
KafkaProxy: data-at-rest encryption and confidentiality
support for Kafka clusters

Fábio Silva, Matteus Silva, Andrey Brito

1Laboratório de Sistemas Distribuı́dos – Departamento de Sistemas e Computação
Universidade Federal de Campina Grande (UFCG)

58.429-900 – Campina Grande – PB – Brazil

{fabiosilva,silvamatteus}@lsd.ufcg.edu.br, andrey@computacao.ufcg.edu.br

Abstract. Apache Kafka has become a popular tool for building distributed sys-
tems. It supports a diversity of use cases that benefit from decoupled N-to-M
communication such as publishing IoT data, decoupling and load-balancing
microservices, and serve as a central hub for data in a distributed application.
Nevertheless, Kafka’s security is restricted to encrypted communications and
authentication, leaving data unprotected in memory and on the disks. In this
work, we design and implement a transparent, drop-in component that provides
encryption to incoming and outgoing data in a Kafka cluster. Our component
leverages confidential computing techniques not only to ensure data-at-rest en-
cryption, but also to protect data and encryption keys from the operators of the
Kafka Cluster. Our evaluation shows that the KafkaProxy can handle message
streams with latency overhead of around 10%. Finally, in cases where through-
put is impacted, simple replication of the KafkaProxy can mitigate the issue.

1. Introduction
The publish-subscribe (pub-sub) communication paradigm is suitable for distributed ap-
plications of all sizes due to how it favors decoupling [Eugster et al. 2003]. In most im-
plementations of such systems, data sources, named publishers, generate data in the form
of events submitted to a set of brokers that intermediate the communication with the enti-
ties interested in those pieces of data. The consumers are named subscribers and register
themselves with the brokers to signal their interest in certain data streams. The brokers’
job is then to efficiently manage the storage and delivery of data, no matter if there is none
or many interested subscribers.

In this work, we consider topic-based pub-sub systems [Eugster et al. 2003]. In
these systems, the publications are organized into topics. Thus, publishers send messages
to a topic, and subscribers register to one (or more topics). The most popular open-source
system for pub-sub is Apache Kafka1. Apache Kafka is topic-based and has become very
popular, being used as ingress and temporary storage for a wide range of applications,
from IoT to large-scale microsservice ecosystems. Nevertheless, security in Kafka is
restricted to encrypted communications and authentication, leaving data unprotected in
memory and in the disks.

As more applications are built over richer and more sensitive data and use Apache
Kafka as a hub, the lack of encryption creates a considerable surface area for attacks that

1https://kafka.apache.org/

steal or expose data. Although this problem may seem manageable at first sight, it is
far from trivial. First, some companies provide proprietary solutions that transparently
encrypt Kafka data before they are written to disk. Cloudera Navigator Encrypt2 and Vor-
metric Transparent Encryption3 are examples. Nevertheless, the data will be unencrypted
in memory, where encryption keys will also be available. Thus, such approaches reduce
risks such as data being recovered from decommissioned disks or data being easily (or
acidently) exported from the machines, but still leaves the system vulnerable to attackers
with access to the Kafka cluster machines, who can steal data from the memory.

Second, applications may want to encrypt data themselves, before publishing to
the brokers. Following this approach requires data-producing and data-consuming appli-
cations to manage encryption keys, which is also not trivial as keys need to be distributed,
rotated and revoked. Finally, some less-popular pub-sub alternatives (such as Apache
Pulsar4) may facilitate the encryption by having client libraries to transparent encrypt
messages. This simplifies key exchange protocols, but still requires complex coding and
key-management protocols.

In this work, we propose KafkaProxy (KP), a component that sits between the
Kafka cluster and its publishers and subscribers. It has the following features: (i) To en-
able transparency, it implements the Kafka protocol and, thus, sits transparently between
the cluster and the clients; (ii) To protect data at rest, an instance encrypts the data that is
published by the consumers, before it is handed to Kafka, and decrypts it before handing
to subscribers; (iii) To protect encryption keys and enable simple and efficient revocation,
it relies on Intel Software Guard eXtensions (SGX) [Mukhtar et al. 2019] to protect the
integrity and confidentiality of the encryption and decryption processes.

The rest of the paper is organized as follows. In Section 2, we provide some
contextualization of the related technologies and of our use case. In Section 3, we detail
the construction of the KP. Section 4 evaluates the KP and Section 5 discusses related
work. Section 6 summarizes the contributions and suggest some future works.

2. Background
In this section, we briefly present the publish-subscribe communication paradigm, Intel
Software Guard eXtensions (SGX), confidential computing, and our use case.

2.1. Publish/Subscribe
Also known as distributed event-based systems, publish-subscribe systems enable decou-
pled communication, which fits the requirements of large distributed applications. Pub-
lishers, subscribers, and brokers compose this kind of system5. Publishers send structured
messages (events), and the broker routes the messages to subscribers interested in that
kind of message. The publish-subscribe paradigm offers decoupling in three dimensions:

• Space: there is no direct communication between the publishers and the sub-
scribers; explicit addresses do not need to be known;

2https://docs.cloudera.com/documentation/enterprise/latest/topics/
navigator_encryption.html

3https://cpl.thalesgroup.com/encryption/vormetric-transparent-encryption
4https://pulsar.apache.org/
5Although some implementations refrain from using a broker, this considerably impacts the decoupling

needed for many microservice and IoT applications, with dynamic participants or intermittent connectivity.

• Time: subscribers will receive the produced messages eventually, without needing
to be simultaneously online;
• Synchronization: the notification mechanism for the subscribers is asynchronous;

that is, they are notified concurrently with other activities.

2.2. Cloud computing and data leaks

The adoption of cloud computing has grown in the last decade. Scalability, reduced costs,
and flexibility are the main reasons for that growth and a considerable portion of enterprise
workloads now executes in the cloud. Moreover, most companies choose public clouds
because of the cost. As the usage of cloud computing increases, the risk of data breaches
also increase, breaches which often happen as consequence of attacks to the infrastructure.

Adebayo defines a data breach as an incident in which sensitive, protected, or
confidential data has potentially been viewed, stolen, or used by an unauthorized indi-
vidual [Adebayo 2012]. Various strategies, alone or in combination, have been applied
to prevent data breaches, such as secure communication channels and encrypting data
at rest. Although these strategies make it difficult for an attacker to leak sensitive data,
someone with privileged permissions on the infrastructure where the applications run can
still access the data. Eavesdrop the data in processes or leaking the encryption keys used
are examples of what someone with high privileges can do.

2.3. Intel SGX

Intel Software Guard eXtensions (SGX) is a set of instructions and changes in mem-
ory access mechanisms added to the x86 architecture. It is a hardware-assisted Trusted
Execution Environment (TEE) that allows an application to create a protected area in the
application address space referred to as an enclave [Mukhtar et al. 2019]. These protected
memory regions have access control enforced by hardware. The SGX-enabled processor
checks the operating system’s memory mapping decisions, ensuring that non-enclave code
cannot access enclave memory pages. Moreover, the processor encrypts all the memory
pages in the Processor Reserved Memory (PRM) [Maene et al. 2018].

Unfortunately, the PRM is extremely scarce currently. The most common maxi-
mum size is 128 MB and only a few very recent processors have 256 MB. Moreover, the
memory space available for enclave’s memory pages, the Enclave Page Cache (EPC) is
about 93 MiB [Weichbrodt et al. 2018]. If data or code loaded in all enclaves in a ma-
chine exceed this size, pages are swapped between the protected memory and the regular
memory, which increases latency in orders of magnitude [Arnautov et al. 2016].

SGX’s greatest advantages are the encrypted memory and the remote attestation.
The remote attestation process allows an enclave to prove itself not modified and running
in an SGX-enabled machine. Intel provides, along with the Application Enclave Service
Manager (AESM), a distinct enclave, the Quoting Enclave (QE), capable of measuring
another enclave and generating a quote. The quote is a verifiable structure that contains the
enclave identity, also named as MRENCLAVE. The MRENCLAVE results from an SHA-
256 hash function applied in all operations while the enclave is built. In this way, another
software can check this identity against a reference value. To prevent falsifications, Intel
also provides the Intel Attestation Service (IAS) to verify quote’s authenticity.

The basic approach to develop code for running inside Intel SGX enclaves is to
use Intel SGX Software Development Kit (SDK). However, this is a difficult task as ap-
plications need to be rewritten to be split into secure and insecure parts, where the secure
part cannot execute system calls.

One increasingly popular alternative to facilitate the execution of applications with
SGX enclaves is SCONE (Secure CONtainer Environment) [Arnautov et al. 2016]. Based
on a modified version of the musl libc, SCONE enables applications to run inside
SGX enclaves without changes in the source code. While the SGX-SDK provided by
Intel allows only the development using the C and C++ programming languages, SCONE
delivers an environment for running applications written in other programming languages
such as Python, Go, Fortran, Rust, and R, among others.

SCONE is compatible with the Docker platform and with other container orches-
trators that use Docker, such as Compose and Kubernetes. Thus, running an application
inside an enclave requires only a Linux machine, equipped with an SGX-enabled proces-
sor and BIOS, and a Docker environment. Moreover, SCONE also has support for remote
attestation through the Configuration and Attestation Service (CAS). With the CAS, the
provisioning of secrets to an application may be conditioned to the verification of the
enclave’s identity (MRENCLAVE).

2.4. An example use case

Our use case considers a typical monitoring architecture as depicted in Figure 1. Sensors
(in our case, power meters) publish data to the pub-sub system. The sensors often make
use of a gateway that offers a simpler interface and convert events to the Kafka protocol.
If more powerful sensors are used, the gateway can be omitted. Once the power con-
sumption events are in the message bus, several applications may subscribe to the event
streams. In our example, an anomaly processor will detect relevant situations (potentially
based on a window of events) and push high-level anomaly events back into the pub-sub.
Meanwhile, a Data Logger component archives measurements for offline or long-term
analysis and a Load Disaggregation component analyzes the measurements to detect pat-
terns that indicate which appliances are in use by the consumer and how they are being
used [Figueiredo et al. 2012]. Note that the data can reveal sensitive information not only
for residential users, but also for businesses. Finally, a dashboard displays high level
information, such as anomalies, bill predictions, or energy-efficiency recommendations.

2.5. Threat model

Our threat model assumes that an attacker has the goal of leaking as much data as possi-
ble. Our model include attacks and capabilities such as the following: (i) We assume that
an attacker can gain administrative access to the cloud infrastructure (either the physical
or virtual machines); (ii) We assume that if one gateway is compromised, the attacker will
want to leak the encryption keys, so that he can also compromise another data sources.
Nevertheless, handling Intel SGX’s limitations is out of scope. Thus, we assume that
proper firmware mitigation (latest Intel patches) are applied and that adequate measure-
ments are applied to ensure some robustness to side-channel attacks (e.g., runtime checks
for disabled hyper-threading and TSX support).

Our main goal is then to ensure that data is encrypted before published to Kafka

Kafka
Gateway

Producer

Kafka Cluster

Kafka
Broker #1

Kafka
Broker #2

Kafka
Broker #n...

Power Consumption
Data Logger

Consumer Producer

Power-Anomalies
Detector

Consumer Producer

Load Disaggregation
(NILM)

Consumer Producer

Dashboard

Consumer

1 1

1 1

1

1

2

11

1

2

Legend

Kafka Protocol (with TLS)

HTTPS Protocol

Smart
meters
Smart
meters
Smart
meters

Figure 1. Architecture for the Use Case Application

and that even if a sensor, gateway, or consumer is compromised, encryption keys that
would compromise other nodes will not be leaked.

3. The KafkaProxy
To secure Kafka client applications against the threats defined in Section 2.5, we designed
the KP: a component that sits transparently between the Kafka cluster and the clients (or
their gateways), and enables data-at-rest and memory encryption for the Kafka infrastruc-
ture. Figure 2 gives an overview of KP components: the Catalog and the Message Au-
thenticator, which together with a database compose the Key Management System (KMS),
and the Message Interceptor. These components will be detailed in the next sections.

Figure 2 also depicts two users. In a summary, the system works as follows:
(i) users that controls the data source, i.e., the data owner (illustrated simply as User),
registers information on the Catalog, which restricts potential consumer applications; (ii)
the controller of an application needs to ask the data owner for authorization; (iii) the data
owner updates the Catalog with the new allowed user; (iv) using a token, the new allowed
user instantiates a KP, which will connect to the KMS and retrieve credentials and keys.

3.1. Key Management System (KMS)
The KMS maintains and serves the sensitive configurations related to Kafka client appli-
cations, including the Kafka credentials and encryption keys. It consists of the Catalog
and Authenticator subsystems. The database implementation is customizable and is not

Key Management
System

AuthenticatorCatalog

Database

User

Provides configurationand credentials

Allowed User

Provides Token

Configuration
and CredentialsToken

Message
Interceptor

Token

Legend
Secure Execution (SGX)

Figure 2. KP Overview

in the scope of this work. The security of the database can be through a third-party trusted
service or a database that is run within SCONE6.

Since the KMS is low-demanded and used only to provision settings and secrets,
it was implemented using the Python programming language, hence benefits from the
features of such a high-level language. Its execution is done through the SCONE platform
to benefit from the hardware security guarantees provided by Intel SGX.

3.1.1. Catalog

The Catalog is the subsystem used for configuration and credentials provisioning. It is
also responsible for issuing and managing authorization tokens to allow access to the pro-
visioned secrets. The users must use X.509 public-key certificate to identify themselves
through a TLS connection to the Catalog and certificates must be signed by a certification
authority (CA) recognized by the KMS. Similar to how it is used originally in Apache
Kafka, the user and application ids are based on the subject field of the certificate. For
simplicity, users and application ids are the content of the Common Name (CN) field.

To store data on the Catalog, the user should provide a catalog entry. The catalog
entry is a JSON structure, as seen in Listing 1, and contains configurations, metadata,
and credentials, and is associated with a topic and a randomly-generated cryptographic
key, allowing isolation of different applications or data domains. After provisioning, the
randomly-generated key is returned to the user and should be stored in a safe place as
it is required if the user needs to modify the catalog entry or recover their data (e.g. in
case of a system crash). When configuring a new KP instance, an access token should
be requested by an allowed-user, and provided to the Message Interceptor, so it can
retrieve the proper catalog entry.

6https://sconedocs.github.io/helm_mariadb/

1 {
2 "data-description": "Smartmeter data", // a brief data description
3 "topic-name": "sm.data", // topic referred by this entry
4 "allowed-users": [// list of users allowed to request access tokens
5 "sample-user", "another-user"
6],
7 "allowed-applications": [// MRENCLAVEs of Interceptor instances
8 "aa25d6e1863819fca72f4f3315131ba4a438d1e1643c030190ca665215912465",
9 "9c56db536e046a5fb84a5c482ce86e6592071dff75dc0e3eb27d701cf2c40508"

10],
11 "expiration-time": 1440, // expiration time (in minutes)
12 "app-pubkeys": [// public keys of Interceptor instances
13 {
14 "name": "kafka-proxy-instance1",
15 "pubkey": "<base64 encoded PEM public key>",
16 "name": "kafka-proxy-instance2",
17 "pubkey": "<base64 encoded PEM public key>"
18 }
19],
20 "broker-credentials": { // credentials to access the broker
21 "cert-pem": "<base64 encoded PEM X.509 certificate>",
22 "cert-pkey": "<base64 encoded certificate private key>",
23 "cert-pkey-secret": "<private key secret - optional>"
24 }
25 }

Listing 1. Catalog entry sample

3.1.2. Authenticator

The Authenticator authenticates the applications and delivers the secrets if the authen-
tication succeeds. The authentication process has a particular communication protocol,
which is implemented by the Message Interceptor. The flowchart in Figure 3 describes
the authentication process.

Using secure communication and authentication over TLS, to retrieve secrets and
configurations, the client application must present (i) a public key certificate signed by a
CA recognized by the Key Management System, (ii) a valid token, and (iii) its public key
should be listed on catalog entry. If it complies with (i), (ii), and (iii), the Authenticator
does a remote attestation process to ensure that the remote application has an expected
SGX enclave (MRENCLAVE), running on a trusted platform. Passing all the checks, the
Authenticator delivers the configurations and secrets.

3.2. Message Interceptor

The Message Interceptor is responsible for filtering publications and subscriptions made
by Apache Kafka clients, as well as transparently ensuring confidentiality and integrity of
the messages. This component should be interposed between the broker and the Apache
Kafka clients, which can be producers, consumers, or gateways associated with them.

The credentials and cryptographic keys used by the Interceptor must be obtained
through the authentication process with the KMS. The Message Interceptor authenticates

Deliver
secrets

Yes

NoRequires remote
attestation?

Received Token

Performs the
remote attestation

No

Yes Is the application
authorized?

No

Yes

Is it a valid Token?

No

Yes

Does the catalog
entry contains the application

public key?

Yes

No

Was the
remote attestation

successful?

Start

Returns error

Figure 3. Authentication protocol flow

to the Apache Kafka using X.509 certificates received from KMS. In this way, the con-
nection between the Message Interceptor and the message bus has integrity and confiden-
tiality guarantees ensured by TLS.

The filtering process of publications and subscriptions restricts publishers and sub-
scribers access to the topic defined in the catalog entry in the “topic-name” field. Pub-
lished messages and subscriptions made for topics other than what was defined in the
catalog entry are discarded. In this way, we can restrict the access of publishers and
subscribers to their message domains.

The use of symmetric AES-GCM7 (Galois / Counter Mode) encryption adds both
integrity and confidentiality characteristics to the messages, supporting message authenti-
cation using a MAC (Message Authentication Code). All the messages that pass through
the Message Interceptor, depending on the direction, are encrypted or decrypted trans-
parently. Hence, the messages that circulate through the message bus are encrypted and
subject to integrity verification.

The internal architecture of the Message Interceptor, as seen in Figure 4, is nec-
essary especially when compiling with Intel SGX SDK, which requires having a trusted
portion that cannot perform communication, and an untrusted portion that is the bridge
with the I/O systems. In this case, the trusted side handles the security of the TLS com-
munication, as well as the steps for authentication, and for encryption or decryption, so
that no sensitive data or credentials leave the SGX enclave.

7https://csrc.nist.gov/publications/detail/sp/800-38d/final

Untrusted side

Network
I/O

File System
I/O

Trusted side (Enclave)

Kafka
Protocol

Parser Serializer

Message Interceptor
Rules

Authentication
Protocol

TLS Context

Credentials

Configurations

AES-128 Key

Figure 4. Message Interceptor architecture

4. Evaluation
We designed experiments to analyze the overhead introduced by the KP. More specifically,
we address the following questions: (i) What is the overhead in throughput and latency?
(ii) What is the added CPU usage?

We choose a complete factorial design to guide our experiments, considering the
security configuration and the message size as independent variables. The message sizes
were chosen considering the power monitoring application: 128, 256, 512, 1024, 2048,
4096, and 8192 bytes. For the security configuration we have the following four variants.

• No proxy: This is the native configuration (as depicted in Figure 1, without a
security proxy).
• Insecure: In this configuration, we compiled the KP linking it against the standard

GNU C Library, without any support for Intel SGX.
• SGX SDK: We compiled and ran KP using the Intel SGX SDK.
• SCONE: We compiled KP with the scone-g++ compiler, linking the applica-

tion against the SCONE musl libc. This configuration is executed with the
support from the SCONE runtime.

4.1. Tools and Environment
To evaluate the KP, we took advantage of the tools distributed along with Apache
Kafka: kafka-producer-perf-test, kafka-consumer-perf-test and
EndToEndLatency. The first two were used to simulate a producer and a consumer,
respectively. They were used to measure the throughput of message production and con-
sumption. The EndToEndLatency simulates a Kafka producer and a Kafka consumer
at the same time to measure the latency. In addition, we used the pidstat tool to collect
data on CPU usage. The configuration of the virtual machines is shown in Table 1.

We run our experiments in an OpenStack cloud with support for creating virtual
machines with SGX capabilities. We used the SGX-enabled machine to host the bench-
marking tools and the KP. The other three machines were used to host the Kafka cluster,
where a topic was created with a replication factor of three, and with nine partitions.

Protected memory size Number of VMs Configuration
Not needed 3 4 vCPUs, 8GB RAM

32 MB 1 2 vCPUs, 4GB RAM, SGX

Table 1. VM Flavors used in the experiments

4.2. Experiments
In the treatments where the configuration factor was set to no proxy, the performance
tools were directly connected to the Kafka cluster. In the other cases, the performance
tools send and receive messages through the KP. After the setup of the Kafka cluster we
saved the cluster state. Thus, after each replica of the experiments the cluster was restored
to its initial state to avoid interference from previous runs.

As depicted in Figure 5, in any configuration, the KP adds an overhead to message
producers and message consumers. This is also detailed in Table 2.

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

● ● ●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

Producer Consumer

128 256 512 1024 2048 4096 8192 128 256 512 1024 2048 4096 8192

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

Message Size (bytes)

T
hr

ou
gh

pu
t (

m
sg

/s
)

Configuration ● ● ● ●No Proxy Insecure Proxy SGX SDK SCONE

Figure 5. Throughput (msg/s) per message size

Message Size Producer Consumer
Insecure SGX SDK SCONE Insecure SGX SDK SCONE

128 31,82% 45,67% 86,35% 24,65% 54,77% 79,40%
256 41,76% 51,08% 84,81% 32,35% 56,31% 77,76%
512 37,51% 46,89% 80,71% 26,68% 50,83% 74,19%
1024 41,66% 48,22% 77,63% 25,53% 46,52% 69,30%
2048 45,73% 52,07% 76,32% 21,71% 43,33% 65,95%
4096 45,74% 52,34% 74,65% 17,31% 40,67% 64,41%
8192 55,98% 60,41% 76,46% 25,59% 47,90% 64,79%

Table 2. Percentage reduction of throughput by using the KP

As the number of messages per second is clearly affected by the size of these

messages, we also evaluate the network throughput, as shown in Figure 6. The best
network utilization is achieved for 2048-byte messages.

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

● ●

●

Producer Consumer

128 256 512 1024 2048 4096 8192 128 256 512 1024 2048 4096 8192

0

10

20

30

40

50

60

70

80

90

Message Size (bytes)

T
hr

ou
gh

pu
t (

M
B

/s
)

Configuration ● ● ● ●No Proxy Insecure Proxy SGX SDK SCONE

Figure 6. Network throughput (MB/s) per message size (bytes)

Also relevant is the CPU usage, which is depicted in Figure 7 in an experiment for
the message size set to 2048 bytes, the one with the best throughput. The time axis is cut
at the 25th second as the CPU usage stabilizes. Not surprisingly, the SGX configurations
have higher CPU usage.

Next, Figure 8 depicts the end-to-end latency verified in our experiments. We
can see that only the configuration using SCONE presents latency values considerably
different to the other configurations. The overhead added by KP compiled with SGX
SDK is about 2 ms, while with the KP running in the SCONE environment, this overhead
is approximately 16.55 ms. Table 3 details the mean latency for each treatment.

Message Size Configuration
No Proxy Insecure SGX SDK SCONE

128 13,53 ms 14,54 ms 15,95 ms 27,33 ms
256 11,35 ms 12,01 ms 12,76 ms 26,24 ms
512 11,38 ms 11,79 ms 13,11 ms 29,17 ms

1024 10,53 ms 11,73 ms 12,77 ms 28,80 ms
2048 10,48 ms 11,45 ms 12,68 ms 26,84 ms
4096 10,27 ms 11,62 ms 12,41 ms 30,74 ms
8192 11,83 ms 13,32 ms 13,66 ms 26,11 ms

Table 3. Mean latency in different configurations

5. Related Work
There is a wide range of papers that address privacy in applications such as ours. Some
works (for example, [Borges 2017, Barbosa et al. 2016]) focus on techniques such as

Producer Consumer

0 5 10 15 20 25 0 5 10 15 20 25

0

10

20

30

40

50

60

70

80

90

100

Execution Time (s)

%
 C

P
U

Configuration Insecure Proxy SGX SDK SCONE

Figure 7. CPU Usage (%) over time (s)

●

● ●
● ● ●

●

●

● ● ● ● ●

●

●

●

●
●

●

●

●

●

● ● ● ● ●

●

0.0

3.5

7.0

10.5

14.0

17.5

21.0

24.5

28.0

31.5

35.0

128 256 512 1024 2048 4096 8192
Message Size (bytes)

La
te

nc
y

(m
s)

Configuration ● ● ● ●No Proxy Insecure Proxy SGX SDK SCONE

Figure 8. End-to-end latency (ms) per message size (bytes)

anonymization and homomorphic encryption. Anonymization techniques have the advan-
tage of providing analytic-provable guarantees on the information that can be eventually
leaked, but requires that the information is trimmed upfront, making it infeasible to later
extend the application. In contrast, homomorphic encryption also has limited applicabil-
ity, but due to practical issues. Efficient solutions exist only for specific computations
(requiring 5-6 orders of magnitude of overhead for generic computations) and there are
not practical tools for converting arbitrary code. In this work we focus on using protection
mechanisms that are based on trusted execution environments as they are computationally
efficient and preserve the information on the data.

In the direction of using trusted execution environments to provide confidentiality
support to similar application scenarios there are also several related works. For exam-
ple, Silva et al. [Silva et al. 2016] present the usage of Intel SGX to perform specific
power-data analysis and compare resource usage with solutions based on homomorphic
encryption. Pires et al. [Pires et al. 2016] propose SCBR, a content-based routing sys-
tem that runs entirely inside Intel SGX enclaves and Sampaio et al. [Sampaio et al. 2017]
leverage SCBR for building a system for processing power data with confidentiality guar-
antees. The works from Pires et al. and Sampaio et al. provide pub-sub capabilities, but
as with the work from Silva et al., put the complete software stack inside the enclave,
compromising the scalability of the pub-sub system due to the very limited availability
of the protected memory (as discussed in Section 2). In our work, we use a popular and
scalable message bus, that may have to be hosted in the cloud in other to support a large
scale distributed application. In our solution, the KP would be typically run closer to the
producers and, thus, the Kafka cluster and the KPs could be scaled independently.

Finally, as mentioned before, enterprise add-ons to Kafka such as Cloudera Nav-
igator Encrypt and Vormetric Transparent Encryption could add data-at-rest encryption,
but would not prevent data or keys to be stolen from memory.

6. Conclusion
In this paper, we proposed a strategy to ensure integrity and confidentiality for publish-
subscribe applications that does not require applications to be modified. We designed a set
of components that run in trusted execution environments (Intel SGX) for credential man-
agement and cryptographic operations. Also, we implemented the proposed components
and validated them with experiments to understand the overhead of the security layer of-
fered. Our results show that following such approaches enables leveraging the best of both
worlds: On the one hand, off-the-shelf, high performance and easy-to-use Kafka clusters;
On the other hand, data-at-rest encryption and simple key management for applications
that handle sensitive data. Finally, our experiments evaluate the performance tradeoff of
developing applications with the Intel SGX SDK, which provides performance advantages
at the cost of leaving more responsibilities to the developers, versus using SCONE, where
some performance and TCB space is traded for improved maintainability and support to
some SGX limitations (e.g., some side channel attacks).

Acknowledgements
This work has been supported by the RNP Workgroup Program (GT), by Smartiks Ltda.,
and by the Brasilian Agency for Industrial Innovation (EMBRAPII) under the project
GT-LiteCampus.

References
Adebayo, A. O. (2012). A foundation for breach data analysis. Journal of Information

Engineering and Applications, 2(4):17–23.

Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind, J., Muthuku-
maran, D., O’Keeffe, D., Stillwell, M. L., Goltzsche, D., Eyers, D., Kapitza, R., Piet-
zuch, P., and Fetzer, C. (2016). SCONE: Secure linux containers with intel SGX. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
16), pages 689–703, Savannah, GA. USENIX Association.

Barbosa, P., Freitas, L., Brito, A., and Silva, L. (2016). Privacy preserving techniques in
smart metering: An overview. In Proceedings of the 16th Brazilian Symposium on In-
formation and Computational Systems Security. Sociedade Brasileira de Computação.

Borges, F. (2017). On Privacy-Preserving Protocols for Smart Metering Systems: Secu-
rity and Privacy in Smart Grids.

Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-M. (2003). The many faces
of publish/subscribe. ACM Comput. Surv., 35(2):114–131.

Figueiredo, M., de Almeida, A., and Ribeiro, B. (2012). Home electrical signal disaggre-
gation for non-intrusive load monitoring (nilm) systems. Neurocomputing, 96:66 – 73.
Adaptive and Natural Computing Algorithms.

Maene, P., Götzfried, J., de Clercq, R., Müller, T., Freiling, F., and Verbauwhede, I.
(2018). Hardware-based trusted computing architectures for isolation and attestation.
IEEE Transactions on Computers, 67(3):361–374.

Mukhtar, M. A., Bhatti, M. K., and Gogniat, G. (2019). Architectures for security: A
comparative analysis of hardware security features in intel sgx and arm trustzone. In
2019 2nd International Conference on Communication, Computing and Digital sys-
tems (C-CODE), pages 299–304.

Pires, R., Pasin, M., Felber, P., and Fetzer, C. (2016). Secure content-based routing using
intel software guard extensions. In Proceedings of the 17th International Middleware
Conference, Middleware ’16, New York, NY, USA. Association for Computing Ma-
chinery.

Sampaio, L., Silva, F., Souza, A., Brito, A., and Felber, P. (2017). Secure and privacy-
aware data dissemination for cloud-based applications. In Proceedings of The10th
International Conference on Utility and Cloud Computing, UCC ’17, page 47–56, New
York, NY, USA. Association for Computing Machinery.

Silva, L., Marinho, R., Brito, A., and Barbosa, P. (2016). Agregação de dados na núvem
com garantias de segurança e privacidade. In Proceedings of the 16th Brazilian Sym-
posium on Information and Computational Systems Security. Sociedade Brasileira de
Computação.

Weichbrodt, N., Aublin, P.-L., and Kapitza, R. (2018). sgx-perf: A performance analy-
sis tool for intel sgx enclaves. In Proceedings of the 19th International Middleware
Conference, pages 201–213.

