updates 4 integers in the following way:

a ← a+ b; d ← d⊕ a; d ← d≪ r1;
c ← c+ d; b ← b⊕ c; b ← b≪ r2;
a ← a+ b; d ← d⊕ a; d ← d≪ r3;
c ← c+ d; b ← b⊕ c; b ← b≪ r4;

(2)



Notation Description
X a 4× 4 state matrix of the cipher of 16 words
X(0) initial state matrix
X(R) state matrix after application of R round functions
Z output of an algorithm, Z = X +X(R)

x
(R)
i ith word of the state matrix X(R) (words arranged in row major)
x

(R)
i,j jth bit of ith word of the state matrix X(R)

x+ y addition of x and y modulo 232

x− y subtraction of x and y modulo 232

x⊕ y bitwise XOR of x and y
x≪ n rotation of x by n bits to the left
x≫ n rotation of x by n bits to the right

∆x XOR difference of x and x′. ∆x = x⊕ x′

∆
(R)
i differential ∆

(R)
i = x

(R)
i ⊕ x′

(R)
i

∆
(R)
i,j differential ∆

(R)
i,j = x

(R)
i,j ⊕ x′

(R)
i,j

P(E) probability of occurrence of an event E
B(E) bias of an event E, thus B(E) = 2P(E)− 1

ε(x1⊕...⊕xm) bias of event E = {∆x1 ⊕ ...⊕∆xm = 0}
ID input differential
OD output differential

Table 1. Notation.

One round of ChaCha is defined as 4 applications of QR16,12,8,7. There is a differ-
ence, however, between odd and even rounds. For odd rounds, when r ∈ {1, 3, 5, 7, ...},
X(r) is defined from X(r−1), as(

x
(r)
0 , x

(r)
4 , x

(r)
8 , x

(r)
12

)
← QR16,12,8,7

(
x

(r−1)
0 , x

(r−1)
4 , x

(r−1)
8 , x

(r−1)
12

)(
x

(r)
1 , x

(r)
5 , x

(r)
9 , x

(r)
13

)
← QR16,12,8,7

(
x

(r−1)
1 , x

(r−1)
5 , x

(r−1)
9 , x

(r−1)
13

)(
x

(r)
2 , x

(r)
6 , x

(r)
10 , x

(r)
14

)
← QR16,12,8,7

(
x

(r−1)
2 , x

(r−1)
6 , x

(r−1)
10 , x

(r−1)
14

)(
x

(r)
3 , x

(r)
7 , x

(r)
11 , x

(r)
15

)
← QR16,12,8,7

(
x

(r−1)
3 , x

(r−1)
7 , x

(r−1)
11 , x

(r−1)
15

) ,

and, for even rounds r ∈ {2, 4, 6, 8, ...}, as(
x

(r)
0 , x

(r)
5 , x

(r)
10 , x

(r)
15

)
← QR16,12,8,7

(
x

(r−1)
0 , x

(r−1)
5 , x

(r−1)
10 , x

(r−1)
15

)(
x

(r)
1 , x

(r)
6 , x

(r)
11 , x

(r)
12

)
← QR16,12,8,7

(
x

(r−1)
1 , x

(r−1)
6 , x

(r−1)
11 , x

(r−1)
12

)(
x

(r)
2 , x

(r)
7 , x

(r)
8 , x

(r)
13

)
← QR16,12,8,7

(
x

(r−1)
2 , x

(r−1)
7 , x

(r−1)
8 , x

(r−1)
13

)(
x

(r)
3 , x

(r)
4 , x

(r)
9 , x

(r)
14

)
← QR16,12,8,7

(
x

(r−1)
3 , x

(r−1)
4 , x

(r−1)
9 , x

(r−1)
14

) .

The algorithm ChaCha20/R is then defined as the sum of the initial state with the
state obtained after R rounds of operations Z = X + X(R). One should note that it is
possible to parallelize each application of the QRF on each round and that each round is
reversible. Hence, we can compute X(r−1) from X(r). For more information on ChaCha,
we refer to [Bernstein 2008a].



3. Cryptanalysis of ChaCha

Several authors studied the security and diffusion of both Salsa and
ChaCha [Aumasson et al. 2008, Hernandez-Castro et al. 2008, Crowley 2006,
Coutinho et al. 2020, Fischer et al. 2006, Ishiguro et al. 2011, Maitra 2016,
Maitra et al. 2015, Mouha and Preneel 2013, Choudhuri and Maitra 2016,
Shi et al. 2012, Tsunoo et al. 2007, Dey and Sarkar 2017, Dey et al. 2019, Ding 2019,
Coutinho and Neto 2020] which show weaknesses in the reduced rounds of the ciphers.
The attacks in most cases, apply some input differences to the initial state to observe
output differences after certain rounds. Once one of them can proceed a few rounds
forward as above, it may be possible to invert a few rounds from a final state to obtain
further non-randomness. Crowley introduced the cryptanalysis of Salsa [Crowley 2006]
in 2006, but the most important cryptanalysis in this regard was proposed by Aumasson
et al. at FSE 2008 [Aumasson et al. 2008] with the introduction of Probabilistic Neutral
Bits (PNBs). After that, several authors proposed small enhancements on the attack
of Aumasson et al. The work by Shi et al [Shi et al. 2012] introduced the concept of
Column Chaining Distinguisher (CCD) to achieve some incremental advancements
over [Aumasson et al. 2008] for both Salsa and ChaCha. Maitra, Paul, and Meier
[Maitra et al. 2015] studied an interesting observation about round reversal of Salsa,
but no significant cryptanalytic improvement could be obtained using this method.
Maitra [Maitra 2016] used a technique of Chosen IVs to obtain certain improvements
over existing results. Dey and Sarkar [Dey and Sarkar 2017] showed how to choose
values for the PNB to improve the attack. The best improvement for the technique
was given by Choudhuri and Maitra [Choudhuri and Maitra 2016] using the technique
of differential-linear cryptanalysis and exploring the mathematical structure of both
Salsa and ChaCha to find differential characteristics with much higher biases. Later
Coutinho and Neto improved Choudhuri and Maitra’s attack by showing better linear
approximations [Coutinho and Neto 2020].

Here, we analyze and improve the security of ChaCha by first replicating and
checking the results of the attack of Aumasson [Aumasson et al. 2008], Choudhuri and
Maitra [Choudhuri and Maitra 2016], and Coutinho and Neto [Coutinho and Neto 2020]
and then applying the technique against different rotation combinations for the QRF. We
chose these attacks since they are the most important works on the cryptanalysis of Salsa
and ChaCha to this day.

3.1. Probabilistic Neutral Bits

This section reviews the attack of Aumasson [Aumasson et al. 2008]. The attack first
identifies good choices of truncated differentials, then it uses probabilistic backwards
computation with the notion of Probabilistic Neutral Bits (PNB), and, finally, it estimates
the complexity of the attack.

Let ∆R
i be the differential for the ith word of state matrix X(R), thus ∆R

i = xRi ⊕
x′Ri ; and let ∆R

i,j be the differential for the jth bit of the ith word, thus ∆R
i,j = xRi,j ⊕ x′

R
i,j .

In [Aumasson et al. 2008] the input differential ID is defined for a single-bit difference
∆0
i,j = 1 and consider a single-bit output difference OD after r rounds ∆r

p,q, such dif-
ferential is denoted (∆r

p,q|∆0
i,j). For a fixed key, the bias εd of the OD is defined by

Pv,t(∆r
p,q = 1|∆0

i,j) = 1
2
(1 + εd), where the probability holds over all nonces v and coun-



ters t. Furthermore, considering the key as a random variable, we denote the median value
of εd by ε?d. Hence, for half of the keys, this differential have a bias of at least ε?d.

Now, assume that the differential (∆r
p,q|∆0

i,j) of bias εd is fixed, and we observe
outputs Z and Z ′ of R = l + r rounds for nonce v, counter t and unknown key k. If we
guess the key k we can invert l rounds of the algorithm to get X(r) and X ′(r) and compute
∆r
p,q, let f be the function which executes this procedure. Hence f(k, v, t, Z, Z ′) = ∆r

p,q

and we expect that

P(f(k̂, v, t, Z, Z ′) = 1) =

{
1
2
(1 + εd), if k̂ = k

0.5, if k̂ 6= k
,

thus, if we have several pairs of Z and Z ′, it is possible to test our guesses for k.

Thus, we can search only over a subkey of m = 256 − n bits, provided we can
find a function g that approximates f but only uses m key bits as input. Then, let k̄
correspond to the subkey of m bits of key k and let f to be correlated to g with bias εa
i.e., P(f(k, v, t, Z, Z ′) = g(k̄, v, t, Z, Z ′)) = 1

2
(1 + εa).

If we denote the bias of g by ε, i.e. P (g(k̄, v, t, Z, Z ′) = 1) = 1
2
(1 + ε), and ε? the

median bias of g over all keys, we can approximate ε by εdεa. The problem that remains
is how to efficiently find such a function g. In [Aumasson et al. 2008], this is done by first
identifying key bits that have little influence on the result of f(k, v, t, Z, Z ′), these are
called probabilistic neutral bits (PNBs). This is done by defining the neutrality measure
γi,j of a key bit ki,j .

After computing γi,j (see [Aumasson et al. 2008] for a method of estimation), for
all i = (0, 1, ..., 7) and j = (0, 1, ..., 31), we can define the set of significant key bits as
Ψ = {(i, j) : γi,j ≤ γ} where γ is a threshold value, and then define our approximation
g as g(kΨ, v, t, Z, Z

′) = f(k∗, v, t, Z, Z ′) where kΨ is defined as the subkey with key bits
in the set Ψ and k∗ is computed from kΨ by setting ki,j = 0 for all (i, j) /∈ Ψ. Thus, the
attack can be evaluated with the following steps:

1. Compute a good differential for r rounds (∆r
p,q|∆0

i,j) by estimating the bias εd for
all single-bit ID with several random combinations of keys, nonces, and counters.

2. Empirically estimate the neutrality measure γr,s for each key bit kr,s.
3. Construct the function g by setting all key bit such that γr,s > γ to zero and esti-

mate the median bias ε? by empirically measuring bias of g using many randomly
chosen keys, nonces, and counters.

4. Estimate the data and time complexity of the attack.

We refer to [Aumasson et al. 2008] for further information about the estimation
of the data and time complexity of the attack and for further details on the described
technique.

3.2. Multi-bit Differentials

This section reviews the attack of Choudhuri and Maitra [Choudhuri and Maitra 2016]
and later improved by Coutinho and Neto [Coutinho and Neto 2020]. The attack first
identifies linear relationships between the bits of two successive rounds of ChaCha. From
these relationships, it is possible to compute single bit differentials for r rounds, obtaining



a distinguisher for r + 1 rounds, which reduces the complexities of the attacks described
in Section 3.1. The first step is to write ChaCha’s QRF (Eq. (2)) only using XOR bit by
bit operations.

Then, is possible to compute x
(m−1)
a,i , x

(m−1)
b,i , x

(m−1)
c,i , and x

(m−1)
d,i in terms of

x
(m)
a,i , x

(m)
b,i , x

(m)
c,i , x

(m)
d,i , C

1
i , C

2
i , C

3
i , and C4

i , we get:

x
(m−1)
a,i = x

(m)
a,i ⊕ x

(m)
b,i+r4

⊕ x(m)
b,i+r2+r4

⊕ x(m)
c,i+r2

⊕ x(m)
d,i ⊕ C4

i ⊕ C3
i ⊕ C1

i

x
(m−1)
b,i = x

(m)
b,i+r2+r4

⊕ x(m)
c,i+r2

⊕ x(m)
d,i ⊕ x

(m)
c,i ⊕ C4

i

x
(m−1)
c,i = x

(m)
d,i ⊕ x

(m)
c,i ⊕ x

(m)
d,i+r3

⊕ x(m)
a,i ⊕ C2

i ⊕ C4
i

x
(m−1)
d,i = x

(m)
d,i+r1+r3

⊕ x(m)
a,i+r1

⊕ x(m)
a,i ⊕ x

(m)
c,i ⊕ x

(m)
b,i+r4

⊕ C3
i

(3)

where C1
i , C

2
i , C

3
i , and C4

i denote the i-th carry bit of the first, second, third, and fourth
additions contained in the QRF, respectively. Since we have that C1

0 = C2
0 = C3

0 = C4
0 =

0 by definition, the following lemma has been proved in [Choudhuri and Maitra 2016]:
Lemma 1. Let

∆A(m) = ∆x
(m)
α,0 ⊕∆x

(m)
β,r4
⊕∆x

(m)
β,r2+r4

⊕∆x
(m)
γ,r2 ⊕∆x

(m)
δ,0

∆B(m) = ∆x
(m)
β,r2+r4

⊕∆x
(m)
γ,0 ⊕∆x

(m)
γ,r2 ⊕∆x

(m)
δ,0

∆C(m) = ∆x
(m)
δ,0 ⊕∆x

(m)
γ,0 ⊕∆x

(m)
δ,r3
⊕∆x

(m)
α,0

∆D(m) = ∆x
(m)
δ,r1+r3

⊕∆x
(m)
α,r1 ⊕∆x

(m)
α,0 ⊕∆x

(m)
γ,0 ⊕∆x

(m)
β,r4

After m rounds of ChaCha, the following holds:∣∣ε(A(m))

∣∣ =
∣∣∣ε
x
(m−1)
α,0

∣∣∣ , ∣∣ε(B(m))

∣∣ =
∣∣∣ε
x
(m−1)
β,0

∣∣∣ ,
∣∣ε(C(m))

∣∣ =
∣∣∣ε
x
(m−1)
γ,0

∣∣∣ , ∣∣ε(D(m))

∣∣ =
∣∣∣ε
x
(m−1)
δ,0

∣∣∣ ,
The tuples (α, β, γ, δ) vary depending on whether m is odd or even

1. m is odd: (α, β, γ, δ) ∈ {(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)}
2. m is even: (α, β, γ, δ) ∈ {(0, 5, 10, 15), (1, 6, 11, 12), (2, 7, 8, 13), (3, 4, 9, 14)}

Using Lemma 1, it is possible to find differentials for m − 1 rounds and then
use the bias to make a distinguisher for a linear combination in m rounds, improv-
ing the attack. It is possible to go one round further by using linear equations that
hold with high probability. The following lemma defines useful linear relationships, see
[Choudhuri and Maitra 2016] for a proof of this lemma.
Lemma 2. For ChaCha, each of the following holds with probability 1

2
(1 + 1

2
):

x
(3)
8,0 = x

(5)
13,r1+r3

⊕ x(5)
1,r1
⊕ x(5)

1,0 ⊕ x
(5)
9,0 ⊕ x

(5)
5,r4
⊕ x(5)

12,0 ⊕ x
(5)
8,0⊕

x
(5)
12,r3
⊕ x(5)

0,0 ⊕ x
(5)
2,0 ⊕ x

(5)
6,r4
⊕ x(5)

6,r2+r4
⊕ x(5)

10,r2
⊕ x(5)

14,0⊕
x

(5)
13,2r3+r1 ⊕ x

(5)
1,r1+r3

⊕ x(5)
1,r3
⊕ x(5)

9,r3
⊕ x(5)

5,r3+r4
⊕ x(5)

5,r3+r4−1 ⊕ x
(5)
9,r3−1

x
(3)
9,0 = x

(5)
14,r1+r3

⊕ x(5)
2,r1
⊕ x(5)

2,0 ⊕ x
(5)
10,0 ⊕ x

(5)
6,r4
⊕ x(5)

13,0 ⊕ x
(5)
9,0⊕

x
(5)
13,r3
⊕ x(5)

1,0 ⊕ x
(5)
3,0 ⊕ x

(5)
7,r4
⊕ x(5)

7,r2+r4
⊕ x(5)

11,r2
⊕ x(5)

15,0⊕
x

(5)
14,2r3+r1 ⊕ x

(5)
2,r1+r3

⊕ x(5)
2,r3
⊕ x(5)

10,r3
⊕ x(5)

6,r3+r4
⊕ x(5)

6,r3+r4−1 ⊕ x
(5)
10,r3−1



x
(3)
10,0 = x

(5)
15,r1+r3

⊕ x(5)
3,r1
⊕ x(5)

3,0 ⊕ x
(5)
11,0 ⊕ x

(5)
7,r4
⊕ x(5)

14,0 ⊕ x
(5)
10,0⊕

x
(5)
14,r3
⊕ x(5)

2,0 ⊕ x
(5)
0,0 ⊕ x

(5)
4,r4
⊕ x(5)

4,r2+r4
⊕ x(5)

8,r2
⊕ x(5)

12,0⊕
x

(5)
15,2r3+r1 ⊕ x

(5)
3,r1+r3

⊕ x(5)
3,r3
⊕ x(5)

11,r3
⊕ x(5)

7,r3+r4
⊕ x(5)

7,r3+r4−1 ⊕ x
(5)
11,r3−1

x
(3)
11,0 = x

(5)
12,r1+r3

⊕ x(5)
0,r1
⊕ x(5)

0,0 ⊕ x
(5)
8,0 ⊕ x

(5)
4,r4
⊕ x(5)

15,0 ⊕ x
(5)
11,0⊕

x
(5)
15,r3
⊕ x(5)

3,0 ⊕ x
(5)
1,0 ⊕ x

(5)
5,r4
⊕ x(5)

5,r2+r4
⊕ x(5)

9,r2
⊕ x(5)

13,0⊕
x

(5)
12,2r3+r1 ⊕ x

(5)
0,r1+r3

⊕ x(5)
0,r3
⊕ x(5)

8,r3
⊕ x(5)

4,r3+r4
⊕ x(5)

4,r3+r4−1 ⊕ x
(5)
8,r3−1

Latter Coutinho and Neto showed the following Lemmas
[Coutinho and Neto 2020], which they used to significantly improve the attacks
against ChaCha
Lemma 3. Let

∆E(m) = ∆x
(m)
α,0 ⊕∆x

(m)
β,r4
⊕∆x

(m)
γ,0

After m rounds of ChaCha, the following holds:∣∣ε(E(m))

∣∣ =
∣∣∣ε

(x
(m−1)
α,0 ⊕x(m−1)

β,0 )

∣∣∣
The tuples (α, β, γ) vary depending on whether m is odd or even.

• Case I. m odd: (α, β, γ) ∈ {(0, 4, 8), (1, 5, 9), (2, 6, 10), (3, 7, 11)}
• Case II. m even: (α, β, γ) ∈ {(0, 5, 10), (1, 6, 11), (2, 7, 8), (3, 4, 9)}

Lemma 4. When m is odd, the following holds with probability 1
2
(1 + 1

2
)

x
(m−2)
3,0 ⊕ x(m−2)

4,0 = x
(m)
1,0 ⊕ x

(m)
3,0 ⊕ x

(m)
4,2r4+r2

⊕ x(m)
7,r4
⊕ x(m)

7,r2+r4
⊕

x
(m)
8,r4
⊕ x(m)

8,r2+r4
⊕ x(m)

9,0 ⊕ x
(m)
11,r2
⊕ x(m)

12,r4−1⊕
x

(m)
12,r4
⊕ x(m)

13,0 ⊕ x
(m)
13,r3
⊕ x(m)

15,0.

4. Improving ChaCha
In [Bernstein 2008a], Bernstein justify the choice of the rotation distances 16, 12, 8, 7
with the argument:

“The above code also shows a much less important difference between
ChaCha and Salsa20: I changed the rotation distances 7, 9, 13, 18 to 16,
12, 8, 7. The difference in security appears to be negligible: 7, 9, 13, 18
appears marginally better in some diffusion measures, and 16, 12, 8, 7 ap-
pears marginally better in others, but the margins are tiny, far smaller than
the presumed inaccuracy of the diffusion measures as predictors of secu-
rity. The change boosts speed slightly on some platforms while making no
difference on other platforms”.

Naturally, the attacks against ChaCha were unknown by the time of its publication.
Therefore, one might expect that there could exist a distinct set of rotation distances such
that ChaCha has better security against differential and linear cryptanalysis. Thus, our
approach to improve the security of ChaCha consists in testing all combination of rotation
distances to find if there is a set that is more secure.



4.1. Testing Differential Paths
In [Aumasson et al. 2008], the authors presented attacks for 6 and 7 rounds of ChaCha,
however, both attacks use differential paths for r = 3 rounds. Leveraging this fact, our
first test consists in computing the best differential path for 3 rounds of ChaCha consider-
ing all single-bit input differentials and all output bits. In other words, we estimated the
bias εd for all combinations of differentials (∆r

p,q|∆0
i,j) for each combination of rotations

distances. Since each rotation have 32 values and since we have 128 input differentials
and 512 output bits, we conclude that we computed 128 × 512 × 324 = 236 different
biases.

More specifically, we used Algorithm 1 to compute the highest bias for all com-
binations of rotations distances. Unfortunately, since we are performing an empirical
estimation, we need to execute the same procedure several times for each input differen-
tial. To reduce the number of necessary computations we used the same key, nonce, and
counter for all output bits simultaneously. To test all combinations of rotation distances,
we must execute Algorithm 1 220 times. In addition, we defined the number of keys tested
Nk = 32 and the number of tests per key Nt = 1024. Therefore, we have 243 computation
in total for 3 rounds of ChaCha. To achieve this amount of computation, we implemented
Algorithm 1 in CUDA and executed it on a NVIDIA Quadro 4000 GPU, which required
approximately 6 days of computation.

Algorithm 1 Differential Path Computation
1: procedure INPUT: A SET OF ROTATION DISTANCES r1, r2, r3 AND r4, THE NUMBER

OF KEYS TESTED Nk , THE NUMBER OF TESTS PER KEY Nt

2: εd = 0
3: for each input differential ∆0

i,j do
4: S = 0
5: for a from 1 to Nk do
6: Generate random key k
7: for b from 1 to Nt do
8: Generate random nonce v
9: Generate random counter t

10: Initialize X(0) from k, v, t
11: Compute X(3) from X(0)

12: Compute X ′(0) from X(0) by flipping the bit x(0)
i,j

13: Compute X ′(3) from X ′(0)

14: W = X(3) ⊕X ′(3)

15: Convert W into a array of bits B
16: S = S +B

17: m = max(|2× S/(NtNk)− 1|)
18: if m > εd then
19: εd = m

20: return εd

The results revealed that the bias of the differential path varies significantly for
each combination of rotation distances. For example, if we set r1 = 0 and r4 = 0 (in
other words, remove these rotations), we get the biases presented in Figure 1, which are



all equal, or very close to one. In comparison, if we set r1 = 16 and r4 = 7, we get much
better results (see Figure 2) although there are still some very high biases for certain
values of r2 and r3. Notice in Figure 2 that the maximum bias found for ChaCha with
the original rotation distances 16, 12, 8, 7 is not the best choice, since there are several
combinations with smaller biases.

Figure 1. The biases were obtained for 3 rounds of ChaCha using rotations r1 =
r4 = 0 and varying all values for r2 and r3. The color of the figure indicates the
maximum absolute bias obtained for each combination of rotations. These are
very poor results since that all biases are close to 1.

4.2. Finding Probabilistic Neutral Bits

From the results described in the previous section, we reduced the number of rotation dis-
tances under analysis by selecting the minimum bias available in the data and all the re-
maining biases that were statistically close to this minimum value. In total, remained 3162
combinations of rotation distances and the original set of rotation distances of ChaCha
was not among these selected values. With the reduced set, we repeated the test of dif-
ferential paths of the previous section but now with an increased value of Nk = 256, to
achieve better precision.

The complexity of the attack depends not only on the bias of the differential path
but also on the number of PNB. Thus, we performed another test to gather data about the
behavior of PNB for each combination of rotation distances. It turns out that the compu-
tation necessary for this test increases significantly because we must test not only for each
pair of input-output bits but also for each key bit individually. Fortunately, we empirically
verified that, for ChaCha, the set of neutral bits are roughly the same for a particular out-
put bit for any input bit. Thus, we can drastically reduce the necessary computation by
randomly choosing the single-bit input differential. We computed the average neutrality
for each output bit by performing 216 iterations for each key bit, obtaining an array of 512



Figure 2. The biases we obtained for 3 rounds of ChaCha using rotations r1 = 16
and r4 = 7 and varying all values for r2 and r3. The color of the figure indicates the
maximum absolute bias obtained for each combination of rotations. The value
obtained for the original ChaCha is depicted inside a black circle.

values. Our final statistic is defined as the maximum value in this array. We performed
this test considering 7 rounds of ChaCha.

After these tests, we chose our set rotation distances as r1 = 19, r2 = 17, r3 = 25
and r4 = 11, which are the values that minimize the product between both statistics. In
particular, for this combination of rotation distances, we obtained 0.01497 for the bias of
the differential path and 0.221 for the worst average neutrality. In the next section, we
will show that this choice does improve the security of ChaCha against known attacks.

5. Security comparison

5.1. Estimating the Complexity of the PNB Attack

In [Aumasson et al. 2008], the authors reported an attack on 256-bit ChaCha20/6 and
ChaCha20/7. For ChaCha20/6, they used the differential (∆3

11,0|∆0
13,13) with |ε?d| = 0.026.

The OD is observed after working 3 rounds backward from a 6-round keystream block.
For the threshold γ = 0.6 they found a set of 147 non-significant key bits, with |ε| =
0.00048. This results in an attack in time 2139 and data 230. For ChaCha20/7, they used
the same differential. The OD is observed after working 4 rounds backward from a 7-
round keystream block. For the threshold γ = 0.5, they found a set of 35 non-significant
key bits with |ε| = 0.00059. This results an attack in time 2248 and data 227.

We ran the attacks for ChaCha again, obtaining very similar complexity re-
sults. Using the same program, we ran the attack for ChaCha with rotation distances
19, 17, 25, 11, showing that we get a stronger cipher. In fact, for 7 rounds, we did not find
any attack with time < 2256, see Table 2 for the results.



Algorithm ID OD ε∗d γ n ε∗ Data Time
ChaCha20/6 ∆

(0)
12,21 ∆

(3)
2,0 -0.1973 0.6 134 -0.0039 223.9 2145.9

ChaCha20/7 ∆
(0)
12,21 ∆

(3)
2,0 -0.1977 0.4 20 -0.0097 217.8 2254

*ChaCha20/6 ∆
(0)
14,17 ∆

(3)
1,0 -0.0059 0.8 111 -0.0019 225.6 2170.6

*ChaCha20/7 – – – – – – – –

Table 2. Best attacks obtained for ChaCha and for its modified version with ro-
tation distances 19, 17, 25, 11, denoted here by *ChaCha. We could not find any
attacks for the modified version of ChaCha with 7 rounds.

5.2. Multi-bit differential

In [Choudhuri and Maitra 2016], the authors provides several different attacks for
ChaCha20/4, ChaCha20/5, ChaCha20/6, and ChaCha20/7. For ChaCha20/4, Lemma 1
is used. Considering the first row of Table 3, we note a bias εd = 0.1984 and thus

1
ε2d/2

< 51. That is, with 26 samples it is enough to distinguish 4-round ChaCha from a
uniform random source. However, when changing the rotation distances, the best bias we
get is εd = −0.009179 and thus 1

ε2d/2
< 23738. That is, with 215 samples it is enough to

distinguish 4-round ChaCha with rotation distances 19, 17, 25, 11 from a uniform random
source.

For ChaCha20/5, if we define ID at ∆x0
13,13 and OD at ∆x3

11,0, we obtain
εd = −0.0272. By Lemma 1, we can extend this bias to 4 rounds, and by Lemma 2,
we can further extend this bias to 5 rounds with probability 3/4, or εL = 1/2. This gives
a total differential-linear 5-th round bias of ε = εdε

2
L = −0.0068 thus 1

ε2/2
< 43253.

That is, with 216 samples it is enough to distinguish 5-round ChaCha from a uniform
random source. However, changing the rotation distances and if we define ID at ∆0

14,12

and OD at ∆3
8,0, we obtain εd = −0.000915, and from Lemmas 1 and 2, we get a total

differential-linear 5-th round bias of ε = εdε
2
L = −0.00022875 thus 1

ε2/2
< 38221506.

That is, with 226 samples it is enough to distinguish 5-round ChaCha with rotation dis-
tances 19, 17, 25, 11 from a uniform random source.

Algorithm ID OD Bias
ChaCha ∆x

(0)
12,20 ∆x

(4)
2,0 ⊕∆x

(4)
7,7 ⊕∆x

(4)
7,19 ⊕∆x

(4)
8,12 ⊕∆x

(4)
13,0 0.1984

ChaCha ∆x
(0)
14,20 ∆x

(4)
0,0 ⊕∆x

(4)
5,7 ⊕∆x

(4)
5,19 ⊕∆x

(4)
10,12 ⊕∆x

(4)
15,0 0.1979

ChaCha ∆x
(0)
15,20 ∆x

(4)
1,0 ⊕∆x

(4)
6,7 ⊕∆x

(4)
6,19 ⊕∆x

(4)
11,12 ⊕∆x

(4)
12,0 0.1973

ChaCha ∆x
(0)
13,20 ∆x

(4)
3,0 ⊕∆x

(4)
4,7 ⊕∆x

(4)
4,19 ⊕∆x

(4)
9,12 ⊕∆x

(4)
14,0 0.1972

*ChaCha ∆x
(0)
14,1 ∆x

(4)
0,0 ⊕∆x

(4)
5,11 ⊕∆x

(4)
5,28 ⊕∆x

(4)
10,17 ⊕∆x

(4)
15,0 −0.009179

*ChaCha ∆x
(0)
15,16 ∆x

(4)
0,0 ⊕∆x

(4)
5,11 ⊕∆x

(4)
5,28 ⊕∆x

(4)
10,17 ⊕∆x

(4)
15,0 −0.009133

*ChaCha ∆x
(0)
15,1 ∆x

(4)
1,0 ⊕∆x

(4)
6,11 ⊕∆x

(4)
6,28 ⊕∆x

(4)
11,17 ⊕∆x

(4)
12,0 −0.009122

*ChaCha ∆x
(0)
14,16 ∆x

(4)
3,0 ⊕∆x

(4)
4,11 ⊕∆x

(4)
4,28 ⊕∆x

(4)
9,17 ⊕∆x

(4)
14,0 −0.009099

Table 3. The best multi-bit differentials for ChaCha and for its modified version
with rotation distances 19, 17, 25, 11, denoted here by *ChaCha. Notice that we can
reduce the bias significantly.

Extending the linear approximation for 3 rounds comes at a cost. As discussed in



[Choudhuri and Maitra 2016], for 6 rounds, the linear bias after expanding any equation
from Lemma 2 is εL = 1/(2 · 1 + 3 · 4 + 5 · 1 + 3 · 2 + 2 · 1) = 1/226. To use this
extension, we searched for the input differential which maximizes the differential bias for
∆x

(3)
8,0,∆x

(3)
9,0,∆x

(3)
10,0 or ∆x

(3)
11,0, which leads to the differential pair (∆x

(3)
9,0|∆x

(0)
15,12) with

εd = 0.000792. This leads to a 6-round bias of ε2
Lεd ≈ 1

262.3
and a distinguisher with

complexity of 2125.

For a key recovery attack against 6 rounds of ChaCha, we must use PNB. The
best attack we obtained when considering the proposed rotation distances uses 5 rounds
forward and then 1 round backward. For this the ID is ∆

(0)
12,12 and the OD in the third

round is ∆
(3)
10,0, thus, using the third equation of Lemma 2, we can mount an attack. We

got 157 PNBs using γ = 0.6 from which we estimated ε = −0.000024, ε? = −0.000023
leading to an attack with data complexity 238.7 and time complexity 2137.7. For 7 rounds of
ChaCha with the proposed rotation distances, we did not find any significant attacks. Also,
we could not use the equations from Lemma 4 since we could not find any significant bias
for a double output differential bias. Table 4 summarizes our findings.

Algorithm Rounds Data Time Type Reference

ChaCha

4 26 26 Distinguisher [Choudhuri and Maitra 2016]
5 216 216 Distinguisher [Choudhuri and Maitra 2016]
6 275 275 Distinguisher [Coutinho and Neto 2020]
6 256 2102.2 Key recovery [Coutinho and Neto 2020]
7 250 2231.9 Key recovery [Coutinho and Neto 2020]

*ChaCha

4 215 215 Distinguisher This work
5 226 226 Distinguisher This work
6 2125 2125 Distinguisher This work
6 238.7 2137.7 Key recovery This work
7 – – – –

Table 4. Attacks obtained considering the techniques presented in Section 3.2.
Notice that the complexity of the attacks for ChaCha with rotation distances
19, 17, 25, 11, denoted here by *ChaCha, are higher, thus, the proposed modifi-
cation is more secure against these attacks.

6. Conclusion

In this work, we proposed a modification for the stream cipher ChaCha. This was done by
considering the best attacks in the literature and trying to minimize the differential biases
generated by 3 rounds of the algorithm. This analysis resulted in the optimal rotation dis-
tances for ChaCha against differential-linear cryptanalysis, which are r1 = 19, r2 = 17,
r3 = 25, and r4 = 11. We computed the complexity of the two most successful attacks
against ChaCha presented in the literature, showing that the proposed modification leads
to attacks with higher complexity for 4, 5, and 6 rounds (see Table 4). For 7 rounds,
ChaCha with the proposed rotation distances is no longer vulnerable to differential at-
tacks. For future work, it remains to test other types of attacks known in the literature, in
particular, related key attacks and the attack of Beierle et al. [Beierle et al. 2020], pub-
lished after the submission of this work.
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