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Abstract. The Serpent cipher was one of the finalists of the AES process and
as of today there is no method for finding the key with fewer attempts than that
of an exhaustive search of all possible keys, even when using known or chosen
plaintexts for an attack. This work presents the first two biclique attacks for the
full-round Serpent-256. The first uses a dimension 4 biclique while the second
uses a dimension 8 biclique. The one with lower dimension covers nearly 4
complete rounds of the cipher, which is the reason for the lower time complex-
ity when compared with the other attack (which covers nearly 3 rounds of the
cipher). On the other hand, the second attack needs a lot less pairs of plain-
texts for it to be done. The attacks require 2255.21 and 2255.45 full computations
of Serpent-256 using 288 and 260 chosen ciphertexts respectively with negligible
memory.

1. Introduction

The Serpent cipher is, along with MARS, RC6, Twofish and Rijindael, one of the AES
process finalists [Nechvatal et al. 2001] and has not had, since its proposal, its full round
versions attacked. It is a Substitution Permutation Network (SPN) with 32 rounds, 128
bit block size and accepts keys of sizes 128, 192 and 256 bits.

Serpent has been targeted by several cryptanalysis [Kelsey et al. 2000,
Biham et al. 2001b, Biham et al. 2001a, Biham et al. 2003, Collard et al. 2007b,
Collard et al. 2007a, Nguyen et al. 2011] since the year 2000, but no one was able
to get good results on the full cipher, only doing so on reduced round versions of it.
These attacks are based on linear crytanalysis [Biham et al. 2001a, Collard et al. 2007b],
multiple linear [Collard et al. 2007a], multidimensional linear [Nguyen et al. 2011]
and differential-linear cryptanalysis [Biham et al. 2003]. Non-linear attacks are a
boomerang attack [Kelsey et al. 2000] and a rectangle attack [Biham et al. 2001b]. The
best known attack so far is by Nguyen et al. [Nguyen et al. 2011] successfully using
multidimensional linear cryptanalysis on 11 and 12-round Serpent as shown in Table 1.

Another famous SPN cipher like the cipher Serpent is Rijindael, the winner of
the AES process. Rijindael had its full round versions successfully attacked using Bi-
clique Cryptanalysis in 2011 [Bogdanov et al. 2011] for the first time. Following years
brought variations and improvements over the first attack, usually in the form of us-
ing better bicliques to achieve lower time or data complexity [Bogdanov et al. 2014,
Tao and Wu 2015].

Apart from being used on Rijindael, many other ciphers were successfully at-
tacked, such as HIGHT [Hong et al. 2011], IDEA [Khovratovich et al. 2012], TWINE
[Çoban et al. 2012], SQUARE [Mala 2014] and ARIA [Chen and Xu 2014]. However,
besides Rijindael, Biclique Cryptanalysis was applied to no other AES finalist.



Attack Key Size No rounds Time Data Memory
[Kelsey et al. 2000] 192 8 2179 2114 2119

[Biham et al. 2001b] 256 10 2204.4 2126.8 2131.8

[Biham et al. 2001a] 192/256 11 2187 2118 2193

[Collard et al. 2007a] 192 11 2178 2118 288

[Biham et al. 2003] 192 11 2139.2 2125.3 260

[Collard et al. 2007b] 192 11 2116.3 2118 2108

[Nguyen et al. 2011] 256 12 2228.8 2118 2228

[Nguyen et al. 2011] 256 12 2237.5 2116 2121

Table 1. Comparison of time, data and memory complexity between attacks on
Serpent, where memory is given in bytes.

Our Contributions. Here we describe two biclique attacks on full round
Serpent-256, using balanced bicliques following the basic method by Bogdanov et al.
[Bogdanov et al. 2011]. It results in the first attacks that are faster than an exhaustive
search on full round Serpent as shown in Table 2 below. The first attack is faster but
requires more data than the second. Memory used by both is negligible.

Attack Key Size No rounds Time Data Memory
Second attack 256 32 2255.45 260 < 219

First attack 256 32 2255.21 288 < 215

Table 2. Time, data and memory complexity of our attack, where memory is given
in bytes.

Paper structure. Section 2 describes the basics of biclique cryptanalysis while
Section 3 describes the Serpent cipher and its notation. Sections 4 and 5 describe the
attacks. Finally, Section 6 compares and analyses both attacks and Section 7 concludes
the article.

2. Biclique Cryptanalysis
The attack used here, as presented by Bogdanov et al. [Bogdanov et al. 2011], is divided
into the preparation phase and three steps:

• Preparation phase. An adversary partitions the key space into groups with 22d

keys for some d. Each key group is associated with a 2d × 2d matrix K, where
each element K[i, j] represents a key in the group. Let k be the number of bits
of the secret key. In this case we have 2k−2d groups. Also, the cipher E = f ◦ g
being attacked is a composition of two subciphers f and g. The three steps below
are then done for each key group.

1. Building the biclique. A biclique structure is built either over the subcipher f
or g. In our case it is constructed over f , resulting in a structure that satisfies the
condition

∀i, j : Sj
K[i,j]−−−→

f
Ci,

where 0 ≤ i, j < 2d, Sj are internal states of the cipher and Ci are ciphertexts.
Section 2.1 explains how it is built.



2. Obtain plaintexts. Since this is a chosen ciphertext attack, we have at our disposal
a decryption oracle, which is used to obtain the plaintext Pi for each ciphertext Ci.

∀i : Ci
decryption oracle−−−−−−−−−−→

E−1
Pi.

3. Meet-in-the-Middle. For each key K[i, j] in the group it is tested if

∃i, j : Pi
K[i,j]−−−→

g
Sj.

If one of the K[i, j] is the secret key, then the above condition is satisfied. There-
fore, every key that satisfies it is a candidate to the secret key. Section 2.2 shows
a way, created by Bogdanov et al. [Bogdanov et al. 2011], to do this faster than a
simple meet-in-the-middle approach.

2.1. Bicliques
First presented by Bogdanov et al. [Bogdanov et al. 2011], we now look at the bi-
clique structure. Let f be the subcipher that maps an internal state S to the ciphertext
C using the key K (i.e. fK(S) = C). A dimension d biclique over f is the 3-tuple
({Sj}, {Ci}, {K[i, j]}), where 0 ≤ i, j < 2d and

∀i, j : fK[i,j](Sj) = Ci.

One way to achieve this condition is using related-key differentials. It is important
to highlight the fact that this is a single key attack. The related-key model is used only
within the key groups.

Let K[0, 0] be the base key, i.e. the key that maps the internal state S0 to the
ciphertext C0. This is called the base computation

S0
K[0,0]−−−→

f
C0.

The next step is defining the ∆i-differentials and ∇j-differentials using related-
key differentials.

∆i-differentials map the input difference 0 to the output difference ∆i, using the
key difference ∆K

i , where ∆0 = ∆K
0 = 0 and 0 ≤ i < 2d

0
∆K

i−−→
f

∆i, ∆0 = ∆K
0 = 0.

In contrast, ∇j-differentials map the input difference ∇j to the output difference
0, using the key difference∇K

j , where∇0 = ∇K
0 = 0 and 0 ≤ j < 2d

∇j

∇K
j−−→
f

0, ∇0 = ∇K
0 = 0.

If both sets of differentials are independent (do not share non-linear components,
such as S-boxes), then it is possible to combine them into (∆i,∇j)-differentials

∇j

∇K
j ⊕∆K

i−−−−−→
f

∆i.



Being independent means that an internal state or subkey of f is affected by ∇j-
differentials if and only if it is not affected by ∆i-differentials.

By definition, the base computation conforms to both sets of differentials and
hence, it is possible to substitute it to the combined differentials

S0 ⊕∇j

K[0,0]⊕∇K
j ⊕∆K

i−−−−−−−−−→
f

∆i ⊕ C0.

By letting
Sj = S0 ⊕∇j,

Ci = ∆i ⊕ C0 and

K[i, j] = K[0, 0]⊕∇K
j ⊕∆K

i

we have the definition of a dimension d biclique over f .

Building a biclique this way costs only 2d+1 computations of f , since it is possible
to choose the key differences and base computation, and then, independently, compute
the ∆i-differentials and ∇j-differentials.

2.2. Matching with Precomputations

This technique [Bogdanov et al. 2011] uses the knowledge that only parts of the cipher
are affected by the differentials of the biclique to do the meet-in-the-middle faster.

This can be further exploited if instead of meeting an entire internal state, we meet
in only a part of the state, namely v. This way we only look at the parts affected by the
differentials and that affect v.

LetE = f ◦s◦t, where the biclique was built over f . An adversary then computes
and stores 2.2d full computations of the cipher up to the variable v: 2d computations of t
and 2d computations of s−1

∀i : Pi
K[i,0]−−−→

t
v1
i and ∀j : v2

j

K[0,j]−−−→
s−1

Sj.

This means that every internal state and subkeys of s and t up to v have to be stored. This
is the precomputation phase.

Then comes the recomputation phase, where the parts that differ from the stored
values must be recomputed. The cost of this method is rather variable depending on the
diffusion properties of the cipher of interest, both the diffusion related to the key schedule
or the internal states. The number of rounds may also influence the cost.

2.3. Complexities

This attack can be seen as an improved exhaustive search, since every key will be tested,
but not the whole cipher will be computed in each step. Three types of complexities are
of interest: memory, data and time.

The memory complexity is dominated by the Precomputation Phase due to re-
quiring the storage of whole states of many rounds of the cipher. So if the biclique has
dimension d, the memory complexity will be 2d+1 computations of g.



The data complexity depends only on how many bits of Ci are affected by the ∆i-
differentials, which depends essentially on the amount of rounds covered by the cipher as
well as on the dimension and diffusion properties of the cipher.

Finally, the time complexity is where most of the analysis is necessary. It is basi-
cally the number of key groups times the time complexity of each iteration. each iteration
builds the biclique and then does the matching with precomputations, which is divided
into precomputation phase and recomputation phase. In the end, we have

Ctime = 2k−2d(Cbiclique + Cprecomp + Crecomp + Cfalspos).

The false positives are the keys that pass on the test in the recomputation phase, meaning
that they are secret key candidates. Thus it is necessary to check if they are the secret key.

3. The Serpent Cipher
Serpent is a 32 round SPN Cipher. Each internal state and each subkey has 128 bits,
divided into 4 words of 32 bits each, while the secret key may have 128, 192 or 256 bits
[Biham et al. 1998]. We call Serpent-128 the version of this cipher with 128 bits and
similarly for the other key sizes.

Each round i of the cipher consists of 3 layers: key addition called AKi, substitu-
tion phase SBi and linear transformation L. The exception is the last round in which the
linear transform is substituted with another key addition. Rounds vary from 0 to 31 and
we have 33 subkeys, derived from the secret key, indexed from K0 to K32.

There are also two permutations: one Initial applied before the first round and one
Final applied after the last one. However, they do not add any aspect of security to the
cipher and thus, can be ignored for the purposes of cryptanalysis.

We call internal state any state of the original plaintext after some operation in
the cipher. Therefore, let each internal state be represented by #j, where 0 ≤ j ≤ 96,
#0 = P e #96 = C. Each state #j can be graphically represented by a 4 × 8 matrix of
squares, in which each square represents a nibble and each line represents a 32 bit word.
The nibbles are enumerated from the leftmost to the rightmost and then down to the next
word. The words are enumerated from top to bottom. The h-th nibble of the state S é
denoted as Sh. Next we have the graphic representation of an internal state of the cipher.

W0 h0 h1 h2 h3 h4 h5 h6 h7

W1 h8 h9 h10 h11 h12 h13 h14 h15

W2 h16 h17 h18 h19 h20 h21 h22 h23

W3 h24 h25 h26 h27 h28 h29 h30 h31

The substitution phase SBi looks up to one of 32 different S-boxes for each word,
using the same S-box for each nibble, depending on the round. The i-th round uses the
S-box Bi. For the purpose of not wasting space, we invite the reader to the Serpent’s
original paper [Biham et al. 1998] for the description of the S-boxes.

The linear transformationL is the application of a series of rotations (<<<), shifts
(<<) and XORs (⊕) between the words of the current internal state. Let W0,W1,W2 and
W3 be the 4 words of a state S. The following operations are done sequentially:

1. W0 <<< 13. The word W0 is rotated 13 bits to the left.



2. W2 = W2 <<< 3. The word W2 is rotated 3 bits to the left.
3. W1 = W1 ⊕W0 ⊕W2. The XOR operation is applied to W1,W0 and W2.
4. W3 = W3 ⊕W2 ⊕ (W0 << 3). The XOR operation is applied to W3,W2 and a 3

bits to the left shifted W2.
5. W1 = W1 <<< 1. The word W1 is rotated 1 bits to the left.
6. W3 = W3 <<< 7. The word W3 is rotated 7 bits to the left.
7. W0 = W0 ⊕W1 ⊕W3. The XOR operation is applied to W0,W1 and W3.
8. W2 = W2 ⊕W3 ⊕ (W1 << 7). The XOR operation is applied toW2,W3 and a 7

bits to the left shifted W1.
9. W0 = W0 <<< 5. The word W0 is rotated 5 bits to the left.

10. W2 = W2 <<< 22. The word W2 is rotated 22 bits to the left.

Finally, we have the key schedule. It receives the 128, 192 or 256-bit secret key
as input (depending on the version of the cipher) and generates 33 subkeys with 128 bits
each. Independently from the version, the input has 256 bits. So, for the smaller keys, the
following bit is set to 1 and the rest is set to 0. For instance, in the Serpent-128, the 128th
bit is set to 1 and every bit from 129 to 255 is set to 0. The input has 8 words indexed
from w−8 to w−1. Then, the pre-key is calculated, which are 132 words indexed from w0

to w131 in the following manner:

wi = (wi−8 ⊕ wi−5 ⊕ wi−3 ⊕ wi−1 ⊕ i⊕ φ) << 11 (1)

where φ is the fractional part of the golden ratio (
√

5 + 1)/2 or 0x9e3779b9 in hexadeci-
mal.

From the pre-key we generate the 133 words of the subkeys. Each word can
be written as ki = SBox(3−(i mod 33)) mod 32(wi). For example, k100 = SBox2(w100).
Lastly, the subkey Ki is formed by the words k4i, k4i+1, k4i+2 and k4i+3, and 0 ≤ i ≤ 32.

More detailed information about the design can be obtained in the original pro-
posal [Biham et al. 1998].

4. First Attack: Dimension 4 Biclique

4.1. Key Partitioning

The first step for the attack is the key partitioning. We partition the key into 2k−2d groups
where k is the number of bits in the secret key and d is the dimension of the biclique.
Since this attack uses a dimension 4 biclique and is applied to the Serpent-256, there are
2248 groups. Each group is represented by a base key.

A base key defines a 28-key group and each iteration tests one of these groups.
Therefore we chose the subkeys K29 and K30 to define those groups. This is possible
because two sequential subkeys are capable of generating all others. Nibbles K30

20 and
K30

31 are set to zero while all others of the subkeys K29 and K30 will vary from iteration
to iteration, generating a new base key to test a new group.

The base key of a group is calledK[0, 0] and the keyK[i, j] = K[0, 0]⊕∆K
i ⊕∇K

j

belongs to this group.



4.2. 4 Round Dimension 4 Biclique
This biclique covers the last 4 rounds of the cipher excluding the operation AK28, i.e.
from #85 to #96. In other words, it is 4 rounds minus one application of L.

First, an adversary sets C0 = 0 and calculates S0 = f−1
K[0,0](C0), where K[0, 0] is

the base key of the group. Then, the ∆i-differentials are computed using the key differen-
tials ∆K

i on the subkeys K29 and K30. The ∇j-differentials are computed using the key
differentials∇K

j on the subkeys K31 and K32.

The key differentials were chosen in such a way that the ∆i-differentials and ∇j-
differentials are independent.

Figure 1 shows the basic structure for building our dimension 4 biclique with 25

computations of f . It is a dimension 4 biclique because the differentials share no non-
linear components (i.e. S-boxes) and there are 24 possible Ci and Sj .

AK

#87

Diferenciais-Diferenciais-

S

#95

AK

S,L

#93

AK

#94

S,L

#90

AK

#91

S,L

#94

S

#95

AK

#88

#91

S,L

#93

AK

#88

S,L

#90

AK

S,L

#87

AK

𝐂𝐢

𝐒𝟎

𝐊𝟑𝟐

𝐊𝟑𝟏

𝐊𝟑𝟎

𝐊𝟐𝟗

𝐂𝟎

𝐒𝐣

𝐊𝟑𝟐

𝐊𝟑𝟏

𝐊𝟑𝟎

𝐊𝟐𝟗

𝚫𝐢  𝐣

𝚫 

Figure 1. ∆i-differentials and ∇j-differentials in the dimension 4 biclique

It is possible to notice that only 22 of Ci are affected and thus, only 288 pairs of
plaintexts/ciphertexts are necessary for the attack, i.e. there are only 288 possibilities for
the ciphertexts.

4.3. Matching with Precomputations over 28 rounds
In this part of the attack, we check if the secret key belongs to the group {K[i, j]}, i.e.
if Ksecret ∈ {K[i, j]}. First we precompute 25 values of v, which we define as being
the nibbles #66 and #67, and save them, together with all internal states and subkeys
involved in these precomputations. Then, we have

Pi
K[i,j]−−−→

h
v1
i,j and v2

i,j

K[0,j]←−−−
g

Sj

for each i and j, recomputing only those parts that differ from the ones saved in memory.
If v1

i,j = v2
i,j , then K[i, j] is a key candidate.



4.3.1. Forward Recomputation

Here we observe the difference between the computation of Pi
K[i,j]−−−→ v and the precom-

puted values of Pi
K[i,0]−−−→ v, given by the influence of∇K

j on the subkeys K0 and K1.

Only 18 nibbles of K0 are influenced by ∇K
j , but three of them do not affect v

thus, they can be ignored. Although K1 has 20 of its nibbles influenced by ∇K
j , only

three of them affect v. Figure 2(a) shows the nibbles that affect the computation of v.
Therefore, we only have to recompute the S-boxes 24 times for the internal states and 18
nibbles of the keys K0 and K1. The total is 42 S-boxes recomputations.
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Figure 2. (a) Forward recomputations and (b) backward recomputations of the
dimension 4 biclique

4.3.2. Backward Recomputation

Similarly to the forward recomputation, we look at the difference between v
K[i,j]←−−− Sj

and the precomputed v
K[0,j]←−−− Sj , given by the influence of ∆K

i in the subkeys between
K2 and K28.

Figure 2(b) shows that K28 affects 4 nibbles of #84, which implies that 15 S-
box computations on state #83. After K27, 30 computations are necessary on state #80.



From #77 to #10, all Substitution Phases must be recomputed. However, on the internal
state #11, only 15 nibbles affect v, and thus, only 15 S-boxes must be recomputed. The
same amount is valid for the subkey K3.

Finally, only 2 more computations are necessary for #6 andK2 each, totaling 766
S-boxes for all internal states and 386 for the subkeys.

4.4. Complexities

Firstly we have

Ctotal = 2k−2d(Cbiclique + Cprecomp + Crecomp + Cfalpos).

We know that there will be only one false positive on average per iteration (Cfalpos =
22d/2|v|). We also know that Cbiclique = 25 · (4/32) = 22 and Cprecomp = 24 · (28/32) =
23.81. It remains to find Crecomp. For that, we shall count each S-box computation done in
the recomputation phase and compare the total number of S-box computations involved in
the computation of the whole cipher. Therefore, we know which percentage of the cipher
is computed in each iteration, observing only the number of S-boxes, due to the fact that
this is the most expensive operation of the cipher.

Once it is not necessary to observe the nibbles that do not influence the recompu-
tation (due to the fact that the key schedule only computes the S-boxes after calculating
all words of the subkeys), the total of S-box computations done by the key schedule
is 390, while the internal states, as shown in Figure 2, do 803 computations, totalling
1194 S-box computations. Since we do not need to recompute the values already cal-
culated on the precomputation phase and the entire cipher computes 2080 S-boxes, then
Crecomp = (28 − 25) · (1194/2080) = 27.01.

In the end, we obtain approximately

Ctotal = 2248(22 + 23.81 + 27.01 + 1) = 2255.21

Serpent-256 computations.

In terms of memory, the attack is upper limited by 24 computations of g and h,
since g and h together are much bigger than f and thus, much more memory is necessary
to store all of their internal states and subkeys than storing the 25 states necessary for the
biclique. The full computation of g and h consists of 85 internal states and 28 subkeys,
with 16 bytes each. Therefore the memory complexity is 24 · (85 + 28) · 16 = 214.82 bytes
approximately.

5. Second Attack: Dimension 8 Biclique

5.1. Key Partitioning

In the second attack we have a dimension 8 biclique on the Serpent-256, thus, the 2256

possible keys are partitioned in 2240 key groups. Therefore, each base key defines a 216

key group.

In this case, we use subkeys K30 and K31 to define these groups as shown below.
The nibbles K31

11 , K31
12 , K31

30 and K31
31 are set to zero, while the others vary from iteration

to iteration.



As in the first attack, all keys are tested because K31
30 and K31

31 are directly depen-
dant on the key difference ∆K

i used in the attack and K31
11 and K31

12 are directly depen-
dant on the key difference ∇K

j . The base key of a group is called K[0, 0] and the key
K[i, j] = K[0, 0]⊕∆K

i ⊕∇K
j belongs to this group.

5.2. 3 Round Dimension 8 Biclique
This biclique covers the 3 last rounds of the cipher with exception to the addition of the
key K29, i.e. from state #88 to #96. Basically it is 3 rounds excluding an application of
L.

As with the first attack, an adversary sets C0 = 0 and computes S0 = f−1
K[0,0](C0),

where K[0, 0] is the base key of the current key group. Next the ∆i-differentials are
computed based on the key difference ∆K

i on subkeys K30 and K31. The∇i-differentials
are computed based on the key difference∇K

i on subkeys K31 and K32.

The key differentials were chosen in such a way that the ∆i-differentials and ∇j-
differentials are independent, where i1 refers to the 4 leftmost bits of i and i2 refers to the
other bits. The same is true for j1 and j2.

Figure 3 shows the basic structure for building the dimension 8 biclique with 29

computations of f . It is a dimension 8 biclique because the differentials share no non-
linear components (i.e. S-boxes) and there are 28 possible Ci and Sj .
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Figure 3. ∆i-differentials and ∇j-differentials in the dimension 4 biclique

Through looking at Ci we can notice that 15 nibbles are affected and thus, only
260 plaintext/ciphertext pairs are necessary for the attack since there are only 260 possible
ciphertexts.

5.3. Matching with Precomputations over 29 Rounds
Finally we check if the secret key belongs to the group {K[i, j]}, i.e. if Ksecret ∈
{K[i, j]}. We make 29 precomputations of v, which we define as being the nibbles, as we



did for the first attack, #66 and #67 and store them together with the internal states and
subkeys involved in those precomputations. Then we do:

Pi
K[i,j]−−−→

h
v1
i,j e

v2
i,j

K[0,j]←−−−
g

Sj

for all i and j, recomputing only the necessary parts that differ from the stored ones. If
v1
i,j = v2

i,j , then K[i, j] is a key candidate.

5.3.1. Forward Recomputation

Here we observe the difference between the computation of Pi
K[i,j]−−−→ v and the precom-

puted values of Pi
K[i,0]−−−→ v, given by the influence of∇K

j on the subkeys K0 and K1.

We have that 22 nibbles of K0 and K1 are influenced by ∇K
j , but 4 nibbles of

K0 and 15 nibbles of K1 do not affect v and thus, can be ignored. Figure 4(a) shows the
nibbles of K1 that affect v’s computation. Therefore, we have a total of 25 S-box compu-
tations for the keys and 27 more for the internal states, totaling 52 S-box computations.
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Figure 4. (a) Forward recomputations and (b) backward recomputations of the
dimension 8 biclique



5.3.2. Backward Recomputation

Similarly to the forward recomputation, we look at the difference between v
K[i,j]←−−− Sj

and the precomputed v
K[0,j]←−−− Sj , given by the influence of ∆K

i in the subkeys between
K2 and K29.

Figure 4(b) shows thatK29 affects 6 nibbles of #87, which then causes in the state
#86, after the transformation L, 15 S-box computations. All Substitution Phases must be
recomputed from there on, from state #83 to #10. However, in the internal state #11,
only 15 nibbles affect v, and thus, only 15 S-box computations are necessary in this state.
The same amount is true for subkey K3.

Lastly, only 2 S-box computations are necessary for #8 andK2 each, totaling 802
S-boxes for all internal states, and 558 for the subkeys.

5.4. Complexities
Now we use the same formula as in section 4.4. In average we haveCfalpos = 216/28 = 28

false positives per iteration and each of them must be tested. We also know thatCbiclique =
29 · (3/32) = 25.58 e Cprecomp = 28 · (29/32) = 27.86. It remains to find Crecomp that, as
we did before, is calculated by counting each S-box computed in the recomputation phase
and comparing it to the total number of S-box computations involved in the computation
of the full cipher. Therefore, we will know the percentage of the cipher computed per
iteration, observing only the number of S-boxes used, due to it being the most expensive
operation of the cipher.

The total of S-box computations made by the key schedule is 583, while the in-
ternal states, as shown in Figure 4 make 829 computations, totaling 1412 S-boxes. Since
it is not necessary to recompute the precomputed values, and the full cipher makes 2080
S-box computations, then Crecomp = (216 − 29) · (1412/2080) = 215.43.

Finally, we have

Ctotal = 2240(25.58 + 27.86 + 215.43 + 28) = 2255.45.

Serpent-256 full computations.

In terms of memory, the attack is upper bounded by 28 computations of g and h,
since together they are much bigger than f and thus, much more memory is necessary to
store all of their internal states and subkeys than it is to store the 29 states needed for the
biclique. The full computation of g and h consists of 87 internal states and 29 subkeys,
with 16 bytes each. Therefore the memory complexity is 28 · (87 + 29) · 16 = 218.86 bytes
approximately.

6. Analysis of the Attacks
Biclique Cryptanalysis is a very powerful technique for block ciphers and Serpent is not
an exception. The attacks presented here have time complexity 2255.21 for the dimension
4 and 2255.45 for the dimension 8 bicliques respectively, for the Serpent-256.

The biclique with smaller dimension has memory complexity equivalent to storing
less than 24 full computations of the Serpent-256 (which means storing all the 96 internal



states and 33 subkeys of each full computation) and uses 288 chosen ciphertexts and their
plaintexts. The other biclique’s memory complexity is equivalent to storing less than 28

full computations of Serpent-256 and uses 260 chosen ciphertexts and their plaintexts.

Therefore, we can see that both attacks have their advantages, where the dimen-
sion 4 biclique produced an attack with less time complexity, while the other biclique
used a much smaller amount of chosen ciphertexts.

This is evidence that SPN block ciphers with low diffusion in the key schedule
are vulnerable to the Biclique Cryptanalysis since the key for Serpent (a cipher that for
twenty years has never suffered an efficient attack for more than half of its rounds) can be
searched in less time than an exhaustive search through biclique cryptanalysis.

It is not yet confirmed the viability of this attack to the Serpent-128 and Serpent-
192 versions due to being necessary two consecutive subkeys to generate all 33 subkeys
used on the cipher, forcing biclique cryptanalysis applied to the last rounds to be close to
2255.5 computations, which is much bigger than the exhaustive search for these versions.
Despite that, building bicliques on the first rounds is still possible since we can use the
secret key as base key. The difference will be noticed on the number of rounds that will
be covered by the bicliques, which is still a work in progress.

The possibility of existing better bicliques than the ones studied here is still a
possibility, since we are not able to prove that these bicliques are optimal, both in the
amount of rounds covered as well as the dimension and time complexity.

7. Concluding Remarks
We presented here two attacks to the full round Serpent-256 using the same method ap-
plied to Rijindael [Bogdanov et al. 2011], since both ciphers are similar in many ways.
This method made it possible to create the first attacks faster than a simple exhaustive
search through all possible keys, although, due to requiring a huge amount of chosen
ciphertexts (288 and 260), this attack is less practical than the simple brute force.

The first attack is a dimension 4 biclique covering the 4 last rounds of the cipher,
having time complexity of 2255.21, data complexity of 288 and memory complexity of
214.82. The second one is a dimension 8 biclique covering the 3 last rounds of the cipher
with time complexity 2255.45, data complexity 260 and memory complexity of 218.86.

Future work involves the application of variations of the biclique cryptanalysis to
all versions of Serpent as well as the search for the best bicliques for this cipher, in order
to improve both the time complexity and the data complexity of the attacks.
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