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Abstract. This work did ample research on techniques used by advanced threats
that aim to evade detection systems, elevate privileges and manipulate objects
in a modern OS kernel, using the Windows 10 kernel as a test bench. Given
state-of-the-art attacks in kernelspace, this work’s main goal is to design a se-
cure mechanism to protect the OS kernel against a class of attacks, not relying
upon any specific vector. This mechanism is based on hybrid virtualization and
combines the advantages of Type 1 and 2 hypervisors, where the hypervisor
runs at the same level as the OS kernel does, but within a privileged execution
framework. The design of this security framework allows for the integration
with other security subsystems, by providing security policies enforced by the
hypervisor and independently of the kernel.

1. Introduction

Modern OS kernels are built with security as a moving concept, where many approach
were made to decrease the kernel overhead, enhance user-level switch and performance,
with security policies integrated as best practices or bug fixing. This introduced in many
aspects behaviors which were exploited by attacks in the fashion of OS design, as the first
wildly use of buffer overflow attack, by the Morris Worm [22]], or many user privileged
elevations in Windows User Account Control[7]. Although, over the years, these attacks
demanded changes in the design concept of any modern OS, as in dynamic libraries,
process, and memory organization, most sophisticated attacks nowadays are still abusing
in some fashion the behave of the OS to provide userspace services. These exploited
behaviors are unlikely to be patched or change any time soon by being intrinsic in how
the OS is built, and by the high attacks sophistication demanded, usually named Advanced
Threat.

Advanced Threats usually elevate to, or resides, in the kernel environment, using
sophisticated attack vectors to evade threat detection tools—which usually operate on the
kernel side—and obtain privileged execution while controlling the kernel. Those threats
abuse the OS behavior, usually manipulating kernel objects directly or interacting with
any other kernel interface in the userland. One of the most common vectors of attack,
manly present in Windows, is the Direct Kernel Object Manipulation[6]].

Historically, Windows is the most targeted OS by all kinds of threat scenarios and
vector by its high market share and how the OS itself works. Since Windows 7, Microsoft
changed the OS design and slowing have been enforcing new security approach to user-
level, with Windows 10 being the most recent and sophisticated release of Windows. The
main difference between Windows 10 and other OS, including its past releases, is the use
o virtualization as a security layer for the kernel itself. Many subsystems were introduced
as the Hypervisor-protected Code Integrity (HVCI), Credential Guard (C.G.)[21], and



Virtualization Based Security, which uses Hyper-V as smaller scale virtualization. This
change in the design was not new, over the years, academic and industrial solutions were
made using hypervisor as a security abstraction to the OS

Although introducing the use of virtualization into Windows 10, Microsoft fo-
cused on protecting critical parts of OS from being tampered, but it did not change any
previous behavior abused by advanced threats, e.g., direct kernel object manipulation.
The last Microsoft Security Intelligence Report [10 demonstrated that the same threats
from the past ten years still hitting Windows 10. With phishing attacks and botnets being
the most common scenario, with 2018 settling down as a year of increasing ransomware
botnets, 2019 had the lowest ransomware rate since 2016. Although highly advanced and
persistent threats—usually attack resilient in the kernel side—are not present, this ab-
sence does not imply the non-occurrence of a sophisticated attack vector, it does indicate
that advanced threats are not a common threat for standard users. The Threat Intelligence
report [1] presented by Kaspersky evinces that highly advanced threats are becoming sur-
prisingly common toward strategic users, i.e desktop users with a leading position in an
organization.

Thus, Windows 10 still the most target OS with the majority of threat samples,
evasiontechniques, and bad practices in the OS, mitigated in a long chain of checking
inside the kernel. With that in mind, this work represents the ongoing development of a
virtual machine manager as a secure framework, built to deliver particular security poli-
cies to the OS running, using Windows 10 for benchmark the proposed secure mechanism.
This mechanism is based on hybrid[S] Intel Vt-X[9] virtualization, combining the advan-
tages of Type 1 and 2 hypervisor, where the virtual machine manager runs at the same
level as the OS kernel, avoiding the semantic gap[4] frequent in virtual machine(V.M.)
introspection; when the OS runs in the top of the hypervisor, who needs to pause the V.M
to interfere within the kernel behavior, memory accessor any other hardware event.

The use of security policies comprehends changes in the OS kernel’s behavior,
enforcing the best practices in some scenarios, or even blocking entering a behavior, such
as avoiding any direct access into the kernel objects. This approach differs from the
one used by both academic and industrial solutions, by seamlessly interfering in a kernel
subsystem to avoid or change behavior by the hypervisor perspective. The main objective
of these changes is to provide a security policy already existent and validated in a given
subsystem of an OS within another OS For instance, the Discretionary Access Control
(DACL) used in kernel objects on many Unix OS are not used in Windows by default[[18]],
but a hypervisor can easily enforce it without changing Windows’s kernel or breaking
retro-compatibility of kernel drivers; which is the reason Windows does not enforce it by
default.

Although the core of the hypervisor is made independently of any OS kernel, using
the Intel Vt-X instruction set and how the processor architecture works to the OS kernel,
its policies handlers must be made exclusively to a given OS; in this stage of develop-
ment, its made only to Windows 10 kernel interface. Besides the possibility of applying
security policies absent in Windows, the choice to focus on developing the handlers first
for Windows is because of the vast universe of attacktechniques and samples available.
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Thus, one of the first stages of this work started by researching the most critical
and inherent attack superficies of Windows 10, searching approaches capable of manip-
ulating Windows privileged objects, while being able of work undetectable by anti-virus
engines or any security framework available in Windows, relying exclusively on its fea-
tures or in the behavior of kernel interfaces. This stage’s first results were kernel attacks
through a device driver’s object, resulting in the physical memory access by an unpriv-
ileged user. These attacks were reported and received CV numbers 2018-8060 and
8061 [27]. This result was used in combination with public kernel and third-party drivers
exploits, to ensure that the protection is empirically working for real-world threats, in-
cluding ones previously unknown.

The rest of the paper is organized as follows. Section 2 describes techniques
used to bypass and manipulate the protection system, using only Windows 10 features.
This section also contains an approach for Direct Kernel Object Manipulation (DKOM).
Section 3 presents the state of the art of security hypervisors capable of reducing part
the attack surface described in Section 2. In Section 4, the security framework and its
hypervisor is described. Section 5 includes the achieved results on this development stage,
by mitigate a widely class of attacks. Finally, we conclude the paper in Section 6, with
the next steps to be made into this work..

2. Windows abuse scenario

Almost all abusing in Windows relies on some fashion into its internals, i.e., not exposed
functions or services. The WinAPI is the regular programming interface that exposes
features and capabilities available to a specific version of Windows. It is separated into
three architectural sets, NET API, Windows Runtime API (WinAPI), Windows Win32,
and COM API. What is usually called internal API is the NtAPI, because it is the API used
by all sets of the WinAPI to provide the features and services available in the userspace.

Usually, the WinAPI is just a wrapper to a NtAPI call, for example, doing the
dynamic allocation of structures and handling errors in kernel standard (NtStatus) to a
more readable error standard. Although the internal tag is usually referenced to functions
with Nt in its name, e.g., NtClose, it can be other Windows function naming standard, as
Ldr or Zw symbolic naming, e.g., LdrRegisterDIINotification or ZwWriteVirtualMemory,
for the loader or kernel namespace. As an example, the WinAPI function OpenProcess
internally uses the NtAPI call NtOpenProcess, needing more parameters than in the first
scenario. The same functionality is available to ZwOpenProcess as for NtOpenProcess
in the exported symbols for Windows kernel. The authors of the book[33] provide a
more precise and complete description of Windows Internals in all three architectural sets,
including the use of internal subsystems, such as I/O, storage, and memory management.

2.1. Handle hijacking and process impersonalization

Windows has compatibility and seamless user experience as an essential premise in its
design, by automatically serving user’s processes with a high range of functions, like
translation, program auto-compatibility, and accessibility. That ensures, for instance, that
even if a program does not offer any accessibility, Windows can read all of a program’s
text using voice service. Another example is when a program fails to run using WinAPI
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for Windows 10, and it can automatically run in WinAPI for Windows 7, without the user
ever noticing it. This is achieved by having Windows Services monitor all user processes
in execution and have multiple open handles for each process that may need intervention.
These services have handles with desire access, including memory operation and thread
control, which is enough to control the whole execution of a given process if necessary.

Although many vulnerabilities use flaws in this design to elevate privileges of the
current user while in userspace, this is not the primary goal of this section, including at-
tacks of copying or duplicating handles from the kernel side. A wide range of attacks that
rely on these vulnerabilities is in the repository of UACME]7]], including some working
in Windows 10. However, this design can be abused usually but not necessary by the
administrator against protected processes by third-party kernel drivers, e.g., anti-virus or
anti-cheat.

The Windows process Client/Server Runtime Subsystem (CSRS.exe) and Ser-
vices (services.exe) have handles to all running processes, they are executed early in the
boot stage of user-side before any non-Microsoft software and are processes protected
by the kernel, having Protected Process Light enabled. The process service.exe has one
of its purposes to create and maintain the first instance of Services Host Process (SV-
CHOST.exe), which inherits its parent handles and critical permissions. Many Windows
Services are built as a dynamic library and loaded by a child of the first instance of SV-
CHOST, but with dropped permissions. Each new instance of SVCHOST becomes a new
Windows Service, in some cases running with a user’s token and in others with the Sys-
tem token. Thus, meaning that some services in the ring of an access token from a user
can be abused to manipulate a protected process in some fashion, by obtaining its opened
handlers inherited by the parent service.

This approach is useful because most real-world protection works by registering
kernel callbacks in special WinAPI (and all its internal) functions, interposing the call,
and changing its execution. A common approach is always returning permission denied
by OpenProcess, or caping its return handle to only a set of permissions, such as Query-
Information. In this scenario, if a secure browser launched by an anti-virus solution has
the user’s permission, any user, including the administrator, cannot open a handle to it
because of the A/V capping denying the handle opening.

The given scenario can be analyzed in how the handle is managed, i.e., which
callback or action is used for the protection, and when it happens. The when is important
because some protection system also scans for open handlers to protected process to cap
or close it, so this action happens independently of the callback. That leads the attacks in
three different approaches:

e Obtaining a handle opened before the protection system registers the callbacks,
e.g., handle inherited or used by Windows services.

e Obtaining a handle by a WinAPI method that the protection system does not reg-
ister a callback, e.g., some Nt internal job queue or a WinAPI feature.

e Obtaining the handle and using it before a kernel filter, callback, or any event
registered by the protection system being dispatched by the kernel, i.e., a race
condition.



2.2. Windows kernel interface abuse

Before Windows 10 Anniversary Update, a user was able to load self-signed drivers if
Windows was booted in Test Mode, but after this update, it also became necessary to
disable Secure Boot. That introduced another guarantee to kernel-side: drivers unsigned
by Microsoft will never load inside the chain of trust started in the UEFI from the boot.
Therefore, threats started to rely upon vulnerable device drivers, duly signed by Microsoft,
to manipulate the kernel by touching its objects; structs, memory pages, and even physical
memory. This class of attacks is not new and is known as Direct Kernel Object Manip-
ulation (DKOM), the authors of [6] provides a better understanding of this subject and
demonstrate how rootkits are using DKOM to subvert modern OS

2.2.1. I/0O Control interface abusing

There are many classes of flaws that can be exploited to obtain access to kernel objects
through a vulnerable driver, like memory corruption, invalid pointer management and im-
properly ACL (Access Control List). Although the driver’s vulnerability was the trigger
used to reach the kernel-space, some of these vulnerabilities were in how an unprivileged
user can directly interact with kernel interfaces in Windows if the driver’s developer did
not manage the ACLs correctly. Unlike others OS, e.g., Linux or BSD, where all ker-
nel interfaces are considered privileged objects demanding special groups or capabilities,
some kernel interfaces in Windows are by default accessible by a regular user. One of the
most used interfaces for DKOM and other attacks is the Device Input and Output Control
(IOCTL) interface, which I/O Request Packets (IRP) are sent when a particular operation
occurs in the driver’s device object, i.e., I/O interface.

The driver I/O interface is created with loCreateDevice, and if no Discre-
tionary Access Control List (DACL) is explicitly defined, it by default give full access
(GENERIC_ALL) to the administrator, and R/W/E access E] to every other user. The
driver can use or allocate general-purpose IRP with defined Major Functions (M.F.), such
as create/close or allocate a new IRP, with IoBuildDeviceloControlRequest, to handle de-
vice control request synchronously. The descriptor structure for a driver object contains
an array of function pointers, each pointing to an M.F. for dispatching and handling the
driver operation from and to the user-side. It is in the dispatch function that the driver can
handle each I/O control code from each IRP separately, and act according to the functions
provided to userspace.

Due to the permissions available to interact with this kernel interface by an unpriv-
ileged user, attacks that abuse this interaction usually attempts to elevate the user privi-
leges or evade protection systems from the kernel-side. The most straightforward way to
achieve this is by using an IOCTL, which allows read or write on a memory page in the
kernel-side, thus abusing a regular feature of the driver to operate maliciously. With that
in mind, a threat has to use the device driver without exploring any specific vulnerability
besides permissive and default ACL, to be able to manipulate a kernel object directly to
elevate its privileges. Even out of a privileges elevation scenario, exploiting third-party
drivers have the benefit of being ever vulnerable because they certificate hardly are revo-
cated, thus continuing valid after a patch is released. So the vulnerable version can be
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turned into a kernel-side toolkit, where an already elevated threat can use it to manipulate
the kernel by loading the vulnerable version and exploiting it.

2.3. Empirical proof of conception

Therefore, to prove that it continues to be possible to abuse IOCTL from device drivers
in the last release for Windows l(ﬂ relying exclusively on lousy ACL and lousy security
approaches by drivers, one of the most popular software for monitoring the hardware
for Windows was tested: Hardware Monitor (HWMonitor x64). This software relies
on a user software to display sensors, e.g., core and memory temperature and cooler
frequency, and on a device driver to do all the actual reading and writing to the hardware
interface. The user interface controls all the driver actions through IOCTL, from reading
CPU capabilities to controlling cooling policies.

Similarly, with other drivers with ACL flaws, an unprivileged user can issue
IOCTL to the driver directly, using all of its interfaces with the hardware. Reverse en-
gineering, the device driver revealed many operations capable of manipulating CPU reg-
isters and I/O ports, allowing direct access to physical memory for reading and writing.
All the flaws discovered were reported to the software maintainer, and the two most criti-
cal (CVE 2018-8060 and 8061 [27]) were reported to the Mitre Common Vulnerabilities
and Exposures (CVE) after being fixed in the stable branch of HWMonitor. With this
attack, an unprivileged user achieved direct access to physical memory, including access
functions to read or write virtual kernel addresses, thus, having full control of all kernel
space.

3. Related works

The use of a VMM (Virtual Machine Manager), also known as a hypervisor, to moni-
tor or interfere with the execution of an operating system, became a recurrent field of
research. Among the reasons, the migration of threat to the kernel space, as rootkits
or event bootkits, hasten security specialists to migrate efforts to this field. One of the
first public attacks using virtualization technology to subvert an OS entirely was also a
bootkit, the Bluepill[25] attack first presented at Black Hack Conference. The authors of
[13] proposed other means of using virtualization to the same goal of Bluepill, using it as
a parameter of available public attacks.

The use of a hypervisor, can be made by two fashion: introspection, or within
OS’s execution. Hypervisors Type 1 or 2 conventionally demands the introspection ap-
proach, by acting outside the OS context of execution, usually stopping the Virtual Ma-
chine (V.M.) before acting. On the other hand, a hybrid approach is implemented by a
kernel or a kernel module, which runs part in the context of the OS and part in the VMM
context as well. Being able to act without stopping the V.M., using kernel structures and
functions, the hybrid hypervisor reduces the overhead and nullifies the semantic gap [4]
present into introspecting the V.M. Therefore, having a context of execution with higher
privileges them the OS kernel, is an explored approach for kernel security and advanced
threats mitigation, by having an isolated environment through CPU virtualization tech-
nology.

“Release 1809 in the time of attack.



3.1. Academic hypervisors

Works as Overshadow|[2], InkTag[8], SymCall[14], uses a similar approach of hypervisor
Type 1 introspection by manipulating the page mapping of physical memory to guarantee
security demanded on each specified scenario. The authors of Secvisor[26] proposes a
system in which a trust-worthy user’s process can verify an untrusted OS behavior and
code, with a small degree of assistance from a small and trusted hypervisor.

However, these works mentioned can be categorized as a conceptual approach, as
they do not stress its solution against any real-world threat or even a predetermined attack
scenario that does not rely on conjectures. More recent works provide a more technical
and real-world approach as HyBIS [24]], which uses the VirtualBox extension interface to
do the introspection for analysis Windows’s kernel structures of process. It uses Rekall
Forensics [28] alongside with the introspection to dynamic dump portions of the memory
without pausing the V.M. With this approach, the authors can detect and stop rogue and
hidden user or kernel threat, commonly used by advanced and persistent threats to run
and sustain code execution.

In contrasty with HyBIS, the authors of U-HIPE [[15] developed a hypervisor for
hardware virtualization using Intel Vt-x and an introspection approach to protecting the
user and kernel space. This solution mainly aims to monitor guest virtual machine’s
(V.M.) memory pages, protecting components as process’ thread stacks, heaps, and load-
able modules to be read or written by threats. The protection is achieved by using Ex-
tended Page Table (EPT)[9], which is the Intel implementation of Second Level Address
Translation, and providing an Input/Output Memory Management Unit JOMMU) to the
V.M. Using these technologies, U-HIPE is capable of intercept the mapping between the
guest-physical, host-physical and direct memory access (DMA) with IOMMU, to hook
user and kernel structs or functions.

The author alleged that U-HIPE was stressed against polymorphic/packed mal-
ware, hook, and code injection to interfere with process execution. However, they did not
test it for any recent —in the time of the work— malware family, exploit or hook/injection
techniques. The use of an exploit for Microsoft Office 2007 and the rootkit Zeus from
2009 in the year of 2015 may not correctly show the efficiency of the protection for more
recent advanced threats.

3.2. Industry hypervisors

As a result of the rising of advanced threats in the desktop environment, the industry also
started to provide solutions based on a hypervisor protection system. In contrast to the
academics related works, the industry approach was motivated to protect against up to
date real-world threat. The first to hit the market was Kaspersky Secure Hypervisor [12]
in 2016, which was designed to work as a Type 2 hypervisor, running at the top of a
micro-kernel (KasperskyOS). It works by providing secure domains in the virtualization
concept, allowing the communication between the domains following predetermined rules
and heuristic. Each domain work as memory isolation for V.M., where the hypervisor
arbitrates each access. Although protected by patents and industrial secrecy, its work is
very similar to academics works as U-HIPE or a community project as Qubes OS [23]].
Qubes OS is from the same author of the Bluepill, and it is an OS that divides tasks into
groups according to each hardware isolation domain, using the Xen Project as the base



hypervisor.

After being in closed tests for business partners and government agencies, in 2018,
Microsoft delivered a protection system for the public using a hybrid hypervisor within the
OS The protection was integrated into the Microsoft Windows Defender Advanced Threat
Protection (ATP) [19], working at the top of the Windows’s kernel and through nested
virtualization technology. This fashion of virtualization allows the security hypervisor
to run even if the environment already had another hypervisor, as in a Virtual Machine
or by other Windows 10 virtualization technology, for instance, Windows Early Launch
AntiMalware [20] or Device Guard [21]].

The primary workload of Windows ATP is to monitor the interface between user-
level and kernel services, e.g., IOCTL or kernel filters, and sensoring kernel memory and
its internal access, i.e., device drivers access to physical memory. This monitoring and
sensoring result in reports to the administrative panel, where the user can check if there
is any anomalous behavior in-kernel interface or its internals, for further investigation.
The Windows ATP Research Team published a report [17], where they demonstrated how
an anomalous behavior by a Huawei device driver detected by Windows ATP, led to an
investigation which resulted in a privilege escalation flaw published as CVE-2019-524.
Although this protection system can detect and report anomalous behavior, according to
Microsoft kernel analysis, it cannot stop any attack from happing in the system, besides
generating reports which can lead to patching these flaws.

4. Lokke security hypervisor

This work’s objective is to design a mechanism to harden the kernel space against any
advanced kernel threat’s class of attacks, not relying upon any specific vector of attack,
but in security policies enforced by the hypervisor. Complementing the afore-mentioned
reviewed works, including the industry solutions, the approach of virtualization chosen
was the hybrid virtualization approach, where the Virtual Machine Manager VMM (or
hypervisor) can run side by side with the OS kernel, virtualizing when needed only the
CPU and memory access.

This hybrid approach allows the solution to be partially independent across mul-
tiples OS, as the VMM runs in a more privileged execution context than the OS kernel.
Therefore any specific OS operations can be made either in OS context of execution (e.g.,
device driver) or in the VMM virtual CPU handlers, like the ones for V.M. memory or
register access. The proposed solution first aimed to work and solve the Windows 10
threat scenario, but the built infrastructure can be integrated into other OS; this possibility
will be covered in future steps of the research.

4.1. Technologies involved

Virtualization technologies are dependable on the specific set of instructions in the CPU,
even when on the same architecture. There are many hardware virtualization technologies,
e.g., Intel Vt-X, AMD-V, ARM-VEX, but the hypervisor core cannot support simultane-
ously more than one, as a consequence of the instruction set. For this reason, just one
technology was chosen, the Intel VT-x [9], mainly because of the higher market share of
its CPU, better architecture documentation, and better support for nested hypervisor in
industry virtualization solutions. The last criteria mean that the proposed solution can run



in environments already virtualized, where the OS is at the top of Type 1 or 2 hypervisor.
Along with Intel’s Virtual Machine Extensions (VMX), from Intel Vt-X, the hypervisor
will also use the following Intel extensions: EPT, for Second Layer Address Translation
(SLAT) and Vt-D, for I/O Memory Management Unit IOMMU).

The use of EPT is to protect memory pages, by intercepting the mapping between
the guest-physical and host-physical addresses resolution with SLAT, imposing restric-
tions to the protected addresses when needed. This protection may be insufficient, as the
authors of the work[32] demonstrated an attack in the Direct Memory Access (DMA)
to overlap Intel Vt-D protection for a driver’s memory domain. Therefore, [IOMMU is
needed for similarly intercepting DMA as for physic addresses resolution.

In the early stage of research, one hypervisor was built using the Intel Architec-
tures Software Developer’s Manual[9]], including its examples, to understand the basics
of architecture and CPU extension provided by Intel. This barebone hypervisor was build
to mainly be a testbench for interrupt and exception handling, multi-processor support,
virtual machine extensions (VMX) instructions, and the Intel Virtualization Technology
(V.T.). Although it was technically working as a hypervisor, i.e., being able to create
virtual CPUs, it was not compatible with any modern OS

A modern hypervisor needs to simulate or be able to bypass a bunch of hardware
events without interfering on its execution or behavior, risking break the OS kernel or
even its execution, i.e., handling a hardware interruption without a proper handler. For
this reason, building a hypervisor that works and is compatible with any OS is an entirely
different workload. Common hypervisor misbehavior with the OS is inherent in how the
second registers the Advanced Programmable Interrupt Controller (APIC) for each CPU
or the presence of Unified Extensible Firmware Interface (UEFI) in the boot chain, which
can break the hypervisor flow to the OS

Therefore, to build a security system based on a hypervisor and not build an utterly
new hypervisor from scratch, the project used two open-source and public hypervisors
solutions. The first one was SimpleVisor[11]], a simple and almost barebone hypervisor
for Intel Vt-X, which is compatible with Windows and UEFI. Although it is not tested to
boot Windows or any OS, the valuable part of its development for the proposed solution
is in its simplicity. The routine to handle the entry of a Virtual Machine and capture the
OS context is built in just ten instructions, making the security hypervisor both functional
and simple. The other project used as a base to the proposed solution is Bareflank[3], a
lightweight hypervisor SDK build and tested to work for Windows or Linux with UEFI.
Thus it can be considered lightweight, mainly because general-purpose hypervisor can
be so complex as an OS kernel itself; it is built to provide routines and features to other
hypervisors as an SDK.

4.2. Hypervisor workflow

The Virtual Machine Extensions (VMX) instructions set provides Intel’s CPU with the ca-
pabilities to create Virtual Machine and hypervisors, or Virtual Machine Manager. Those
instructions, also called VMX operations, are divided into two modes of operations, root
and non-root operation. The VMX root operation is used by the hypervisor to create and
control the virtualized environment, while the guest software uses the non-root operation.
The creation of a virtual environment is done by calling the vmxon instruction, which



enters the logical CPU into a VMX root operation.

From this moment, there will be logical CPUs, inside a VMX root operation,
and virtuals CPUs in a non-root VMX operation. Inside a root operation, the hypervisor
configures each of the V.M. by filling a structure named Virtual Machine Control Structure
(VMCS), this configuration defines the level of virtualization and the behavior from both
logical and virtual CPU. Consequently, the hypervisor now controls the logical CPUs,
being able to control the hardware and its events, and the virtualized software as the OS
In the other side, the virtual CPU is in a non-root VMX operation, have limitations in
comparison with a no virtualized environment, i.e., some instructions now pass through
the hypervisor, generating a transition named V.M. Exits.

While in a VMX context, there are transitions between the root and non-root VM X
operation, named VMX Transitions: to non-root VMX are called V.M. Entries and to
VMX root are called V.M. Exits. Those transitions are swap of context between the
hypervisor and the virtual machine. The hypervisor can configure handlers for specific
V.M. Exits, handle those events according to its need, and then give the execution back
to the V.M. with a V.M. Entry. V.M. Exits are significant for the security hypervisor, as
they represent events where the hypervisor can execute its heuristic and controls the OS
if needed.

4.3. Security Hypervisor

The security hypervisor was tested first as a Windows 10 kernel driver, as the driver runs
with kernel’s privilege, it starts the virtualized environment doing a VMX operation to
create the hypervisor. Although the hypervisor can fully control the CPU when in the root
operation, it can brick the OS context of the execution or lead the CPU to an unknown
state if it calls any kernel function. That happens for many reasons, as the need for all
hypervisor’s code is already cached in the CPU or the use of Special Register in kernel
calls, which can lead to inconsistencies when doing V.M. Entry. Thus, any work did by
the hypervisor must be done exclusively by its functions and CPU instructions. For this
reason, the security system is divided into three parts:

e Module infrastructure: contains all the functions to interact with the user and
kernel space, and the calls to create and start the hypervisor.

e Common infrastructure: inside the driver context, a set of structures for data to
I/0 between the kernel and hypervisor.

e Hypervisor infrastructure: all functions to manage the virtual machine and a set
of handlers to control its behavior according to the security policies.

The common context includes, for instance, data from functions as PsLookupPro-
cessByProcessld, which returns the structure EPROCESS, used to iterate in all processes
of the OS The hypervisor handlers can interfere in how the hardware is accessed from
the V.M., e.g., access to physical memory, DMA and special registers, as CR3 or CR4.
The work to be done by the kernel driver, besides starting the hypervisor, will be limited
to gathering information to the hypervisor. This information is used by the hypervisor,
avoiding the need to scan memory regions across it. An example of data gathered is
the pointer to the EPROCESS queue or the list of registered callbacks in the kernel. All
the security policies and approaches for control and protect the Windows kernel or the
hypervisor itself will do this process.



As stated before, the hypervisor is developed to work more like a security infras-
tructure, for this reason, the first stage of its infrastructure was dedicated to which V.M.
Exit reason it can handle to interfere with Windows execution with the minimum over-
head. Therefore, one of the prototypes added handlers to Control Register (C.R.) access.

These register controls or changes the CPU’s behavior in the execution context,
as the interrupt control, addressing mode switching or paging control. Some registers, as
CR1 or CR4, are bitmaps with a series of flags or control information, and in the Intel 64
arch, a new set of registers were added, as the Extended Feature Enable Register (EFER)
enabling the SYSCALL/SYSRET instruction. Thus, adding handlers for specifics reasons,
the V.M. will generate V.MExits to the hypervisor, so it can both do its heuristic and
enforcement of policies if any was added.

With that in mind, every time the V.M. executes an action in which a handled
C.R. register is accessed, the hypervisor can control its access, and some times, execute
a security policy. For example, every time the Windows kernel is switching a process
context, it uses the lowest 12 bits of CR3 to store the process-context identifier (PCID),
when the PCID Enable bit in CR4 is set. In this scenario, the hypervisor can intercept a
process switching before it happens, which can be used for many security policies, e.g.,
stop a rootkit from starting a rogue process inside the kernel context.

Another VMEXxit handling implemented was for Extended Page Table (EPT),
which adds a second translation phase for the guest’s virtual address (GVA) into a physi-
cal address, named guest’s physical address (GPA). EPT can have access rights for GPA
if enabled by the hypervisor, with three different access types: read, write, and execute
access. If access is denied for some reason, the corresponding access type on the guest’s
physical page will trigger a VMEXit, which is then handled by the hypervisor according to
its security policies. That is used in the protection against attack scenarios researched and
described in Section 2, where a user process can access kernel objects directly. Therefore,
by providing an infrastructure to regulate and enforce security policies when needed in
the hypervisor core, it can be flexible enough to not only protect against a specific vector
of attack but protect against the threat inherently in the OS behavior.

5. Real-world threat mitigation

The first stage of this work is concluded and shows promising results by using the hypervi-
sor’s infrastructure to mitigate process security token elevation. In Section 2, a repository
(UACME) [[7] of techniques using Windows’s features to process elevation was presented,
as its attacks weren’t blocked by the works described in Section 3; Windows ATP can de-
tect but can’t block any out-of-the-box. Many of UACME attacks change a process’s
access token [16] to one with elevated permissions, by subsequently testing each attack
until one of 62 attack works. To test Lokke’s efficiency, Windows 10 release 14393 image
was used, so all attacks still unpatched. The first test of the hypervisor’s infrastructure
was to mitigate process security token elevation, by copying or duplicating an elevated
process token access to the attacker process. This attack generally happens in two sce-
narios: 1) After hijacking an elevated process execution, which copies a privileged access
token to the attacker process; 2) Having kernel object manipulation, where the attacker
process iterate among system process to copy the access token to the attacker process.

To mitigate both scenarios without the need to know any attack internals, i.e.,



know each possible scenario’s particularity, the security policy was to enforce no token
elevation. Windows has mechanisms to manage access token, which includes the security
permissions. Two Windows API functions make this managementﬂ where one allows
enabling or disabling available privileges in the token, and the other creates a new token
with limited privileges based in the one owned by the process. The unique legit way to run
a process with elevated privileges is if an already elevated process creates a new process,
or if the PE32’s manifest contains the need for elevation, which is done by User Account
Control (UAC)[16] before the process is launch. Thus, there is no legit way to a process
having its access token elevated beside an attack.

With the access token assurance, the hypervisor can control all process token,
watching if any privileged process, e.g., system services, does not have its token copied,
and monitor if any nonsystem process has its token elevated by any means; which can
indicate a Windows security flaw. This security policy is done using the following security
system infrastructure: EPROCESS pointer passed from kernel driver to hypervisor, CR3
VMEKXit handler, and the kernel work queue for thread termination; this queue is used to
force a thread being gracefully terminated by the kernel scheduler.

The hypervisor code to control this policy is added inside the VMExit handler of
CR3 access. After the first VMEXit happens, the following acts take places:

1. It follows the SMSS’s EPROCESS field ActiveProcessLinks’s ForwardLink
pointer, which points to the next process until all process is accessed.

2. For each process, adds its PID into the hash table, indexing a copy of the process
token.

3. Any process which has a privileged token, e.g., system process, is added in a
special list inside the hypervisor’s memory.

After this initialization, the hypervisor checks whenever a process context swaps,
by CR3 access, and verify its token with the one copied in the controlled list. If the
token was elevated, the process is added to the termination queue. Having this security
policy, 50 of 62 attacks in UACME’s repository failed, although they worked without
the hypervisor protection. The 12 attacks that were still working were not token hijack
or elevation, relying on Windows bug, as technique 61 or 57, where an already elevated
thread or process executes the command but does not change any access token. Other
attacks as 6, 11 or 54 works only in past versions of Windows or exclusively on 32 bits
architecture.

Debugging the Windows kernel for any of 50 attacks indicated that the elevated
process was terminated before it went into execution, after having the token changed. As
the UACME does not use any kernel attacks, another test was made using the discov-
ered HWMonitor’s driver flaw([27]], to access the physical memory directly and change a
dummy process’s token to another with system privileged; the dummy process was killed
before it went to execution as expected.

6. Conclusion

The results so far demonstrated the security system’s potential to enforce security poli-
cies seamlessly for the Windows kernel, without knowing the specific vector of attack,

3 AdjustTokenPrivileges and CreateRestrictedToken
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besides the behave that is abused. The approach of change a kernel behave without doing
introspection or change in the kernel’s code proved to be efficient and seamless. VMWare
vSphere Management SDK[31] was used to metric the deviation of the overhead from
the virtualized Windows kernel, and it when nested virtualized with Lokke’s hypervisor,
resulting in a lower than 1% deviation for both memory and CPU use.

It is expected that in the next steps, with full support for Second Layer Translation
(SLAT) and IOMMU, the hypervisor been mature enough to be tested against sophisti-
cated rootkits, which tries to hide inside the kernel or uses the own hypervisor to avoid
detection. Although not fully implemented yet, the Intel PTE extension handlers can
intercept physical memory access through SLAT and avoided tree critical Windows 10
exploits from working, including the HWMonitor’s exploit. These attacks were blocked
by the policy of memory access being made from userspace directly to kernelspace. They
are:

e Asus Memory Mapping Driver (ASMMAP) [30]: able to map or unmap to at-
tacker process the physical memory device, with R/W permissions.

e Intel Network Adapter Diagnostic Driver 1QVW64)[29]: able to do a large set
of operations, such as R/W kernel virtual memory or allocate/deallocate memory
pool.

This workload is similar to how Supervisor Mode Access Prevention (SMAP)
works on Intel Broadwell and newer microarchitecture; its intrinsic work can be found
starting at page 408 of Intel’s manual[9]. SMAP is not enabled by default in many Win-
dows 10 desktops, and even if enable, Windows does not monitor the correspondent CR4
bitmask changing, allowing kernel exploits to bypass this control. The use of the Intel
PTE to control memory access, and not only guarantee CR4’s integrity to SMAP, was
made to test the PTE handlers and workload. In the future, SMAP and SMEP (Supervisor
Mode Execution Prevention) will be enforced by trivially handling CR4 access, in combi-
nation to support to kernel memory leak and direct kernel object manipulation protection.
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