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Abstract. In this work, we propose a generalization of the concept of chameleon
hash first described in [Krawczyk and Rabin 1998], which we call preimage
chameleon hash. While in the conventional chameleon hash, the trapdoor al-
lows a user to compute second preimages, in this generalization, it is possible
to compute first preimages. We show how to adapt the post-quantum chameleon
hash from [Cash et al. 2010] to a preimage chameleon hash and use this mod-
ified construction to build a new signature scheme based on [Mohassel 2011].
A preimage chameleon hash allows the signer to encode in its signature chosen
information to be checked during verification. We prove our signature scheme
to be strongly unforgeable under a chosen message attack (SUF-CMA).

1. Introduction
A traditional cryptographic hash function H is an algorithm that, given a message

m of any size, produces output d of fixed size, usually small compared to the size of m.
Output d is known as a digest. Finding two different messages with the same digest d
should be unlikely. In addition, it must be easy to obtain d from m, and difficult to obtain
m, given d.

Unlike the traditional hash function, a chameleon hash is a cryptographic primitive
associated with a pair of keys: the hash key and the trapdoor key. The hash key is required
to determine the hash of a message, while using the trapdoor key, it is possible to find
second-preimages. This type of hash was first proposed by [Krawczyk and Rabin 1998].

Relationships between chameleon hash and other cryptographic primitives were
shown by [Bellare and Ristov 2008], where the authors show how to construct sigma
protocols from chameleon hashes and also how some suitable sigma protocols could be
transformed in chameleon hash schemes. Mohassel [Mohassel 2011] shows how to use
chameleon hashes to build one-time signatures. In [Blazy et al. 2015] it was shown how
to construct d-times signatures from chameleon hash functions in a way that the key size
grows logarithmically as a function of d. Other applications of chameleon hashes are san-
itizable signatures [Ateniese et al. 2005], redactable blockchains [Ateniese et al. 2017],
privacy-preserving communication protocols [Guo et al. 2013] and dynamic public key
certificates [Chien 2018].

The biggest challenge to design and use chameleon hash schemes is guar-
anteeing security in a scenario where collisions computed with the trapdoor are re-
vealed. Some known constructions suffer from the key exposure problem, where an



adversary could extract the trapdoor if given access to sample collisions, as discussed
in [Ateniese and de Medeiros 2005]. Even if an adversary cannot disclose the trapdoor,
this does not guarantee that collisions do not leak information allowing an attacker to
discover new collisions.

Different chameleon hash schemes can be found in the literature adding to the
classic scheme new properties that improve collision resistance such as the secret-
coin chameleon hash [Ateniese et al. 2017], labelled chameleon hash, and identity-based
chameleon hash. The secret-coin chameleon hash is a scheme where the hash returns a
pair (d, p) with the digest and a proof that the digest is correct and uses a VERIFY algo-
rithm to check that the digest was correctly computed, without revealing random decisions
taken while computing the hash. A labelled chameleon hash assumes that each hash uses a
unique label that should be used only once. Moreover the identity-based chameleon hash
requires interaction with a trusted third-party to derive disposable trapdoors to compute
collisions in the hash function.

1.1. Our Contributions

We propose to use a variation of the chameleon hash scheme in a new digital
signature scheme. While traditional chameleon hash schemes are designed to allow a
second preimage computation, this variation allows a first preimage computation.

With this powerful variant, we build a new signature scheme called a digital preim-
age signature. The main motivation for this is the possibility of using a graphic element,
within the message, that visually identifies and indicates the signatory and her consent to
the signed message. In more detail, the digital signature is information produced using
the secret key such that when concatenated with the message and used as input to the
chameleon hash produces as output the graphic element. In addition, our construction
aims to be secure even against adversaries that could run quantum algorithms. For this,
we use a variation of the construction presented in [Cash et al. 2010].

Finally, we show a proof of security for our signature scheme in the random oracle
model, showing that it can be safely used even against quantum attackers.

2. Preliminaries

2.1. Notation

We use small caps to represent algorithms like in “KEYGEN”. Generic elements of
sets are represented by multi-letter variables in italic, like in “msg”. Natural numbers are
represented as single-letter variables in italic. Matrices are represented by an uppercase
italic A, with some numeric subscript if we need to define more than one. Vectors of
integers are represented with boldface letters like in b. Polynomials are represented by
accented letters like in “p̂” and vectors of polynomials are accented boldface letters like
“b̂”. All our polynomials have integer coefficients. The set of all vectors of integers
modulo q with n dimensions is represented by Zn. The set of all vectors with n dimensions
modulo q is Znq . Furthermore, the set of all n×m matrices of integers modulo q is Zn×mq .

When we talk about the norm ||b|| we assume the euclidean norm. For vector of
polynomials b̂ we assume that its norm is ||b̂|| =

√∑m
i=1 ||z2i || where each zi is a vector

of integers formed by the coefficients from each polynomial from b̂. Notwithstanding,



different definitions of norm can also achieve the desired results, with different trade offs.
We represent as Z[x]/(f(x)) a polynomial ring with integer coefficients and Zq[x]/(f(x))
is a polynomial ring with the coefficients being integers modulo q. Here f(x) is a monic
and irreducible polynomial.

The expression A · b is a multiplication of a matrix and a vector. The expression
a ·b and â · b̂ are the dot product of two vectors. In the second case each vector component
is a polynomial and its sum and multiplication follows the usual multiplication rules for
polynomials.

2.2. Signature Schemes

A signature scheme is a tuple of 3 efficient algorithms: (GEN, SIGN,VERIFY)
defined over (M,S), where M is the set of all possible messages and S is the set of
signatures:

• GEN is an efficient probabilistic algorithm that on input 1n with n as the security
parameter, outputs a cryptographic key pair (pk, sk);
• SIGN is an efficient probabilistic algorithm that given a secret key sk, and a mes-

sage msg ∈M, produces a signature sig ∈ S;
• VERIFY is an efficient determistic algorithm that given a public key pk, a message
msg ∈ M and a signature sig ∈ S , it returns accept if the signature is valid
and reject otherwise.

We base the signature scheme security on the Strongly Unforgeable under
Chosen Message Attacks model (SUF-CMA). This security model was formalized
by [Goldwasser et al. 1988] as a game between the adversary and a challenger. The game
is formed by the following parts:

• Setup: The challenger runs (pk, sk)← GEN(1n) and send pk to the adversary;
• Queries: The adversary request sample signatures for the messagesmsgi with i ∈
{1, . . . , p}. For each message msgi requested. The challenger responds sending
sigi = SIGN(sk,msgi), the challenger can choose the next requested message
after examining all the previous responses;
• Output: The adversary outputs a pair (msg, sig) and wins the game if

VERIFY(PK,msg, sig) = accept and (msg, sig) 6= (msgi, sigi) for all i ∈
{1, . . . , p}.

A function f : Z → R is negligible if and only if limn→∞ f(n)nc = 0 for all
integer positive values of c. A signature scheme is considered secure under the SUF-
CMA model if, for all efficient adversary A, the probability of winning the above game
as a function of n is a negligible function.

2.3. Chameleon Hash Schemes

A chameleon hash scheme CH is a tuple of 3 efficient algorithms (KEYGEN,
HASH, COLLISION) defined over a message space M, a randomness space R and a
digest space D, with the following properties:

• KEYGEN is an efficient probabilistic algorithm that on input 1n, outputs a key pair
(hk, tk). We call hk the hash key and tk the trapdoor key;



• HASH is an efficient deterministic algorithm that on input hk, a message msg ∈
M and a parameter rnd ∈ R, outputs a digest dgt ∈ D;
• COLLISION is an efficient probabilistic algorithm that on input tk, msg1,
rnd1 and msg2 6= msg1, outputs a rnd2 such that HASH(hk,msg1, rnd1) =
HASH(hk,msg2, rnd2).

Note that COLLISION computes an arbitrary second-preimage. In the litera-
ture, there is no consensus on how to name this algorithm. Some authors use the
name “FORGE” [Ateniese and de Medeiros 2004] because it allows to create forgeries in
chameleon signatures, others call it “COLL” [Blazy et al. 2015] as abbreviation of “colli-
sion” and some others use HASH−1 [Mohassel 2011] meaning that it is the inverse of the
hash function HASH(hk,msg, ·). Here the name “COLL” was preferred, but it is used in
the non-abbreviated form.

The security of the chameleon hash scheme is based on the following properties
(see [Derler et al. 2020]):

• Uniformity: For all pair of messages (msg1,msg2), given randomly chosen
rnd, the random variables HASH(hk,msg1, rnd) and HASH(hk,msg2, rnd) have
probability distributions computationally indistinguishable. For all construc-
tions found in the literature, this property holds statistically: not even ineffi-
cient adversaries can differentiate between the output of HASH(hk,msg1, ·) and
HASH(hk,msg2, ·) for a random rnd, except with probability negligibly next to
1/2;
• Weak Collision Resistance: The property is defined in an attacking game be-

tween a challenger and an adversary A where for all adversaries, the probability
of winning the game is negligible. The game has the following parts:

– Setup: The challenger runs (hk, tk)← KEYGEN(1n) and sends hk to the
adversary;

– Output: The adversary returns a distinct pair (msg′, rnd′)
and (msg′′, rnd′′) and wins if HASH(hk,msg′, rnd′) =
HASH(hk,msg′′, rnd′′);

• Standard Collision Resistance: The property is defined by the following attack
game which gives more power to the attacker:

– Setup: The challenger runs (hk, tk)← KEYGEN(1n) and sends hk to the
adversary;

– Queries: The adversary requests sample collisions sending a polyno-
mial number of p queries for the challenger. Each query has the format
(msg1i, rnd1i,msg2i) for i ∈ {1, . . . , p}. The challenger respond for each
query with rnd2i = COLLISION(tk,msg1i, rnd1i,msg2i). The adversary
can choose its queries adaptively: it can choose each one after examining
the previous responses;

– Output: The adversary outputs distinct tuples (msg′, rnd′) and
(msg′′, rnd′′) and wins the game if HASH(hk,msg1i, rnd1i) =
HASH(hk,msg2i, rnd2i) and msg′ 6= msg′′, msg′ 6= msg1i and msg′ 6=
msg2i for all i ∈ {1, . . . , p}.



All constructions found in the literature have proven weak collision resistance
under reasonable assumptions. Constructions with standard collision resistance are pre-
sented in [Derler et al. 2020, Camenisch et al. 2017], but with a different definition of
chameleon hash.

2.4. Post-Quantum Construction of Chameleon Hash

This construction presented in [Cash et al. 2010] derives its security from the
Short Integer Solution Problem (SIS). We define the SISn,m,q,β as the problem of, given
A ∈ Zn×mq randomly chosen, finding a nonzero vector x ∈ Zmq such thatA·x = 0 mod q
and ||x|| ≤ β. It was shown by [Ajtai 1996] that solving this problem in the average case
was as difficult as solving some mathematical problems involving lattices. The problem
is believed to be hard in the worst case, even with the help of quantum algorithms. This
sparkled interest in lattice-based cryptography.

In order to avoid trivial solutions for the problem and avoid scenarios where solu-
tions do not exist, it is required that β < q, β >

√
n log q and m ≥ n log q.

From a SISn,m,q,β problem, we can define a corresponding chameleon hash con-
struction defined over (M,R,D) where M = {0, 1}m′ , R = {r ∈ Zm′′

: ||r|| ≤
1
2

√
β2 −m′} and D = Znq . We have m = m′ +m′′.

The public key hk stores matrices A1 ∈ Zn×m′
q and A2 ∈ Zn×m′′

q . Both are
computationally indistinguishable from a random matrix chosen uniformly. Using these
keys we compute the hash function as:

HASH(hk, x, r) = A1 · x + A2 · r (mod q)

Let fA(x) = A · x mod q. Let f−1(y) be the set of all preimages of a given y
for the function f . And let SAMPLEPRE be a probabilistic algorithm that given some
trapdoor tk (used as secret key in our chameleon hash function) and a given y, samples
one element x from f−1(y) such that ||x|| ≤ 1

2

√
β2 −m′ with overwhelming proba-

bility. The algorithm must not leak information about tk if many of its results are re-
vealed. Methods to define suitable matrices and the SAMPLEPRE algorithm can be found
in [Micciancio and Peikert 2012].

We can then define the COLLISION algorithm as:

COLLISION(tk, x, r, x’) = SAMPLEPRE(tk, A1 · x− A1 · x’ + A2 · r) (mod q)

Theorem 1 The chameleon hash construction presented here is collision-resistant, as-
suming that the SIS problem is hard for a given set of parameters (n,m, q, β) shared with
the chameleon hash construction and that both matrices A1 ∈ Zn×m′

q and A2 ∈ Zn×m′′
q

are computationally indistinguishable from a random matrix chosen uniformly.

Proof: We show how a collision finder for the presented chameleon hash can be used to
create an algorithm to solve SISn,m,q,β with non-negligible probability.

Given the matrix A ∈ Zn×mq and the other SIS parameters, the algorithm could
split the matrix A in A1 and A2 such that A = [A1|A2]. It can then pass the matrices
A1 and A2 to the collision-finder, which would return (x’, r’, x”, r”) such that A1(x’) +



A2(r’) = A1(x”) + A2(r”) in modulo q. And this means that A · (x’||r’) ≡ A · (x”||r”)
(mod q). This means that A · (x’||r’)−A · (x”||r”) ≡ 0 (mod q), and so A(x’−x”||r’−
r”) ≡ 0 (mod q). Thus, we found a solution whose norm needs to be proven to not
exceed β. Indeed, notice that ||(x’ − x”)|| ≤

√
m′, as both vectors are binary and have

m′ dimensions and in the worst case, one of them is full of 1s and the other full of 0s. We
also know that both r’ and r” have norm smaller than 1/2

√
β2 −m′ by our requirements.

So, by triangle inequality, ||(r’− r”)|| ≤
√
β2 −m′. The norm of our solution is indeed

lesser than the required value:
√
||x’− x”||2 + ||r’− r”||2 ≤

√
m′ + β2 −m′ = β. �

In conclusion, finding a collision is at least as hard as solving the SISn,m,q,β prob-
lem.

3. Our Proposal
3.1. Preimage Chameleon Hash Schemes

This proposed scheme is a tuple of 3 efficient algorithms
(KEYGEN,HASH, PREIMAGE) defined over message space M and randomness
space R. The algorithms KEYGEN and HASH work equal as in the simple chameleon
hash scheme. But the algorithm PREIMAGE has the following property:

• PREIMAGE is an efficient probabilistic algorithm that on input sk, msg and dgt,
outputs a rnd such that HASH(hk,msg, rnd) = dgt.

In the literature, there are at least four chameleon hash constructions which
could be used as a preimage chameleon hash: Krawczyk and Rabin’s construction
based on trapdoor permutation functions [Krawczyk and Rabin 1998], Bellare and Ris-
tov construction based on Fiat-Shamir sigma protocol [Bellare and Ristov 2014],
Ateniese and Medeiros construction based on Nyberg-Rueppel signature
scheme [Ateniese and de Medeiros 2005] and Cash, Hofheinz, Kiltz and Peikert
construction with security based on lattice problems [Cash et al. 2010]. The first two of
them suffer from the key exposition problem: given a collision in the HASH function,
an adversary could easily extract the secret key used in the scheme. This limits the
applicability of the first two constructions. The idea of using a scheme of chameleon
hashes with preimage computation also appeared in [Lu et al. 2019], where it was called
chameleon hash+.

Similarly to the original chameleon hash scheme, we require the uniformity prop-
erty and weak collision resistance property. But to capture the notion that this scheme
allows for first preimage computation instead of second preimage, the standard collision-
resistance could be defined with the following attack game:

• Setup: The challenger runs (hk, tk) ← KeyGen(1n) and send hk to the adver-
sary;
• Queries: The adversary request sample preimages sending q queries for the chal-

lenger. Each query has the format (msgi, dgti) for i ∈ {1, . . . , q}. The challenger
respond for each query with rndi such that rndi = PREIMAGE(tk,msgi, dgti).
The adversary can adaptively choose its queries;
• Output: The adversary outputs distinct pairs (msg′, rnd′) and (msg′′, rnd′′), win-

ning the game if HASH(hk,msg′, rnd′) = HASH(hk,msg′′, rnd′′) and msg′ 6=
msgi and msg′′ 6= msgi for all i ∈ {1, . . . , q}.



The difference in the output restriction for the adversary prevents trivial attacks
where it could compute dgt0 = HASH(hk,msg0, rnd0) over random values msg0 and
rnd0, obtain rnd1 from the query’ (msg′, dgt0) and return (msg0, rnd0,msg

′, rnd1) as
answer.

Notice that from a preimage chameleon hash, we can easily define a traditional
chameleon hash using the following definition for the Collision function:

COLLISION(tk,msg, rnd,msg′) = PREIMAGE(tk,msg′, Hash(pk,msg, rnd))

The converse is not true: one cannot necessarily generalize a chameleon hash
scheme to this preimage chameleon hash variant, as being able to compute collisions with
a trapdoor does not imply the ability to compute preimages with that trapdoor.

However, the additional power of this scheme also means that creating secure
constructions of this scheme is even more challenging than for the classical chameleon
hash scheme. If a classical chameleon hash had standard collision-resistance and we had a
PREIMAGE algorithm to compute preimages given its trapdoor, this would not necessarily
give us a preimage chameleon hash with enhanced collision-resistance. The reason is that
in the attack game defined here, we give to the adversary the power to query preimages,
something more powerful than querying for second-preimages.

3.2. Signatures from Preimage Chameleon Hash Schemes
Given a preimage chameleon hash CH = (KEYGEN,HASH, PREIMAGE) over

(M,R,D), it is possible to define a signature scheme Σ = (GEN, SIGN,VERIFY) over
(M,R) using the following construction based in the signature scheme proposed in
[Mohassel 2011].

The GEN is constructed like in Algorithm 1. The keys (pk, sk) store the preimage
chameleon hash keys and also a target digest dgt ∈ D. The SIGN algorithm is Algo-
rithm 2 where SIGN is computing a sig ∈ R such that for the message msg ∈ M,
HASH(hk,msg, sig) = dgt. Finally, the VERIFY algorithm is Algorithm 3 which com-
putes the hash for the pair (msg, sig) and checks if the digest is really dgt.

Algorithm 1: GEN(1n, dgt)

1 (hk, tk)
$←− KEYGEN(1n);

2 pk ← (hk, dgt);
3 sk ← (tk, dgt);
4 Return (pk, sk);

Algorithm 2: SIGN(sk,msg)

1 (tk, dgt)← sk;
2 sig ← PREIMAGE(tk,msg, dgt);
3 Return sig;

The difference between this construction and what is proposed in [Mohassel 2011]
is that as here we are using preimage chameleon hashes, we verify our signature compar-
ing HASH(hk,msg, sign) not with a randomly chosen value from D, but with any value
specifically chosen during key creation (dgt).



Algorithm 3: VERIFY(pk,msg, sig)

1 (hk, dgt)← pk;
2 if HASH(hk,msg, sig) = dgt then
3 Return accept;
4 else
5 Return reject;
6 end

This opens the possibility to use this signature construction in the following new
scenarios and applications:

1. Instead of using the VERIFY algorithm, in some contexts, the HASH algorithm
could be used to check the validity of a signature. The verifier could extract using
HASH(hk,msg, sign) some fixed information about the signer, which, if valid
and correct, attests the validity of the signature.

2. User-friendly digital signatures could be created to mimic the appear-
ance of a handwritten signature. A valid signature could produce with
HASH(hk,msg, sign) a compressed image of the signer’s handwritten signature
to be shown on the screen by some software.

As the target verification value is not random, to define security, in the underlying
attack game, we require that the adversary chooses its value:

• Setup: Let Λ be any system parameters needed during key creation. The chal-
lenger send Λ to the adversary, the adversary replies with a target verification
value dgt. The challenger runs (pk, sk) ← GEN(1n, dgt) and sends pk to the
challenger.
• Queries: The adversary requests sample signatures for the messages msgi with
i ∈ {1, . . . , p}. For each message msgi requested, the challenger respond sending
sigi such that sigi = SIGN(sk,msgi). It chooses the queries adaptively.
• Output: The adversary outputs a pair (msg, sig) and wins the game if

VERIFY(pk,msg, sig) = accept and (msg, sig) 6= (msgi, sigi) for all i ∈
{1, . . . , p}.
Notice that instantiating this scheme with a preimage chameleon hash with stan-

dard collision resistance ensures its security in the sense of preventing existential forg-
eries against chosen message attacks: an existential forgery yields collisions involving
new messages for the preimage chameleon hash.

4. The Post-Quantum Construction of Preimage Chameleon Hash
We overcome the problem of not having a preimage chameleon hash with standard

collision resistance using as starting point the construction presented in Section 2.4 and
prove that this construction could provide a signature scheme that is SUF-CMA (strongly
unforgeable under chosen message attack) after making the following changes:

• Given fA2(r) = A2 · r, we define our hash algorithm as:

HASH(hk, x, r) = H(x) + fA2(r) mod q

where H now is a generic hash function different than fA1 .



• We define the PREIMAGE algorithm as:

PREIMAGE(tk, x,d) = SAMPLEPRE(tk,d−H(x)) mod q

where SAMPLEPRE samples one of the preimages of fA2 given the trapdoor tk,
returning a preimage y with small ||y|| with overwhelming probability.
• The PREIMAGE algorithm now has a state. It stores all previously computed return

values, and if given the same input more than once, after computing the result
the first time, it returns the already computed result. Like in the GPV signature
proposed in [Gentry et al. 2008], this could be simulated deriving all probabilistic
decisions in SAMPLEPRE from a pseudorandom generator (PRG) always using
the same value stored in tk as seed.
This restriction is necessary for our security proof and to avoid that an adversary
could find collisions in fA2 sending the same signing query in the attack game and
expecting different signatures.

We use as system parameters Λ = (n,m, q) such that A2 ∈ Zn×mq .

The public key is the matrix A2 and the access to the hash function H . The secret
key is the trapdoor tk necessary to compute SAMPLEPRE to sample preimages from fA2 .

Theorem 2 Our construction of the preimage chameleon hash is correct.

Proof. If r = PREIMAGE(tk, x,d), then:

HASH(hk, x, r) = H(x) + fA2(r) mod q

= H(x) + fA2(f
−1
A2

(d− H(x))) mod q

= H(x) + d− H(x) mod q = d

�

This construction also is collision-resistant, as F is collision-resistant and sum-
ming the result of this function to a value returned by a random oracle keeps the collision
resistance.

Theorem 3 Let fA2 be a collision-resistant many-to-one function such that there exists
an algorithm SAMPLEDOM which samples x ∈ Zm from a distribution possibly non-
uniform such that fA2(x) is uniform. Then, the signature constructed using the preimage
chameleon hash defined here is strongly unforgeable under the chosen message attack
(SUF-CMA) in the random-oracle model.

Proof. The proof is a generalization of the security proof for the GPV signature
from [Gentry et al. 2008]. We show that given an efficient adversary that could forge
signatures, we could use it to build an efficient algorithm to find collisions in fA2 such
that if the adversary succeeds with non-negligible probability, then this also happens with
our algorithm.

The algorithm simulates the challenger in the following way.

• Setup: Our collision-finder algorithm receives the matrix A2 and the parameters
Λ = (n,m, q). It sends Λ to the adversary A, which replies with a target verifi-
cation d. The algorithm proceeds sending to A the public key pk = (hk, d) with
hk = A2.



Next, as we are in the random oracle model, the adversary can make two kinds
of queries: queries to the oracle H, sending xi and receiving H(xi) and signing queries,
sending xi and receiving ri such that ri = SIGN(sk, xi). Without loss of generality, we
require that the adversary A always makes an oracle query for each message xi before
sending this xi in a signing query or before outputting xi as a forgery in the end.

The queries are handled by our algorithm in the following way:

• Oracle Query: For each query xi, if this value was never queried before, choose
ri

$←− SAMPLEDOM(pk). Let hi ← d − fA2(ri). The algorithm stores ri in a
dictionary using xi as the key. Finally, it sends hi to A as result.
If a query xi was already made in the past, get the value ri associated with key xi
from the dictionary. Set hi ← d− fA2(ri) and send hi as response to A.
• Signing Query: For each query xi, look up for ri in the dictionary using xi as the

key. Send ri as the answer to A.

This part of the algorithm simulates a random oracle choosing a random signature
ri to xi and then deriving the random digest H(xi) = di from the signature.

• Output: After all the queries, the adversaryA returns a possible forgery as (x, r).
Our algorithm then searches in the dictionary a value r∗ stored with the key x. It
returns (r, r∗) as a collision for fA2 .

If the adversary A returned a forgery, then we have that H(x) + fA2(r) = H(x) +
fA2(r∗) (mod q). This algorithm fails if r = r∗ and succeeds otherwise. As fA2 is a
function many-to-one, in the worst case, there are only two possible values that fA2 maps
to the same result. Thus, the collision finder succeeds with at least half the probability
thatA wins its attack game. If this probability is non-negligible, then so is our probability
of finding a collision. �

4.1. Ring-based construction

The relevant property to ensure the security of our preimage chameleon hash,
exactly like in the GPV signature, is the existence of the function fA with the properties
described in the last section. However, the description using matrices described there and
used in the classical chameleon hash construction from Section 2.4 is not the only option.

We can define a function fâ(r̂) = â · r̂ with operations defined over vectors of
m polynomials from the ring Zq[x]/(f(x)) where f(x) has degree n. This operation is
collision-resistant, but instead of reducing the security to the SIS problem described in
subsection 2.4, we reduce it to the ring-based SIS problem, the R-SIS.

The R-SISm,q,β is defined as the problem of finding x̂ ∈ Rm such that â · x̂ =
0. As in the SIS problem, we require that ||x̂|| < β for sufficiently small values of β.
The average case of this problem was also reduced to the worst case of some problems
involving lattices, believed to be hard even for quantum algorithms by [Micciancio 2002],
[Peikert and Rosen 2006] and [Lyubashevsky and Micciancio 2006], provided that Rq =
Zq[x]/(f(x)) and f(x) is an irreducible polynomial.

If one can compute distinct r̂ and ŝ such that fâ(r̂) = fâ(ŝ), then we have (r̂ − ŝ)
as a solution to the R-SIS problem. If we restrict the domain of fâ to values with norm



smaller than 1
2
β, then by triangle inequality, a collision will reveals aR-SIS solution with

norm smaller than β.

Methods of generating â computationally indistinguishable from a vector chosen
randomly and uniformly with a trapdoor tk such that we have the algorithms SAMPLEPRE
and SAMPLEDOM were presented in [Micciancio and Peikert 2012].

The main advantage of the ring-based construction is that instead of requiring
m ≥ n log q to ensure the security, we only need to require that m ≥ log q. In the
matrix version, A2 would need to have approximately n2 log q elements, but in the ring-
based version, â would need to store approximately n log q elements. As shown in
[El Bansarkhani and Buchmann 2014] for the GPV signature, it is also possible to achieve
faster implementations with a ring-based version.

5. Implementation, Results and Discussion
To evaluate the performance of our proposed construction, we implemented the

preimage chameleon hash (PCH) using the library by [Rohloff et al. 2020] implementing
the ring-based construction from [El Bansarkhani and Buchmann 2014] using the same
method to derive the key â from the trapdoor. The polynomial ring was Rq with q hav-
ing k = 27 bits. The same parameters were used both for the GPV signature and our
construction.

To compare the execution time, we measured in the same machine the fol-
lowing signatures: RSA and ECDSA from OpenSSL 1.1.1 library, CRYSTALS-
Dilithium (proposed in [Ducas et al. 2018]) and FALCON (implementation proposed
in [Pornin 2019]) from code submitted the NIST standardization project and a BLISS-
B (described in [Ducas 2014]) implementation from strongSwan library version 5.8.4
[strongSwan 2020]. The ECDSA used the curve B-233.

All tests were run in a notebook LG S43 with a Dual-Core Intel Pentium B980
2.40GHz (without AVX2 support) with 4GB of memory and running Ubuntu 18.04.4.
While measuring running time, the tests were performed 1000 times, and the mean
was extracted. Given the measured standard deviation, we computed the error mar-
gin given an interval of confidence of 95%, assuming a normal distribution. For all
schemes, the signature time also includes the time to perform a hash on the messages to be
signed. All of them use SHA256, except for CRYSTALS-Dilithium and FALCON, which
used SHAKE256. The code used to measure running times and sizes can be checked
in [Astrizi 2020].

Table 1. Running time comparison [ms]. The confidence interval is 95%.

Scheme
Security

level
KEYGEN SIGN/PREIMAGE VERIFY/HASH

RSA 2048 112 160.541 ± 6.540 2.620 ± 0.001 0.053 ± 0.000
ECDSA 233 112 0.661 ± 0.009 0.689 ± 0.001 1.338 ± 0.002
Dilithium 1280×1024 128 0.475 ± 0.023 1.719 ± 0.076 0.453 ± 0.000
BLISS-B I 128 916.577 ±14.900 2.448 ± 0.221 0.224 ± 0.020
FALCON-512 ≈100 15.088 ± 0.542 0.629 ± 0.018 0.079 ± 0.000
GPV (n=512, k=27) ≈100 5.521 ± 0.026 32.005 ± 0.033 0.241 ± 0.008
PCH (n=512, k=27) ≈100 5.520 ± 0.021 32.232 ± 0.070 0.244 ± 0.008



Table 2. Size comparison [bytes].
Scheme Digest σ pk sk

RSA 2048 - 256 259 512
ECDSA 233 - 58 31 29

Dilithium 1280×1,024 - 2,829 1,472 3,504
BLISS-B I - 732 933 1182

FALCON-512 - 651 897 1281
GPV (n = 512, k = 27) - 61,440 61,440 114,688
PCH (n = 512, k = 27) 2048 61,440 61,440 114,688

The results of the running times are summarized in Table 1. The sizes for sig-
natures, keys, and chameleon hash digests are summarized in Table 2. As expected, our
construction has comparable performance and the same key size as a GPV signature.

The tests and implementation prove the viability of the construction. Despite
slower and with bigger keys than classical and more modern post-quantum signature
schemes, our presented construction is, at the present moment, the only one known to
implement post-quantum digital signature securely based on preimage chameleon hash.
Finding new preimage chameleon hash schemes with performance on par with modern
signature schemes is an open research problem.

6. Conclusion

In this paper, we propose a new post-quantum digital signature scheme, where the
signature is a value which (together with the message), yields via hash a value predefined
by the signatory. To do this, we use a new feature added to the traditional chameleon hash
function that allows first preimage computation using a trapdoor.

The new signature scheme, which we call the preimage signature, is proven here
to be strongly unforgeable under a chosen message attack (SUF-CMA). The proposed
scheme was coded and compared to traditional digital signature algorithms. The compar-
ison shows that the new signature algorithm is viable; that is, it can be used in practice to
sign electronic documents.

As the signature is the preimage of any value chosen by the signer during key
creation, this opens new possibilities, like creating signatures where a signed message is
verified comparing its hash after concatenated with the signature to check if the result is
a given value with some special interest, for example, a representation of a handwritten
signature. Such an approach can improve the user experience in terms of trust in the
signature, not only regarding cryptographic verification, but also visual verification by
recipients.
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