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Abstract. The increasing adoption of mobile applications as a means of user
authentication is revealing new security challenges and opportunities. In order
to modernize their physical identification and authorization procedures (e.g.,
access turnstile), some institutions have adopted static QR Codes generated us-
ing simple and static user data, such as some type of individual citizen national
identification number. This procedure is easy to implement and verify, but it
represents a critical security vulnerability. To address this issue, we propose
Auth4App, a set of protocols for identification and authentication using mobile
applications. Auth4App has two main protocols, one for binding user creden-
tials to the mobile device (i.e., identification) and another one for generating
one-time authentication codes (OTACs). Both protocols were formally verified
using Scyther, an automated verification tool. Based on the automated analysis,
our results show Auth4App protocols are robust enough and meet safe relevant
criteria. Our prototype simulates access control using electronic turnstiles and
was developed to present how our solution works and its deployment feasibil-
ity. The results show Auth4App enables accurate user authentication with a low
computational cost.

1. Introduction
Mobile devices are part of everyday life for most people. The arise of the Internet of
Things (IoT), services available on the cloud, and the ubiquity of these devices will in-
crease considerably in the next few years [Curado et al., 2019, Bittencourt et al., 2018].
According to recent statistics [S. O’Dea, 2020], there are more than 4.78 billion mobile
devices connected to the Internet. Nearly 73% (3.5 billion) of these devices are smart-
phones, which means approximately 45% of the world’s population might already own
one.



Smartphones are increasingly being used for authentication (i.e., identification and
verification), and access control (permission or denial of entry) to a particular space (phys-
ical or logical/virtual). For instance, smartphones are being used to identify and allow
users to access different types of facilities, such as gyms, libraries, swimming pools,
sports courts, and water parks. This identification can be done in different ways, ranging
from contactless codes (e.g., authentication code sent through Bluetooth/NFC) to virtual
cards/credentials having a QR Code used for authentication purposes. However, existing
virtual card-based solutions use an authentication code consisting of a static QR Code.
This code is obtained only from this person’s registration number or some other identi-
fier, such as some type of individual citizen national unique identification number, e.g.,
Social Security Number (SSN) in the USA, and Individual Taxpayer Registration (CPF)
in Brazil. Authentication mechanisms like this are known as static single-factor authenti-
cation. They are relatively simple to be circumvented since it is enough for the malicious
agent to gain access to the user’s credentials to compromise the authentication mech-
anism. For example, in systems using a static single-factor, the malicious agent only
needs to know this person’s credentials or clone the QR Code. Moreover, a QR Code
can be easily read/ copied/ cloned from distance due to its nature. According to recent
research [Belani, 2020], user credentials are still one of the main targets of hackers, and
one of the root causes of data leakage. Furthermore, leaking user credentials is the main
cause of improper access to private data [Verma et al., 2019, InfoArmor, 2017].

In order to mitigate security vulnerabilities, multi-factor authentication protocols
have been proposed [Di Pietro et al., 2005, Maliki and Seigneur, 2007, Starnberger et al.,
2009, Lee et al., 2010, Kaur et al., 2016, Ferrag et al., 2018, Wu et al., 2019]. Two-
factor authentication can be performed using a username/password as the first factor and
another authentication code, generated by a specific application (e.g., Google Authenti-
cator) or sent via Short Message Service (SMS), as a second factor. However, the SMS
protocol does not provide end-to-end security [Androulidakis, 2016] and it can lead to
usability issues and challenges. The same is true for other multi-factor authentication
mechanisms [Cristofaro et al., 2013]. For example, the additional factor would increase
the delay for users passing through a turnstile to access a certain facility (e.g., gym, and
library). This overhead is undesirable and, perhaps, a reason for the multi-factor mech-
anism that has not been broadly deployed [Ferrag et al., 2018]. Therefore, we notice
the following research question: How to solve the authentication problem, using a single
factor, without compromising security and usability?

In order to address the issue of the previous question, we present Auth4App, a set
of protocols for identification and authentication using mobile applications. The utmost
purpose of Auth4App is to provide secure authentication with a single dynamic factor,
avoiding to compromise the usability. Our solution is composed of two protocols: the
first one for linking user credentials (i.e., identification) to the mobile device, and the
second one for generating disposable one-time authentication codes, a.k.a., OTAC. The
core idea here is to limit the linking of the user’s identity to just a single smartphone,
mitigating the possibility of using the same credentials by multiple people through several
distinct devices. The binding protocol generates a master key, which is used by the second
protocol to derive unique authentication codes.

The main contributions of this work are as follow:



1. the design and implementation of a protocol for linking users to unique devices;
2. the conceptual design and development of a protocol for generating unique au-

thentication codes;
3. the discussion of a use case to demonstrate the practical application of the solution;
4. implementation of the Auth4App prototype that simulates the use of the solution

in electronic turnstiles through QR Code; and
5. formal verification of the protocols using the Scyther tool.

The remainder of this paper is organized as follows. In §3 and §2, we discuss
the requirements, assumptions and protocols. We introduce our use case and its main
challenges in §4. Following, we provide the formal verification of the protocols (§5) and
the related works (§6). Finally, we provide our final remarks in §7.

2. Proposal requirements and assumptions
We assume the user device as unreliable, which means an attacker can compromise the
device and may have access to identification and verification data. In order to guide the
design of the Auth4App solution, we defined the following requirements:

• Unique bond. A user must be linked to a single device at a given time t. The single
link reduces the risks associated with any attempt to use leaked user credentials.

• General-purpose solution. The proposed solution must be of general-purpose,
i.e., it must apply to different use cases and scenarios.

• Out-of-band channels. To guarantee a single and secure link between a user U
and a device D, out-of-band channels must be used to send additional security
codes.

• Revocation of compromised identities. In case of theft or loss of the user’s
smartphone, mechanisms to identify and revoke the link of the device’s application
must be put in place.

3. The design of Auth4App
Auth4App consists of two protocols: (i) identification, in which the user’s application
is linked to a single mobile device, and (ii) verification, which deals with the disposable
authentication codes and its generation. Fig. 1 shows a sequence diagram of the authoriza-
tion process verification using Auth4App. There are three actors: the user, the turnstile
(as an example of an access control mechanism), and the authentication service. First,
the user requests a registration within the corporate authentication service. Sequentially,
the user can request authentication to the turnstile. This authentication can be off-line, if
the OTAC mechanism is implemented inside the turnstile, or online, using the authentica-
tion service. Both registration and authentication protocols are discussed in detail in the
following sections.

3.1. The Identification Protocol
After installing the mobile application, in the first use, the user is asked for his/her cre-
dentials for identification and authentication (e.g., login/password). Then, during the first
access, the registration and linking protocol of the application is started.

In Auth4App, a single device can be linked to the user’s knowledge factor (e.g.,
login/password). The identification protocol ensures that, in the event of a possible device
cloning, the action is automatically detected.
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Figure 1. Auth4App: Sequence Diagram.

Protocol 1 describes the registration process details. It starts with a connection
using Transport Layer Security (TLS) between the application and the server (line 1).
Next, the server sends three different codes, using the TLS channel (line 2) and two out-of-
band channels to the client; in this specific example an SMS and an e-mail, lines 3 and 4,
respectively. We assume the attacker does not have the necessary resources to compromise
all communication channels (e.g., out-of-band channels) simultaneously, thus increasing
authentication reliability.

The first temporary key KT1 is generated from the TLS session key along with
the three codes sent earlier by the server. A strong cryptographic hash function is used to
generate the key (line 5), as proposed and proven to be a robust alternative for generating
high entropy authentication codes [Kreutz et al., 2018] and secret keys [Kreutz et al.,
2019]. The KT1 key is then used to encrypt (represented by E) the International Mobile
Equipment Identity (IMEI) and the pseudo-random number mk rnd. The same key is
used to sign the message (i.e., Compute the Hash-based Message Authentication Code
(HMAC)) which is transmitted from the client to the server. The values of IMEI, mk rnd,
and the key KT1 are used to generate the second temporary key KT2. This second key is
assumed to be stronger since it includes a unique global number (the IMEI of the device)
and a pseudo-random number of the application (the mk rnd). This, of course, increases
the entropy of the KT2 key.

Finally, the server sends a pseudo-random number srv rnd to the client (line 8),



Protocol 1. Device linking and master key generation.

1. Client — Server Secure connection to the Server

2. Server→ Client [CODE TLS, code1]

3. Server→ Client [CODE SMS, code2]

4. Server→ Client [CODE EMAIL, code3]

5. Client, Server KT1← H(K||code1||code2||code3)

6. Client→ Server [Client, nonce, EKT1(IMEI,app rnd)], HMACKT1

7. Client, Server KT2← H(IMEI||app rnd||KT1)

8. Server→ Client [Server, nonce, EKT2(srv rnd)], HMACKT2

9. Client, Server KM ← H(KT1||KT2||IMEI||app rnd||srv rnd)

10. Client→ Server [Client, V M, nonce, EKM (mk rnd)], HMACKM

11. Server→ Client [Server, V M, nonce, EKM (mk rnd+ 1)], HMACKM

and both generate the high entropy master key KM (line 9). However, the master key still
needs to be verified to finalize the protocol. Thus, the user sends an encrypted pseudo-
random number mk rnd to the server (line 10). The server decrypts the received pseudo-
random number using its KM key, then increments it by one (+1), encrypts the new value,
and sends it back to the client (line 11). If the client is able to validate the received value, it
means that the keys are the same and the protocol execution was successfully completed.

As long as the IMEI and the master key are valid or in use by the user, it is not
possible to register another device using the same credentials. The user can use only one
device at a time. In order to use a new device, the user must first revoke the current appli-
cation/registration of the former device. This security procedure is adopted by different
fintechs and digital banks, such as Revolut (https://www.revolut.com), N26 (https://n26.com),
and NuBank (https://nubank.com.br/).

3.2. The Authentication Protocol

The proposed authentication protocol was designed for generating unique codes that can
be used for authentication. As aforementioned, the identification protocol generates a high
entropy master key KM , and because of that, the key to the unique code generator can be
derived from it. A secure cryptographic hash function can be used for derivation, such as
those of groups SHA2 and SHA3 (https://csrc.nist.gov/projects/hash-functions). The initial key
for generating unique authentication codes can be as simple as Kc = H(Km||Kc). Since
the key Kc starts empty, the first Kc is equal to H(KM ).

The proposed solution uses a OTAC, which means the generated code is valid
to authenticate a user’s identity for only one transaction or login session. In Auth4App,
these codes are generated from the key Kc. In order to synchronize the generation of these
codes, it is necessary to use the indexes iA, in the application, and iS on the server. Then,
at the beginning of the generation, the OTAC is equal to Kc. As soon as it is generated,
the Kc is evolved to the next value, which is Kc = H(Km||Kc). Following, OTACs are
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generated as follows: OTAC = HN (OTAC), in which the cryptographic hash function can
be applied N times to generate N distinct and unique authentication codes. These codes
have the security property called Perfect Forward Secrecy (PFC), as it is not possible to
discover old OTAC codes from the current ones. This is ensured through the irreversibility
property of the cryptographic hash functions.

Let us assume, for example, the iA and iS indexes are temporarily set to 1 and
0, respectively. The application just needs to send one message, with the current in-
dex of the local OTAC, to perform the authentication on the server. When the appli-
cation sends the message “[GET, file name, nonce, iA], HMAC” to the server,
the HMAC (message signature) is generated using the application’s OTAC as a key. The
server will update its OTAC to OTAC = HiA−iS(OTAC), using the index value received
from the application. Using the new OTAC value, the server will verify the HMAC sig-
nature of the message. Finally, the server will confirm the authentication if the signatures
match, and deny otherwise.

In our prototype implementation (using Python 3.7.3), one OTAC can be gener-
ated and verified in just 0.07ms (average of 10k runs), on a laptop with the following
configuration: CPU Intel CPU i7-4510U 2.0 GHz, Debian (10 Buster) Linux. In other
words, as expected, OTAC have (arguably) a low computational cost.

4. Use case and Challenges
The adoption of electronic turnstiles for access control is becoming increasingly common
in a broad range of facilities (e.g., gyms, universities). However, these establishments tend
to adopt the static data model (e.g., SSN or a pseudo-random token in a static QR Code)
for access control, thereby presenting a security threat in the case of a user’s credentials
leak.

In our solution, the OTAC can be used for access control even in simple turnstiles
that are capable of reading QR Codes, as shown in Protocol 2. Each individual in the sys-
tem has a digital identification card (line 1). Thus, the user opens the application, which
automatically generates a one-time use QR Code for authentication (line 2). Next, the user
brings the QR Code closer to the reader (line 3) and the turnstile reads the code (line 4).
Afterward, the turnstile updates the OTAC (line 5) and checks it against the HMAC (line
6), providing or denying user access.

Protocol 2. Electronic turnstile OTAC.

1. User Opens the identification application

2. QR Code = [id, iA], HMACOTAC

3. Brings the QR Code closer to the Turnstile

4. Turnstile Reads the QR Code

5. Updates the OTAC←HiA−iS(OTAC)

6. Checks HMAC using the OTAC as key

We argue the process is efficient and simple because it can be carried out entirely
offline. There is no network communication dependence, neither time and clock synchro-



nization between devices to generate, read, and validate the QR Codes. The turnstile only
needs a network connection to update the user’s database, which can be scheduled. How-
ever, in such a case, we have to assume the turnstile as trustworthy as it might be able to
impersonate a user.

The alternative to the off-line process is to put the authentication online, removing
the OTAC generator from the turnstile. In this case, the authentication can be done by a
Trusted Third Party (TTP), or outsourced to a specialized third party, which is a common
approach taken in different domains and scenarios [Aloqaily et al., 2017, Zhan et al.,
2018, Kreutz et al., 2019]. It is worth also emphasizing previous works that have shown
the technical feasibility of resilient security services [Kreutz et al., 2014, Kreutz et al.,
2016], which shows us a TTP might indeed be an interesting choice.

It is worth noticing that high entropy unique codes (e.g., OTACs) can be consid-
ered more reliable than biometric data, which are static in nature [Rui and Yan, 2019].
In other words, biometric data is comparable, to some extent, to an unchangeable pass-
word. If an immutable password leaks, all security on all systems based solely upon it
will be compromised. Additionally, biometric readers should also be improved to provide
anti-spoofing reading (e.g., silicone and Play-Doh fingerprints clones). For this reason,
biometric authentication should be adopted cautiously and preferably together with other
authentication formats.

5. Automatic Protocol Verification

The automatic verification of the security properties of a protocol is crucial to demonstrate
its efficiency and correctness. Tools such as Scyther [Cremers, 2006] can contribute to
this process [Amin et al., 2020, Almuzaini and Ahmad, 2019].

5.1. Identification Protocol Security Analysis

Algorithm 1 describes the identification protocol (Protocol 1) in the semantics of the
Scyther tool. The predefined types Code, TemporaryKey and MasterKey are declared
on line 1. The keys K, KT1, KT2, and KM are declared globally on lines 4, 5, and
6. Lines 2 and 3 define a cryptographic hash function H and an HMAC function, respec-
tively.

The call to the protocol function is the beginning of the specification of the
Auth4App protocol (line 7). It contains four agents that have explicit roles, namely
KGC (line 8), MKG (line 11), Client (line 22), and Server (line 36).

As can be seen in the algorithm semantics, each sending event (e.g., send 1,
line 9) has a corresponding receiving event (e.g., recv 1, line 14). The syntax of the
send 1 event indicates that the transmission is from Key Generation Center (KGC) to
Master Key Generation (MKG). This simulates the generation of the session key K. The
first temporary key KT1 is generated through the cryptographic hash function H, which
takes the session key K and the codes code1, code2 and code3 as a parameter. The key
KT1 of the Client and Server agents are generated on lines 15 and 16, respectively,
ensuring that they are the same on both agents.

Furthermore, the claim function is used with two specific security requirements
(Secret and Nisynch) to ascertain a term is secret and authentic, as can be noted from



Algorithm 1: Identification Protocol Security Analysis.

1 usertype Code, TemporaryKey, MasterKey;

2 hashfunction H;

3 const HMAC: Function;

4 secret K: SessionKey;

5 secret KT1, KT2: TemporaryKey;

6 secret KM: MasterKey;

7 protocol Auth4App(KGC, MKG, Client, Server){

8 role KGC{// Key Generation Center

9 send 1(KGC, MKG, H(K));

10 }

11 role MKG{// Master Key Generation

12 fresh code1, code2, code3: Code;

13 fresh appRand1, serverRand, imei: Nonce;

14 recv 1(KGC, MKG, H(K));

15 send 2(MKG, Client, KT1(H(K,code1, code2,, code3,

code3, xxx code3)));

16 send 3(MKG, Server, KT1(H(K,code1, code2,, code3,

code3, xxx code3)));

17 send 5(MKG, Client, KT2(H(imei, appRand1, KT1)));

18 send 6(MKG, Server, KT2(H(imei, appRand1, KT1)));

19 send 8(MKG, Client, KM(H(KT1, KT2, imei,, appRand1,

appRand1 appRand1, serverRand)));

20 send 9(MKG, Server, KM(H(KT1, KT2, imei,, appRand1,

appRand1 appRand1, serverRand)));

21 }

22 role Client{

23 fresh nonce: Nonce;

24 fresh imei, appRand1, serverRand: Nonce;

25 var code1, code2, code3: Code;

26 recv 2(MKG, Client, KT1(H(K, code1, code2, code3)));

27 send 4(Client, Server, HMAC(nonce, {imei, , appRand1,

appRand1 appRand1}KT1(Client, Server)));

28 recv 5(MKG, Client, KT2(H(imei, appRand1, , KT1, KT1,

KT1, KT1KT1)));

29 recv 7(Server, Client, HMAC(nonce, , KT1, KT1, KT1,

KT1, KT1{serverRand}KT2(Server, Client)));

30 recv 8(MKG, Client, KM(H(KT1, KT2, imei, ,

appRand1appRand1, serverRand)));

31 claim(Client, Secret, KT1);

32 claim(Client, Secret, KT2);

33 claim(Client, Secret, KM);

34 claim(Client, Nisynch);

35 }

36 role Server{

37 var nonce:Nonce;

38 var imei, appRand1:Nonce;

39 var code1, code2, code3:Code;

40 fresh serverRand: Nonce;

41 recv 3(MKG, Server, KT1(H(K,code1, code2, , code3,

code3, cocode3)));

42 recv 4(Client, Server, HMAC(nonce, {imei, , appRand1,

appRand1appRand1}KT1(Client, Server)));

43 recv 6(MKG, Server, KT2(H(imei, appRand1, , KT1, KT1,

KT1, KT1KT1)));

44 send 7(Server, Client, HMAC(nonce, , xxx, xxx, xxx, xxx,

xxx, xxx{serverRand}KT2(Server, Client)));

45 recv 9(MKG, Server, KM(H(KT1, KT2, imei, ,

appRand1appRand1, serverRand)));

46 claim(Server, Secret, KT1);

47 claim(Server, Secret, KT2);

48 claim(Server, Secret, KM);

49 claim(Server, Nisynch);

50 }

51 }

lines 31 to 34, and 46 to 49. If a term, for example, the generated keys KT1, KT2, or
KM , is claimed to be secret, they should be unknown to any adversary. In this case, the
statements created can verify that the keys remain secret and authentic during communi-
cations. At the same time, the Nisynch claims all messages of the client (line 34) or
the server (line 49) are indeed sent and received by their righteousness communication
partner.

Scyther tool generates a full report containing the final status of all tests/attacks
performed. When there are failures, Scyther also presents a flowchart illustrating details
of how the attack can be carried out. In the case of the identification protocol, the com-
munication between Client and Server is secure, according to the automatic analysis
of Scyther (Fig. 2). Auth4App was not susceptible to any of the attacks implemented



in Scyther. It is worth emphasizing that we used the --all-attacks option of the
Scyther tool to automatically verify our algorithms taking into account our own claims
and special roles, such as KGC and MGK.

Figure 2. Report: Identification Protocol Security Analysis.

5.2. Authentication Protocol Security Analysis

Algorithm 2 describes the Protocol 2 (authentication) in Scyther’s semantics. The vari-
ables used, the cryptographic hash function H, and the HMAC function was defined from
lines 1 to 4. The authentication process starts with the user’s OTAC update, which will be
used for authentication with the turnstile. The KGC agent generates and sends a new code
to the user (line 7). Following this, the user sends his id, iA, and the message HMAC (line
14) to the turnstile.

It is worth mentioning, due to the Scyther limitations, it is not possible to represent
the difference in algorithm indexes (i.e., iA− iS) shown in Section 4. An abstraction was
implemented to overcome this limitation, in which the turnstile receives and updates its
OTAC code through the KGC agent (lines 19 and 20). Finally, the claim events depicted
in lines 15 and 21 are executed to determine whether the OTACs of the two agents remain
secure during Scyther’s automatic security analysis. Fig. 3 shows the result of Scyther’s
analysis, the analysis returned Ok for the user and turnstile statements, indicating OTACs
are secure.

6. Related work and Auth4App

Table 1 summarizes different identification and verification solutions as a second or third
authentication factor that use mobile devices, tokens, smart-cards, among other resources.



Algorithm 2: Authentication Protocol Security Analysis.

1 usertype UniqueCode;

2 hashfunction H;

3 secret OTAC: UniqueCode;

4 const HMAC: Function;

5 protocol OTACG(KGC, User, Turnstile){

6 role KGC{

7 send 1(KGC, User, H(OTAC));

8 send 3(KGC, Turnstile, H(OTAC));

9 }

10 role User{

11 fresh id, iA: Nonce;

12 var nr: Nonce;

13 recv 1(KGC, User, H(OTAC));

14 send 2(User, Turnstile, id, iA, HMAC(id, iA));

15 claim(User, Secret, OTAC);

16 }

17 role Turnstile{

18 var iA, id: Nonce;

19 recv 2(User, Turnstile, id, iA, HMAC(id, iA));

20 recv 3(KGC, Turnstile, H(OTAC));

21 claim(Turnstile, Secret, OTAC);

22 }

23 }

Figure 3. Report: Authentication Protocol Security Analysis.

Most of these solutions are designed specifically for Internet Banking and banking sys-
tems (e.g., ATMs), prioritizing security over usability. Except for the proposed solu-
tion (Auth4App), all of them use multiple authentication factors, which go from simple
to more complex procedures, and are domain-specific.

Auth4App is a general-purpose solution and can be used for identification and
verification (i.e., authentication, authorization) in smartphone applications. Moreover,
the verification is performed without the need for out-of-band channels. In other words,
Auth4App is, to the best of our knowledge, the only solution that ensures a robust verifi-
cation using only a single authentication factor. Assuming the access to the smartphone is
sufficiently secure, the employment of the user’s identity will be protected even in cases
of loss or theft of the mobile device.

7. Conclusion

There is an increasing need for robust identification and authentication solutions nowa-
days. Auth4App provides a set of protocols for enabling identification and authentication
using applications in smartphones, for instance. There are two core protocols, one for
linking user credentials to the device and the other for generating unique codes. Those
protocols can be used to increase the system’s security, without impairing usability. This
is possible because Auth4App provides a single, yet dynamic and robust factor of identi-
fication and authentication.



Table 1. Related work comparison.

Solutions Design for Authentication Out-of-band channel

[Eldefrawy
et al., 2011]

Internet
Banking

User/password and OTP
via mobile application

OTP is sent to mobile
device

[Pratama
and Prima,
2016]

Internet
Banking

User/password and OTP
via mobile application

QR Code on the elec-
tronic terminal or PC

[Khamis
et al., 2017]

ATMs Password, PIN, and mo-
bile application

Bluetooth

[Putra et al.,
2017]

Internet
Banking

User/password, OTP, PIN,
and smart card

NFC

Auth4App ID apps Single-factor authentica-
tion using OTACs

Codes sent via SMS
and email

The key principle of Auth4App is the OTAC, i.e., the generation and verification
of robust and disposable one-time authentication codes. One OTAC is used only once,
for a single authentication, and then discarded. This makes it significantly more difficult
to clone the generated authentication codes by malicious users. Furthermore, Auth4App
protocols can be considered secure since the essential security properties have been for-
mally verified using the Scyther tool.

Future work:
1. in-depth performance evaluation of the protocols on different real use cases (e.g.,

smartphone-turnstile, smartphone-smartphone, smartphone-PC/web application);
2. evaluation of hardware-assisted solutions (e.g., trusted execution environments,

a.k.a. TEEs [Asokan, 2019, Pinto and Santos, 2019, Coppolino et al., 2019]) for
securely storing and using the master key on mobile phones;

3. threats modeling and security analysis of the protocols taking into account differ-
ent use cases and stealthy attacks;

4. use symbolic analysis tools, such as the TAMARIN prover [Meier et al., 2013]
(https://tamarin-prover.github.io/), to formally prove the protocols against powerful ad-
versaries; and

5. use formal proof management systems, such as Coq [Brauer et al., 2004] (https://
coq.inria.fr/), to provide formally-verified implementations (e.g., in C programming
language) of the protocols.
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