
An Entropy Source based on the Bluetooth
Received Signal Strength Indicator

Alexandre Giron1,2, Ricardo Custódio1

1Laboratório de Segurança em Computação –
Universidade Federal de Santa Catarina (UFSC)

Florianópolis – SC – Brazil

2Universidade Tecnológica Federal do Paraná (UTFPR)
Toledo – PR – Brazil

alexandregiron@utfpr.edu.br, ricardo.custodio@ufsc.br

Abstract. The Bluetooth Low Energy (BLE) is one of the popular communica-
tion technologies employed in the Internet of Things (IoT) context. IoT devices
need random numbers to feed their security mechanisms, where the generation
of random numbers presupposes the existence of entropy sources. However,
there are few entropy sources available, due to the limited hardware resources
of those devices. Given this scenario, this paper presents a scalable approach
for gathering entropy, called Bluerandom. The approach is based on the Re-
ceived Signal Strength Indicator (RSSI) within Bluetooth communications. The
results show that Bluerandom can be used as an alternative source of entropy,
improving the robustness of the cryptographic mechanisms for the IoT context.

1. Introduction
The high popularity of the IoT and its use of sending user sensitive data imply the need
to establish secure wireless communications. Examples of communication technologies
in IoT include the traditional WiFi technology, 5G networks, and the Bluetooth Low En-
ergy (BLE) technology [Böcker et al. 2017]. To address most of the security concerns
about privacy, tampering, and authentication in IoT, cryptographic mechanisms are of-
ten required [Dinca and Hancke 2017]. These mechanisms depends on Random Number
Generators (RNG) to feed their cryptographic primitives like nonces, Initialization Vec-
tors (IVs), random keys, among others [Herrero-Collantes and Garcia-Escartin 2017].

In addition to its importance in a traditional cryptosystem, randomness is re-
quired, for example, in remote attestation protocols for IoT networks [Tan et al. 2019],
and BLE devices need randomness for the random address technique [Cha et al. 2017,
Collotta et al. 2018]. This technique for BLE is used in the device pairing process to pre-
vent attackers from tracking devices. To perform such technique, each Bluetooth device
has its Pseudorandom Number Generator (PRNG) that can be accessed by the LE Rand
command of the protocol [SIG 2019]. Besides, the challenge-response authentication and
encryption (if available) also need random numbers [SIG 2019]. Therefore, the PRNG in
the device plays a key role in BLE security.

An entropy source is a resource needed by a True Random Number Generator
(TRNG) to output random data. Generally, the TRNG collects randomness from one or
more entropy sources. The TRNG output feeds a PRNG, which is deterministic, but the



latter’s data throughput is predominantly higher than a TRNG [von zur Gathen 2015].
In this scheme, the quality level of the PRNG output depends on the entropy source
used as seed. If an adversary can deduce the seed, the output can also be determined
[Wallace et al. 2016].

A popular example of a PRNG is the Linux /dev/random device driver
[Gutterman et al. 2006]. It is well known and prevalent in the cryptographic commu-
nity, serving entropic data to a variety of security protocols. In a recent publication
[Müller 2018], the concerns about the entropy sources available were taken into account
in the development of a new approach for the /dev/random. Some of the challenges arise
from the IoT scenario and small embedded systems, in which their limited resources im-
poses the need to achieve high efficiency in terms of performance and energy consump-
tion.

Some of the standard entropy sources in a computer include data from the sound
card, disk access times, the timing of interrupts, CPU Jitter, or user interaction data. How-
ever, in IoT, most of these sources are not available; the main source is in the microcon-
troller. Especially for the BLE devices, there is an RNG hardware component responsible
for gathering entropy and generating random numbers. Microcontrollers like the Texas
Instruments CC1312R [TI 2018], Nordic nRF52 Series [Nordic 2019], Cypress PSoC 4
[Cypress 2019], gather data from thermal noise, process and deliver it to seed the PRNG.
For the PRNG implementation, a popular choice is often based on AES or SHA hardware
implementations [Herrero-Collantes and Garcia-Escartin 2017] [Stallings 2017].

All of the hardware designs pointed above implement security mechanisms sim-
ilarly. However, relying on only one or few entropy sources could be dangerous to the
security of the system, for example, in case of hardware failures or security flaws. A
famous incident is the EC Dual PRG [Checkoway et al. 2014]. Besides, IoT devices do
not have many alternatives for entropy sources available due to their reduced hardware
capabilities. On the other hand, adding more hardware components in an IoT device has
an impact in cost and energy consumption. So, it is essential to investigate and evaluate
other possibilities to serve entropy for those devices.

In this paper it is proposed an alternative entropy source for the IoT context, called
Bluerandom. The approach is based on the Bluetooth Received Signal Strength Indicator
(RSSI). The purpose of the approach is to deliver entropic data as an additional source to
the device, improving the robustness of the security mechanism against possible failures.

The paper is organized as follows. The Related Work in section 2 presents the
research on the available entropy sources for the IoT context. In section 3 the Bluerandom
approach is presented. Section 4 presents the experiments and section 5 discuss the results
of the evaluation of Bluerandom. Lastly, section 6 presents the final considerations of this
study.

2. Related Work

There are some alternatives for entropy sources in the literature, related to the IoT con-
text. For example, researchers proposed a PRNG design for embedded microprocessors
[Seo et al. 2014] and a TRNG with ring oscillators as a source of entropy, focusing on
FPGA hardware [Kohlbrenner and Gaj 2004].



Wallace et al. [Wallace et al. 2016] proposed an RNG based on the sensors present
in smartphones, called SensoRNG. The evaluation included various sensors found in
smartphones, like gyroscope, accelerometer, magnetometer, GPS, microphone and cam-
era. Gyroscopes used as an alternative entropy source were also evaluated in the work of
Willers et al. [Willers et al. 2019].

Randomness can be obtained from the channel phase and from the Received
Signal Strength Indicator (RSSI) in Wireless Networks [Shokri-Ghadikolaei et al. 2016,
Wang et al. 2011]. Wang et al. [Wang et al. 2011] proposed a protocol, under a set of
simulations, that use channel phase to generate cryptographic keys in wireless networks
at the physical link layer. The main drawback of their approach is that it is required a
common timing reference between the nodes, in order to generate the shared keys. On the
other hand, the authors conclude that the extraction of randomness in Wireless Networks
can be a good opportunity for IoT devices, when possible.

Some of the proposals presented above can increase hardware complexity and
production cost, if components must be added to provide random numbers. Others were
evaluated in a simulated environment, not in a real-world scenario. The proposal of this
paper, detailed in the next section, aims to tackle these issues by exploring the environ-
ment for randomness.

3. Bluerandom Generator
The Bluerandom is a generator that reads RSSI values from BLE devices and then output
bits based on a randomness extractor function. The center of Fig. 1 represents a device
with Bluerandom. It sends commands to the Bluetooth controller to scan for nearby
devices. Bluerandom keeps reading the signal strength information of each device. For
each RSSI reading, an extraction method is employed to generate random numbers.

Figure 1. Bluerandom generator.

In the IoT context, the efficient use of the hardware is mandatory to minimize
costs and energy consumption of the device. Bluerandom take advantage of the available
hardware to collect entropy. Bluerandom obtains its data from nearby (other) Bluetooth
devices. The only requisite is that there must be at least one Bluetooth device nearby
advertising or in visible state.



The RSSI is defined as a measure of power of a device signal perceived on the
receiving device [Wang et al. 2011]. In Bluetooth, one device starts advertising its bea-
cons, and then the receiving device can calculate the RSSI. An application can read
the RSSI value through the Host Controller Interface (HCI) from Bluez [BlueZ 2018].
The signal strength depends on distance and on the broadcasting power value measured
[Huh et al. 2016].

A premiss of Bluerandom relies on the assumed unpredictability of the RSSI read-
ings. Analyzing the RSSI readings from a single nearby Bluetooth device, there are small
variations between the readings, presumably unpredictable, even without moving the de-
vice. This happens probably due to the precision of the sensor readings or due to the
channel phase mentioned earlier. Besides, when considering an open space scenario with
several devices, the variation of the readings would be on a larger scale. It is hard to pre-
dict if (and how) this variation occurs in the next reading. There could also be interference
present and sensor movement (wearables, for example), increasing the unpredictability of
the RSSI values.

3.1. Randomness Extraction functions

Having the RSSI values, Bluerandom needs a randomness extractor. Randomness
extractors are post-processing functions in a TRNG. They transform the bits re-
ceived from the entropy source into a uniform, usually smaller, random sequence
[Herrero-Collantes and Garcia-Escartin 2017]. Depending on the extractor used, this
means that some bits might be discarded if bias is detected.

A well-known extractor was proposed by von Neumann. For every pair of gen-
erated bits, discard the results 00 and 11 (to reduce bias) and assign a 0 to 01 and a 1
to 10 [Herrero-Collantes and Garcia-Escartin 2017]. In the work of Szczepanski et al.
[Szczepanski et al. 2004], a method called “The last digit fluctuation” is used, which con-
siders only the least significant bit gathered from the entropy source. Hashing functions
and chaotic functions can also be used [Zhu et al. 2013]. We investigated three extractors
in our proposal:

• Von Neumann extractor: in Bluerandom, this method is implemented together
with the “Last digit fluctuation” [Szczepanski et al. 2004]. The von Neumann
method is applied in the last bit of two consecutive RSSI readings.
• Odd or Even difference: this method also takes a pair of RSSI readings, and if the

difference between them is odd, the method outputs a 1 and a 0 otherwise. When
the difference is zero, there may be only one device nearby, which is providing
readings without variation. In this case the method discards the readings. Besides,
taking two RSSI readings at a time could decrease the throughput of this method.
• Odd or Even reading: this method outputs a 1 if the reading value is odd and a 0

if it is even, without discarding any value.

Although the extraction method has an impact on the throughput of Bluerandom,
the frequency of the Bluetooth advertising beacons (or packets) is more important to that
matter. It is from those beacons that the RSSI is calculated in the device which executes
Bluerandom.



3.2. Test Environment

Mathematically proving that a stream of bits produced is truly random is effectively im-
possible [von zur Gathen 2015]. An alternative is to evaluate it through rigorous statis-
tical testing to verify if a number sequence exhibits properties similar to what would
be expected from a random sequence. For example, FIPS 140-2 and NIST SP 800-22
[Bassham et al. 2010] specify a set of statistical tests to verify uniformity and unpre-
dictability of the number sequence from the RNG under evaluation.

All of the experiments were conducted by testing an implementation of Blueran-
dom in the Raspberry Pi 3 platform. The source code of the Bluerandom implementation
is available at https://github.com/AAGiron/Bluerandom. The methodology
chosen for the evaluation of Bluerandom was designed in four experiments:

• Experiment 1 - Bluerandom test: the FIPS 140-2 statistical tests were applied
to evaluate Bluerandom alone as an RNG. The throughput and byte entropy
[von zur Gathen 2015] were also analyzed.
• Experiment 2 - Bluerandom compared to a Bluetooth PRNG: as previously men-

tioned, Bluetooth devices must have a PRNG [SIG 2019]. This experiment aimed
to compare the internal PRNG of a BLE device against Bluerandom seeding a
PRNG. They were evaluated with NIST statistical tests.
• Experiment 3 - Entropy Sources comparison: using the Dieharder test suite

[Brown 2019], this experiment seeks the influence of Bluerandom as an entropy
source compared to other entropy sources in a PRNG.
• Experiment 4 - Providing Entropy: the RNDADDENTROPY ioctl system call

allows the user to add some additional entropy to the Linux entropy pool. In this
experiment, the entropy pool was measured when inserting Bluerandom numbers
through the system call.

Regarding the test environment, the Experiment 1 was divided into two scenarios:
one test was conducted in a mode called “Open scenario”, and the other was conducted
inside of a five-layer Faraday box. The open scenario test was conducted to verify the ex-
ecution of Bluerandom in a real-world environment. The number of BLE devices present
was varied to see if this variation has an impact on the Bluerandom output. The test in-
side a Faraday Box had the purpose of protecting the integrity of the experiment with
only one BLE device, minimizing external influence or interference, and also to see if the
RSSI variations – the premiss of Bluerandom – behaves differently in comparison with
the open scenario environment.

It is worth to mention that the main purpose of proposing this approach is not
to use Bluerandom as the only entropy source available in a system. Ideally, the out-
put of Bluerandom could be used as input to a PRNG, which is generally more efficient
[Stallings 2017]. For example, Chacha20 is a stream cipher that can be used as a PRNG
for cryptographic applications [Procter 2014]. There is a proposal to use Chacha20 as
part of the Linux RNG due to its throughput (in the order of a hundred MB/s, depending
on the hardware) and low memory utilization [Müller 2018].

4. Experiment Results
In this section, the results are presented for each of the four experiments.



Table 1. Bluerandom evaluated with FIPS 140-2 tests
Number of
Devices

von Neumann Odd or Even Diff. Just Odd or Even
FAIL PASS FAIL PASS FAIL PASS

1 (Faraday) 1 0 2 0 4 0
1 4 0 7 0 9 8
2 7 0 12 0 13 16
4 9 0 17 0 10 28
8 19 0 31 6 16 63

4.1. Experiment 1
The first experiment aimed to evaluate Bluerandom as an RNG. Table 1 presents a sum-
mary of results from FIPS 140-2 statistical tests. The data sets for each execution of
Bluerandom varies according to the extractor used and to the amount of BLE devices
nearby. The “FAIL” and the “PASS” labels summarize the result of the statistical tests
applied in chunks of 20 kbit of data. If f is the number of sets that fail and p is the num-
ber of sets that pass, this means that the generator produced (p + f) ∗ 20 kbits of data
to the test. For example, in the first row, the von Neumann extractor failed one time (20
kbits tested), and the “Odd or Even Difference” failed two times (40 kbits tested). This
difference occurred because the throughput varies between the extractors.

The first row of Table 1 contains the results from the Faraday box test environment.
The other rows are related to the Open scenario test environment. With only one device in
the Faraday box, all extractors failed in FIPS tests. The table also shows that the “Just Odd
or Even” extractor was able to produce more data from the devices, and the von Neumann
extractor produced less data than the other extractors tested. For example, with 8 devices,
the extractors were able to generate, respectively, 47.5 KiB, 92.5 KiB, and 197.5 KiB
of data. This difference was expected because the “Just Odd or Even” extractor does
not process two RSSI readings at a time and does not discard any reading, as the other
extractors do.

It is worth mentioning that the von Neumann extractor, as implemented in this
experiment, did not pass the tests because of the assumptions made on the RSSI readings.
Instead of applying von Neumann extractor in the last bit of each of the two RSSI read-
ings, it would be better to apply the von Neumann as a bias removal on the output of the
“Just Odd or Even” or the “Odd or Even Difference” extractors. The drawback of this
bias removal approach is that it would slow down the throughput of Bluerandom, which
is already low. On average, Bluerandom generates 1 byte per second, depending mostly
on the number of devices nearby and on the extractor used.

Another metric analyzed in Experiment 1 was the byte entropy, calculated with
ENT software [Walker 2008]. The results are presented in Table 2. Interestingly, the byte
entropy scales when the number of BLE devices is increased. This result supports the
viability of using Bluerandom as an additional entropy source for the system.

4.2. Experiment 2
The second experiment was designed to evaluate the Bluerandom as an entropy source
to a PRNG and comparing it to the internal PRNG from the Bluetooth controller of the
Raspberry Pi 3.



Table 2. Entropy (bits per byte) of Bluerandom outputs
Number of
Devices von Neumann Odd or Even Diff. Just Odd or Even

1 (Faraday) 7.942342 7.808232 7.912642
1 7.418175 7.821669 7.987153
2 7.570067 7.905545 7.992010
4 7.669687 7.939813 7.995218
8 7.875071 7.983862 7.997471

The Bluetooth Specification states that Bluetooth devices must have a PRNG com-
pliant with FIPS PUB 140-2 and NIST SP 800-22 tests [SIG 2019]. For BLE devices, the
PRNG can be activated with the LE Rand command, returning a (pseudo) random num-
ber with 64-bit size [SIG 2019]. Also, the device shall use a seed from the entropy source
with at least the minimum entropy required by the PRNG. It is left to the manufacturer
to choose the entropy source and the PRNG implementation. Although it is not clear (or
closed) in some documentation, reports from Bluez [BlueZ 2018] developers indicate that
the PRNG used is often based on SHA or AES algorithms.

Therefore, a LE Rand application was created for generating numbers from the
Bluetooth internal PRNG. Then the NIST tests were applied to evaluate 1 Gbit of data
produced by this PRNG. To compare Bluerandom to the LE Rand generator, the output of
Bluerandom seeded two implementations of PRNG: one is an AES-based PRNG, and the
second is a SHA-based PRNG. The AES counter mode (CTR) implementation used is the
one from the Mcrypt library [MCrypt ], and the SHA-256 is from OpenSSL [OpenSSL ].

The seeds obtained from Bluerandom’s output were used for the AES
PRNG key and Initialization Vector (IV), as recommended by NIST SP 800-22
[Bassham et al. 2010]. The reseeding process occurs when the PRNG reaches 1 MB of
output. Since the LE Rand command outputs 64 bits at a time, each PRNG implementa-
tion was adapted to also output 64-bit numbers. The rightmost 64 bits were considered
both for the AES-128 and SHA-256 in this experiment.

The execution of each of the two PRNG implementations produced 1 Gbit of data.
Then, they were evaluated with the NIST tests. The results are summarized in Table 3.
The best configuration for Bluerandom, obtained from Experiment 1, was selected for
this experiment: the “Just Odd or Even” extractor and the test environment with 8 BLE
devices.

Table 3. Bluetooth PRNG compared to Bluerandom plus PRNG
PRNG Dataset Entropy NIST summary

LE Rand 1 Gbit 7.999998 All tests, but one, passed. 1
fail with proportion 979/1000

AES 1 Gbit 7.999998 All tests, but one, passed. 1
fail with proportion 979/1000

SHA256 1 Gbit 7.999998 All tests passed

Each PRNG evaluation with NIST tests results in a minimal proportion rate equal



to 980/1000. This proportion is defined as the number of binary sequences that passed
over the total number of sequences [Bassham et al. 2010]. If the proportion for each test
is higher than the minimal proportion rate, then it is considered that the PRNG passed
on that test. The single test fails of LE Rand and AES PRNG had proportion 979/1000,
which is very close to the pass threshold.

4.3. Experiment 3

Although the results from Experiment 2 are positive for Bluerandom as an entropy source,
it was not possible to change the entropy source of the Bluetooth controller and replace it
by Bluerandom. This experiment aims to compare the influence of changing the entropy
source of the same PRNG.

Chacha20 PRNG has already been mentioned in this paper, and an interest-
ing feature of its implementation is that it allows changing the seed source in three
ways: from CPU Jitter RNG, from getrandom() system call or from /dev/random
[Langley et al. 2016].

In this experiment, the Chacha20 was evaluated three times by the Dieharder test
suite [Brown 2019]. This test suite has more statistical tests than the NIST suite. The
first configuration of Chacha20 was defined only with /dev/random as the entropy source;
the second configuration had only the CPU Jitter; and the third configuration had only
Bluerandom as the entropy source. The Bluerandom configuration used was the same as
the previous experiment.

Table 4 presents the results of all Dieharder tests. This suite classifies each test
with “PASS”, “WEAK” and “FAIL”. It was found that the results are very similar and
slightly better when Bluerandom was used. Again, this is not enough to conclude that
Bluerandom is a better choice. On the contrary, this is another evidence that supports the
use of Bluerandom as an additional entropy source, due to the similar behavior observed
in the other entropy sources.

Table 4. Dieharder test results of Chacha20 using different entropy sources.
Entropy Source used PASS WEAK FAIL
/dev/random 110 4 0
CPU Jitter 110 4 0
Bluerandom 111 3 0

4.4. Experiment 4

Fig. 2 presents the results obtained from the last experiment of this paper. Its main
purpose was to see the influence of Bluerandom in the system entropy pool. The entropy
pool is where the Linux RNG gathers its seeds (environmental noise from device drivers
and other entropy sources) [Müller 2018].

The configuration used for measuring the system entropy count in this exper-
iment was with few hardware support. No peripherals were attached to the Rasp-
berry Pi board (such as keyboard and mouse) and also no network activity. The
measurements occurred at intervals of one second, using the information located at
/proc/sys/kernel/random/entropy avail.



Figure 2. Effects of Bluerandom in the System Entropy Pool.

The first test measured in Fig. 2 (named “Entropy Pool”), without Bluerandom,
shows slow linear growth. This was expected because the only entropy source available at
the system was the CPU interrupts. The second test configuration measured the Entropy
Pool with Bluerandom executing as an additional source of entropy. This test was per-
formed with the Raspberry Pi 3 and with one BLE device advertising inside the Faraday
box. A slight improvement was detected, as shown in Fig. 2, named as “Entropy Pool
with bluerandom (1)”. The third test was conducted in an open scenario, considering 4
BLE devices in the beginning. After 30 seconds, 6 BLE devices were in the range of
Bluerandom. It was found that the growth in the entropy count is directly related to the
quantity and advertising features of Bluetooth devices nearby.

5. Discussion
In this section, the results of the experiments are discussed and compared to the literature.

5.1. Scalability
The first suspect of scalability of Bluerandom is found in Table 1 when the amount of
devices is increased, in Experiment 1. By increasing the number of devices, more data
can be produced by Bluerandom, and the pass rate with FIPS 140-2 increases, considering
the “Just Odd or Even” extractor. In Table 2, the byte entropy measured in Experiment
1 increased along with the number of nearby devices. This is an important feature of
Bluerandom, because the quality of the output can be improved by when more BLE de-
vices are nearby.

This scalability property could be related to the unpredictability level of which
RSSI value will be read next. Besides the number of devices, other factors that could in-
crease the unpredictability of the RSSI readings are: differences in the advertising interval
of the readings, movement, interrupts and the use of blocking or non-blocking socket be-
tween the General Purpose Processor (GPP) and the Bluetooth microcontroller of some
IoT platforms.

5.2. Security
For a secure RNG, a premiss is that it must pass all of the statistical tests. Therefore,
the results presented in Table 1 indicate that Bluerandom is not prepared to be used as an



RNG by itself.

However, the results from the experiments supports the evidence that Bluerandom
can be used as an additional entropy source for the system. In the experiments 2 and 3,
Bluerandom used as seed to a PRNG achieved satisfactory results both when compared
to the Bluetooth RNG (Table 3) and when compared to other entropy sources (Table 4).

Small differences were observed in those results, for example the pass rate in
Table 4. They are not enough to claim an improvement or to affirm that Bluerandom
performed better, but having similar results also indicate that Bluerandom can be used as
an additional source of entropy.

The results of Bluerandom from Experiment 4 (Fig. 2) shows a growth in the
available entropy in the system. This scenario allowed to evaluate the performance of
Bluerandom in a limited device. The purpose of Bluerandom is not to replace entropy
sources but serve as another alternative for the system.

5.3. Throughput

The advertising interval that allows Bluetooth devices to read the RSSI value can limit
the throughput of Bluerandom. For example, the advertising interval can range from 20
milliseconds (ms) to 10.24 seconds [SIG 2019]. Considering only BLE devices, generally,
they choose to advertise between 100 ms to 500 ms. On the other hand, if there are only
Bluetooth Basic Rate or Enhanced Data Rate (BR/EDR) devices nearby, an inquiry scan
must be performed. Then, the RSSI is measured from each inquiry response. Inquiry
scans have a slower interval compared to the BLE devices [SIG 2019].

The implementation of Bluerandom was focused only on Bluetooth technology,
mostly due to the popularity of the BLE devices. They are widely used to connect smart-
phones with low power sensors [Böcker et al. 2017], found in cars, laptops, tablets, stereo
receivers, wearables, and others. BR/EDR devices were not considered due to the slower
advertising interval.

5.4. Comparison with other generators

Table 5 presents the comparison of Bluerandom with other generators from the literature
[von zur Gathen 2015]. The selected configuration for Bluerandom was with 4 devices
and with the “Just Odd or Even” extractor. The metrics compared are the byte entropy
(rounded to the fith decimal digit) and throughput. Bluerandom results are close to others
in terms of byte entropy, but the throughput is low compared to other generators.

Table 5. Comparison of Bluerandom with other generators [von zur Gathen 2015]
Generator Byte Entropy Throughput

Bluerandom 7.99522 1 byte/s
Noisy Diode 7.99963 31.39486 kB/s

/dev/random (in the field) 7.99979 5.584 byte/s
/dev/random (in the lab) 7.99948 0.1917 byte/s

Linear Congruential 7.99969 193.64313 kB/s
Blum-Blum-Shub 7.99962 28.91291 kB/s



Regarding the results of Wang et al. [Wang et al. 2011], they achieve an average
entropy equal to 0.9286 per bit (i.e. the more close to 1 is the better). It is important to
highlight that their result is an average of 10 measurements, and it is obtained from a sim-
ulated environment [Wang et al. 2011], which turns difficult to compare. Nevertheless,
Bluerandom achieved a normalized result of 0.9994025 per bit, computed from 7.99522
(Table 5) divided by 8.

6. Final Considerations
The results of the evaluation of Bluerandom allowed us to affirm that this approach could
benefit IoT devices as an additional source of entropy, improving security. The scalability
of Bluerandom was verified by increasing the number of BLE devices nearby. In addi-
tion, satisfactory results were obtained when Bluerandom was used as a seed for different
PRNGs.

In summary, the contributions of this paper are listed below:

• An alternative entropy source, focusing on the IoT context.
• An evaluated implementation of Bluerandom with different extraction methods.
• A Proof-of-concept regarding the random number generation based on the Blue-

tooth Received Signal Strength Indicator (RSSI), and also its validation through
statistical testing.

Even if we use a deterministic RNG, a single entropy source can be risky for many
cryptographic protocols. There is where stands the main benefit of Bluerandom: to serve
as an additional source of entropy, improving security and mitigating attacks on the RNG
as a whole. Since RSSI information has variations and it is measured by the receiving
device, it is hard to predict those values.

The security of IoT devices has the challenge to utilize its hardware resources
efficiently to reduce costs and energy consumption. Exploring randomness in the envi-
ronment using the available hardware instead of adding new components could help in
this aspect. As long as the environment has devices nearby, Bluerandom can explore the
randomness in it. Relying in additional entropy sources instead of only one can improve
the robustness of security mechanisms that use cryptography.

6.1. Future Works
Although the experiments conducted showed practical scenarios, more evaluations of
Bluerandom are being considered for future works. In addition, other metrics such as
LQI (Link Quality Indicator) could be investigated and evaluated. It is worth mentioning
that the RSSI information is a measure for any Wireless technology, not only for Blue-
tooth. This means that the same approach presented in this paper could be investigated
and developed for other contexts as well. In addition, other sources can be investigated in
the IoT context, like wearables, in order to verify if they can be used as entropy sources
for cryptographic applications.

Acknowledgment
The authors would like to thank Emil Lenngren and the Bluez community for their feed-
back about the Bluetooth hardware and driver development. Also, the authors would like
to thank the support of the Federal University of Technology (UTFPR).



References
Bassham, L. E., Rukhin, A. L., Soto, J., Nechvatal, J. R., Smid, M. E., Leigh, S. D.,

Levenson, M., Vangel, M., Heckert, N. A., and Banks, D. L. (2010). A statistical test
suite for random and pseudorandom number generators for cryptographic applications.
Technical report, National Institute of Standards and Technology (NIST).

BlueZ (2018). BlueZ: Official Linux Bluetooth protocol stack. BlueZ Project. Available
at: http://www.bluez.org/.

Böcker, S., Arendt, C., and Wietfeld, C. (2017). On the suitability of bluetooth 5 for
the internet of things: Performance and scalability analysis. In 2017 IEEE 28th An-
nual International Symposium on Personal, Indoor, and Mobile Radio Communica-
tions (PIMRC), pages 1–7. IEEE.

Brown, R. G. (2019). Dieharder, a random number test suite. version 3.31.1. Available
at: http://webhome.phy.duke.edu/˜rgb/General/dieharder.php.

Cha, S.-C., Yeh, K.-H., and Chen, J.-F. (2017). Toward a robust security paradigm
for bluetooth low energy-based smart objects in the internet-of-things. Sensors,
17(10):2348.

Checkoway, S., Niederhagen, R., Everspaugh, A., Green, M., Lange, T., Ristenpart, T.,
Bernstein, D. J., Maskiewicz, J., Shacham, H., and Fredrikson, M. (2014). On the
practical exploitability of dual {EC} in {TLS} implementations. In 23rd {USENIX}
Security Symposium ({USENIX} Security 14), pages 319–335.

Collotta, M., Pau, G., Talty, T., and Tonguz, O. K. (2018). Bluetooth 5: A concrete step
forward toward the iot. IEEE Communications Magazine, 56(7):125–131.

Cypress (2019). CE221295 PSoC 6 MCU Cryptography: True Random Number Genera-
tion. Cypress Semiconductor Corporation. Available at: https://www.cypress.
com/file/404176/download.

Dinca, L. M. and Hancke, G. (2017). Behavioural sensor data as randomness source for
iot devices. In 2017 IEEE 26th International Symposium on Industrial Electronics
(ISIE), pages 2038–2043. IEEE.

Gutterman, Z., Pinkas, B., and Reinman, T. (2006). Analysis of the linux random number
generator. In 2006 IEEE Symposium on Security and Privacy (S&P’06), pages 15–pp.
IEEE.

Herrero-Collantes, M. and Garcia-Escartin, J. C. (2017). Quantum random number gen-
erators. Reviews of Modern Physics, 89(1):015004.

Huh, J.-H., Bu, Y., and Seo, K. (2016). Bluetooth-tracing rssi sampling method as basic
technology of indoor localization for smart homes. Int. J. Smart Home, 10(10):1–14.

Kohlbrenner, P. and Gaj, K. (2004). An embedded true random number generator for
fpgas. In Proceedings of the 2004 ACM/SIGDA 12th international symposium on Field
programmable gate arrays, pages 71–78. ACM.

Langley, A., Chang, W., Mavrogiannopoulos, N., Strombergson, J., and Josefsson, S.
(2016). Chacha20-poly1305 cipher suites for transport layer security (tls). RFC 7905,
RFC Editor.



MCrypt. Libmcrypt data encryption library. Available at: http://mcrypt.hellug.
gr/lib/mcrypt.3.html.

Müller, S. (2018). Linux random number generator—a new approach.

Nordic (2019). nRF52811 Product Brief Version 1.0. Nordic Semiconductor.

OpenSSL. OpenSSL Cryptography and SSL/TLS Toolkit. OpenSSL.org. Available at:
https://www.openssl.org/.

Procter, G. (2014). A security analysis of the composition of chacha20 and poly1305.
IACR Cryptology ePrint Archive, 2014:613.

Seo, H., Choi, J., Kim, H., Park, T., and Kim, H. (2014). Pseudo random number generator
and hash function for embedded microprocessors. In 2014 IEEE World Forum on
Internet of Things (WF-IoT), pages 37–40. IEEE.

Shokri-Ghadikolaei, H., Fischione, C., and Modiano, E. (2016). On the accuracy of inter-
ference models in wireless communications. In 2016 IEEE International Conference
on Communications (ICC), pages 1–6. IEEE.

SIG (2019). Bluetooth Core Specification Version 5.1. Bluetooth Special Interest Group
(SIG).

Stallings, W. (2017). Cryptography and network security: principles and practice. Pear-
son Upper Saddle River, 7 edition.

Szczepanski, J., Wajnryb, E., Amigó, J. M., Sanchez-Vives, M. V., and Slater, M. (2004).
Biometric random number generators. Computers & Security, 23(1):77–84.

Tan, H., Tsudik, G., and Jha, S. (2019). Mtra: Multi-tier randomized remote attestation
in iot networks. Computers & Security, 81:78–93.

TI (2018). CC1312R SimpleLink High-Performance Sub-1 GHz Wireless MCU. Texas
Instruments Incorporated. Revised March 2019.

von zur Gathen, J. (2015). Crypto School. Springer-Verlag, 1 edition.

Walker, J. (2008). Ent: a pseudorandom number sequence test program. Software and
documentation available at/www. fourmilab. ch/random/S.

Wallace, K., Moran, K., Novak, E., Zhou, G., and Sun, K. (2016). Toward sensor-based
random number generation for mobile and iot devices. IEEE Internet of Things Jour-
nal, 3(6):1189–1201.

Wang, Q., Su, H., Ren, K., and Kim, K. (2011). Fast and scalable secret key generation
exploiting channel phase randomness in wireless networks. In 2011 Proceedings IEEE
INFOCOM, pages 1422–1430. IEEE.

Willers, O., Huth, C., Guajardo, J., Seidel, H., and Deutsch, P. (2019). On the feasi-
bility of deriving cryptographic keys from mems sensors. Journal of Cryptographic
Engineering, pages 1–17.

Zhu, H., Zhao, C., Zhang, X., and Yang, L. (2013). A novel iris and chaos-based random
number generator. computers & security, 36:40–48.


